JP3663679B2 - Method for producing activated carbon - Google Patents

Method for producing activated carbon Download PDF

Info

Publication number
JP3663679B2
JP3663679B2 JP18795495A JP18795495A JP3663679B2 JP 3663679 B2 JP3663679 B2 JP 3663679B2 JP 18795495 A JP18795495 A JP 18795495A JP 18795495 A JP18795495 A JP 18795495A JP 3663679 B2 JP3663679 B2 JP 3663679B2
Authority
JP
Japan
Prior art keywords
activated carbon
titanium dioxide
coal
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18795495A
Other languages
Japanese (ja)
Other versions
JPH0920509A (en
Inventor
公平 奥山
一志 松浦
光雄 鈴木
浩幸 相京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP18795495A priority Critical patent/JP3663679B2/en
Priority to TW085101266A priority patent/TW369510B/en
Priority to DE69603515T priority patent/DE69603515T2/en
Priority to CN96104345A priority patent/CN1137021A/en
Priority to EP96300734A priority patent/EP0725036B1/en
Priority to KR1019960002801A priority patent/KR960031341A/en
Publication of JPH0920509A publication Critical patent/JPH0920509A/en
Priority to US08/904,837 priority patent/US5965479A/en
Application granted granted Critical
Publication of JP3663679B2 publication Critical patent/JP3663679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Water Treatment By Sorption (AREA)
  • Glanulating (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、活性炭およびその製造方法に係るものである。
本発明により製造される活性炭は、二酸化チタンの活性炭粒への固定化という観点において極めて優れており、活性炭の細孔を埋めることなく、表面に二酸化チタンが存在するものである。また、本発明により製造される活性炭は、紫外線や太陽光照射下において、水中あるいは気相中有害物質の除去能を大幅に向上させたもので、かかる活性炭は、上水処理、下水処理、廃液処理、廃気ガス処理、悪臭除去等に好適に使用される。
【0002】
【従来の技術】
活性炭は、高比表面積であるため、優れた吸着能を有しており、水中あるいは気相中の有害物質を吸着除去するのに用いられている。
近年、生活排水や産業排水による水質汚染や海洋汚染、大気汚染などが地球的規模で広がっている。合成洗剤などを含む生活排水による湖・河川の富栄養化、ハイテク産業やクリーニング店で使われている有機溶剤による地下水や水源の汚染、ゴルフ場で使用される農薬の流出による水質の汚染、などがその代表例である。
【0003】
現在、広く行われている排水処理法は、ほとんどは活性汚泥法であるが、微生物を用いるため、温度、pH、ガス雰囲気、毒性などの条件が厳しく、しかも上述の農薬や有機溶剤(ハロゲン化合物を含む)、界面活性剤などを分解、除去しにくく、それらに対して無力であるという欠点をもっている。このような生物学的に難分解性の有機物の処理法としては、塩素処理法、オゾン処理法、焼却処理法、活性炭吸着法などがある。塩素処理法は、過剰注入による残留塩素、あるいは、被処理水中に含まれる有機物と反応して発癌性を持つトリハロメタンに代表される有機ハロゲン化合物を生成するなどの問題がある。また、最近、浄水場等において、高度浄水処理法として、オゾン処理が脚光を浴びているが、設備費、運転費がともに高価であるという問題がある。焼却処理法は、希薄溶液の場合には現実的でない。活性炭吸着法は、非常に有効な方法ではあるが、有機ハロゲン化合物の吸着除去能が若干劣り、水中の有害物質全てに対して有効というわけではなかった。
【0004】
大気汚染や悪臭物質等の気相中有害物質の除去においても、活性炭の吸着除去は有効である。一般に、気相中の汚染成分を対象とする吸着技術は、水蒸気や炭酸ガスの共存下で低濃度ガスに対して有効なものでなければならない。活性炭は、そのような条件下で多種類の有機、無機化合物に対して使用される。気相用活性炭は、特に大きい比表面積と小孔径の細孔構造を持ち、低濃度ガスに対する吸着親和性が大きい。また、その表面が疎水性であるために水蒸気に対する吸着親和性が小さく、気相中に混在する有害ガスや臭気物質、特に有機化合物を効率良く除去することができる。しかし、吸着親和性が弱いガスもあり、活性炭の吸着除去能は、全てにおいて万能というわけではなかった。
【0005】
一方、二酸化チタンの結晶を光電極とする半導体光電極を用いて、光エネルギーを直接的に水の分解に利用できることが、1969年に発見されて以来(本多−藤嶋効果)、二酸化チタンに代表される光触媒は、光エネルギーを化学エネルギーへ変換する有力な手段になり得るものとして、世界的に様々な分野で研究開発が活発に進められている。このような反応は光触媒反応と称され、光の助けにより進む触媒反応であり、その反応系に触媒が共在し、それだけでは反応が進まないが、光の照射によって反応が促進されるものと定義されている。この光触媒反応は通常の触媒反応や光化学反応と深い関わり有する反面、それらの反応と際だった相違を有するものである。通常の触媒はその駆動力が熱であり、触媒の存在によって反応系が生成系へ移行する速度が変化する。したがって、触媒の役割は、その系の温度、圧力などで規定される平衡状態への到達速度を制御するものであり、達成される反応は熱力学的に進行可能な反応に限定される。これに対して、光化学反応は、反応系に光が吸収され、物質の電子状態や化学結合性に変化が生じることによって、生成系に変化するものであり、通常の触媒反応のような熱反応では起こすことのできない反応を実現できる。
【0006】
一方、光触媒反応は、光を吸収して電子的励起状態に置かれた触媒が反応系に作用することにより触媒表面でのみ反応が進行するものである。この触媒の電子的励起状態は、光化学反応における励起種と同様、電子の温度だけが極めて高くなった非平衡の状態に相当するもので、その結果、熱力学的には反応が不可能である温和な条件下であっても反応が進行する。これは、通常の触媒反応で知られている「触媒は化学反応の平衡を変えない」という大原則が光触媒反応では成り立たない場合のあることを意味しており、光触媒反応の重要な特徴となっている。この光触媒反応は、(1)半導体が光を吸収し、励起して電子−正孔対を生じる光励起過程と、(2)生成した電子および正孔が、半導体粒子内電位勾配や拡散により各々表面に移動する電荷分離と移動の過程、(3)表面に移動した正孔および電子が触媒に吸着した基質と電子移動を起こし、各々酸化還元反応を行う表面反応過程に分かれる。
【0007】
【発明が解決しようとする課題】
これらの知見に基づき、本発明者らは、先に特願平7−037758として、光触媒能を有する二酸化チタンを表面に適度に存在させた活性炭を提案している。
しかしながら、二酸化チタンの活性炭表面への固定化技術は種々あるが、剥離強度が異なり、活性炭表面からの二酸化チタンの処理水や処理ガス中への離散が問題となる。
【0008】
【課題を解決するための手段】
そこで、本発明者は、上記の課題を解決すべく更に鋭意検討した結果、石炭を粉砕し、造粒し、解砕し、炭化し、賦活して石炭系活性炭を製造する方法において、造粒前の石炭に、二酸化チタンを添加して製造することにより、驚くべきことにTiO2にとって、炭化という極めて強還元雰囲気に置かれ、更に、賦活工程で水蒸気賦活(H2が発生し、更に周囲に炭素が存在)等を行っても、TinO2n−1等の副生成物を生じることなく、光触媒作用のあるアナターゼ型やルチル型TiO2として存在することを見い出した。また、更に、かかる方法によれば、活性炭の細孔を埋めることなく表面に二酸化チタンが存在し、しかも、活性炭粒に二酸化チタンがしっかりと固定化され、二酸化チタンの離散が極めて少ない組織とすることができることを見い出し本発明に到達した。
即ち、本発明は、石炭を粉砕し、造粒し、解砕し、炭化し、賦活して石炭系活性炭を製造する方法において、造粒前の石炭に、二酸化チタンを添加することを特徴とする石炭系活性炭の製造方法に存する。
【0009】
以下、本発明を詳細に説明する。
本発明の製造方法の特徴は、石炭を粉砕し、造粒し、解砕し、炭化し、賦活して石炭系活性炭を製造する方法において、造粒前の石炭に、二酸化チタンを添加することである。この操作により、二酸化チタンを活性炭粒中に強固に固定化でき、しかも光触媒能を有する二酸化チタンが活性炭粒の表面に存在するものとすることができる。
【0010】
本発明で用いられる石炭としては、特に限定されないが、所望の造粒性を有するものを適宜選定すればよい。たとえば、瀝青炭、褐炭、無煙炭、亜炭、草炭、泥炭などがあり、必要により造粒性向上のため、タール、ピッチを混合してもよい。これらのうち、粘結性のある瀝青炭が特に好ましい。
本発明で使用される二酸化チタンとしては、ルチル型でも、アナターゼ型でも良く、その結晶形は問わない。また、粒子径についても、造粒時に支障をきたさなければ、特に制限されない。通常は、100μm以下が好ましい。
【0011】
石炭への二酸化チタンの混合法については、石炭の粉砕前に二酸化チタンを混合しても良いし、粉砕後に混合してもよく、その方法も特に限定されるものではない。
最終的な活性炭と二酸化チタンの割合は、賦活の程度により異なるものとなる。また石炭への二酸化チタンの混入量は特に制限するものではないが、造粒性を損ねない程度が好ましく、大まかにいって石炭に対し20重量%以下、更に好ましく10重量%以下が適当である。
【0012】
石炭と二酸化チタンの混合物を造粒し、実際に使用されるサイズに解砕し、破砕炭とする。この破砕炭を600〜900℃程度に加熱乾留して炭素質有機物を分解炭化する。続いて、水蒸気の存在下で加熱し、賦活を行う。この賦活時の温度は、炭化時の温度より高い温度であれば良く、好ましくは、900〜1100℃である。
【0013】
本発明の活性炭は、従来使用されている活性炭と同様に使用でき、流動床、固定床等の使用法を問わない。従来の装置がそのまま使用可能であり、装置を大型化する必要もない。さらに、本発明の活性炭を紫外線や太陽光照射下で使用することにより、水中あるいは気相中の有害物質の除去は、活性炭のみによる吸着除去に比べ、二酸化チタンの光触媒反応による分解除去が加わるため、その除去能は飛躍的に増加することになる。特に、活性炭では従来、吸着除去が難しかった有機ハロゲン化合物、臭気物質などが多く含まれる被処理水あるいは被処理ガスなどにも好適に使用される。また、活性炭に藻が生えにくくなることや、活性炭の再生までの時間がより長くなること等の長所があるため、装置の維持・管理が今まで以上に容易になる。
【0014】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明は、下記実施例により限定されるものではない。
(実施例1)
瀝青炭1kgを1mm程度に粉砕し、石原産業(株)製二酸化チタン(アナターゼ 「MC−50」)33gと混合し、更に振動式の粉砕機にて、45μm以下に粉砕し、造粒後、0.6〜1.2mm程度に解砕した。N2を5リットル/分の気流中750℃にて炭化を行い、水蒸気50vol%を含む窒素ガスを1リットル/分で導入した900℃のキルン内で2時間賦活を行った。カルロエルバ社製(「ソープトマチック2100」)の窒素吸着装置でBET法により測定したところ、比表面積は1050m2/gであった。得られた試料のX線回折測定を行った(図1)ところ、炭素と二酸化チタン(アナターゼとルチル)のみであり、副生成物は検出されなかった。二酸化チタンの固形分濃度は、ICP発光分光分析より求めたところ、8wt%であった。二酸化チタンの活性炭粒中での存在状態を確認するため、SEM観察(含むEDX)とTEM観察(含むEDX)を行った。図2〜5に、倍率を変えたSEM写真を示す(倍率は各々800、100、300、及び500倍である)。数百nmの粒が二酸化チタンであることは、SEM−EDX(SEM:日立製作所 S−4500、EDX:Kevex社Delta System)により、TiのX線スペクトルから確認した。活性炭の細孔を二酸化チタンで埋めていないことがよくわかる。したがって、活性炭の吸着能を低下させずに、二酸化チタンが表面に存在していることになる。また、図6、7及び8にTEM写真(倍率は25,000及倍)、図9にEDXスペクトルを示す(日立H−9000NA、Kevex社 Delta System)。これより、二酸化チタンがnmレベルで活性炭中に存在し、しかも、強固に固定化されていることがわかる。さらに、励起光の波長範囲内に必ず二酸化チタンが存在するという極めて効率良い組織となっている。
【0015】
こうして得られた活性炭0.1gをクロロホルム17ppmの原水130mlの入った三角フラスコに入れ、スターラー撹拌しながら、140Wの紫外線ランプ照射下で、クロロホルム除去テストを行った。2時間後、ヘッドスペース法でクロロホルム濃度の測定を行ったところ、7ppmに減少していた。
【0016】
(比較例1)
実施例1で、紫外線ランプを照射しない以外は同様にして、クロロホルム除去テストを行ったところ、2時間後のクロロホルム濃度は10.5ppmであった。
これより、光触媒能を付与した活性炭の方が除去能が優れていることが良くわかる。
【0017】
【発明の効果】
本発明の活性炭は、水中あるいは気相中有害物質の除去能を大幅に向上することができ、多大な工業的利益を提供するものである。
【図面の簡単な説明】
【図1】実施例1で得られた試料のX線回折結果
【図2】実施例1で得られた試料の粒子構造を示すSEM写真
【図3】実施例1で得られた試料の粒子構造を示すSEM写真
【図4】実施例1で得られた試料の粒子構造を示すSEM写真
【図5】実施例1で得られた試料の粒子構造を示すSEM写真
【図6】実施例1で得られた試料の粒子構造を示すTEM写真
【図7】実施例1で得られた試料の粒子構造を示すTEM写真
【図8】実施例1で得られた試料の粒子構造を示すTEM写真
【図9】実施例1で得られた試料のEDXスペクトル
[0001]
[Industrial application fields]
The present invention relates to activated carbon and a method for producing the same.
The activated carbon produced according to the present invention is extremely excellent in terms of immobilization of titanium dioxide to activated carbon particles, and titanium dioxide is present on the surface without filling the pores of the activated carbon. Further, the activated carbon produced according to the present invention has greatly improved the ability to remove harmful substances in water or in the gas phase under irradiation of ultraviolet rays or sunlight. Such activated carbon is used for water treatment, sewage treatment, waste liquid. It is suitably used for treatment, waste gas treatment, malodor removal, and the like.
[0002]
[Prior art]
Since activated carbon has a high specific surface area, it has excellent adsorption capacity and is used to adsorb and remove harmful substances in water or gas phase.
In recent years, water pollution, marine pollution, air pollution, and the like due to domestic and industrial wastewater have spread globally. Eutrophication of lakes and rivers with domestic wastewater containing synthetic detergents, contamination of groundwater and water sources with organic solvents used in high-tech industries and laundry stores, pollution of water quality due to runoff of agricultural chemicals used in golf courses, etc. Is a representative example.
[0003]
Currently, most of the wastewater treatment methods that are widely used are activated sludge methods. However, since microorganisms are used, conditions such as temperature, pH, gas atmosphere, toxicity are severe, and the above-mentioned agricultural chemicals and organic solvents (halogen compounds) are used. In other words, the surfactants are difficult to decompose and remove, and are ineffective against them. Examples of such biologically difficult-to-decompose organic matter treatment methods include chlorination treatment methods, ozone treatment methods, incineration treatment methods, and activated carbon adsorption methods. The chlorination method has problems such as generation of organic halogen compounds typified by trihalomethane having carcinogenicity by reacting with residual chlorine due to excessive injection or with organic substances contained in the water to be treated. Recently, ozone treatment has been highlighted as an advanced water purification method in water purification plants and the like, but there is a problem that both the equipment cost and the operation cost are expensive. Incineration methods are not practical for dilute solutions. Although the activated carbon adsorption method is a very effective method, the adsorption removal ability of organic halogen compounds is slightly inferior, and it is not effective for all harmful substances in water.
[0004]
The removal of activated carbon by adsorption is also effective in removing harmful substances in the gas phase such as air pollution and malodorous substances. In general, an adsorption technique for polluting components in the gas phase must be effective against low-concentration gases in the presence of water vapor or carbon dioxide. Activated carbon is used for many types of organic and inorganic compounds under such conditions. The activated carbon for gas phase has a particularly large specific surface area and a pore structure with a small pore diameter, and has a large adsorption affinity for low concentration gas. Further, since the surface is hydrophobic, the adsorption affinity for water vapor is small, and harmful gases and odorous substances, particularly organic compounds, mixed in the gas phase can be efficiently removed. However, there are some gases with weak adsorption affinity, and the adsorption removal ability of activated carbon was not universal.
[0005]
On the other hand, since it was discovered in 1969 that light energy can be directly used for water decomposition using a semiconductor photoelectrode having a titanium dioxide crystal as a photoelectrode (Honda-Fujishima effect), Representative photocatalysts can be an effective means for converting light energy into chemical energy, and research and development are actively being promoted in various fields worldwide. Such a reaction is called a photocatalytic reaction, and is a catalytic reaction that proceeds with the aid of light. The catalyst coexists in the reaction system, and the reaction does not proceed by itself, but the reaction is accelerated by light irradiation. Is defined. This photocatalytic reaction is closely related to ordinary catalytic reactions and photochemical reactions, but has a marked difference from those reactions. The driving force of a normal catalyst is heat, and the rate at which the reaction system shifts to the production system varies depending on the presence of the catalyst. Therefore, the role of the catalyst is to control the speed of reaching the equilibrium state defined by the temperature, pressure, etc. of the system, and the reaction achieved is limited to a reaction that can proceed thermodynamically. In contrast, a photochemical reaction changes into a production system when light is absorbed by the reaction system and changes occur in the electronic state and chemical bonding of the substance, and a thermal reaction like a normal catalytic reaction. Then, you can realize a reaction that can't happen.
[0006]
On the other hand, in the photocatalytic reaction, the reaction proceeds only on the surface of the catalyst by the action of the catalyst that has absorbed light and is in an electronically excited state acting on the reaction system. The electronically excited state of this catalyst corresponds to a non-equilibrium state in which only the temperature of the electron is extremely high, as with the excited species in the photochemical reaction, and as a result, the reaction is impossible thermodynamically. The reaction proceeds even under mild conditions. This means that the principle of “catalyst does not change the equilibrium of chemical reaction” known in ordinary catalytic reactions may not hold in photocatalytic reactions, which is an important feature of photocatalytic reactions. ing. This photocatalytic reaction consists of (1) a photoexcitation process in which a semiconductor absorbs light and excites it to generate electron-hole pairs, and (2) the generated electrons and holes are surfaced by potential gradient and diffusion in the semiconductor particles. (3) The surface reaction process in which the holes and electrons moved to the surface cause electron transfer with the substrate adsorbed on the catalyst, and each performs a redox reaction.
[0007]
[Problems to be solved by the invention]
Based on these findings, the present inventors have previously proposed activated carbon in which titanium dioxide having photocatalytic activity is appropriately present on the surface as Japanese Patent Application No. 7-037758.
However, there are various techniques for immobilizing titanium dioxide on the activated carbon surface, but the peel strength is different, and the dispersion of titanium dioxide from the activated carbon surface into the treated water or gas becomes a problem.
[0008]
[Means for Solving the Problems]
Therefore, as a result of further diligent investigations to solve the above problems, the present inventors have crushed, granulated, crushed, carbonized, activated, and activated coal to produce coal-based activated carbon. Surprisingly, by adding titanium dioxide to the previous coal, TiO2 is placed in an extremely strong reducing atmosphere called carbonization, and further, steam activation (H2 is generated in the activation process, and carbon is also added to the surroundings. It was found that an anatase type or a rutile type TiO2 having a photocatalytic action exists without producing a by-product such as TinO2n-1 even if it is present. Furthermore, according to such a method, titanium dioxide is present on the surface without filling the pores of the activated carbon, and the titanium dioxide is firmly fixed to the activated carbon particles, so that the titanium dioxide has a very small discrete structure. The present invention has been found out.
That is, the present invention is characterized by adding titanium dioxide to coal before granulation in a method of producing coal-based activated carbon by pulverizing, granulating, pulverizing, carbonizing and activating coal. Lies in a method for producing coal-based activated carbon .
[0009]
Hereinafter, the present invention will be described in detail.
The production method of the present invention is characterized in that in the method of producing coal-based activated carbon by pulverizing, granulating, pulverizing, carbonizing and activating coal, titanium dioxide is added to the coal before granulation. It is. By this operation, titanium dioxide can be firmly fixed in the activated carbon particles, and titanium dioxide having photocatalytic activity can be present on the surface of the activated carbon particles.
[0010]
Although it does not specifically limit as coal used by this invention, What is necessary is just to select what has desired granulation property suitably. For example, there are bituminous coal, lignite, anthracite, lignite, grass charcoal, peat, and the like, and tar and pitch may be mixed if necessary to improve granulation. Of these, caking bituminous coal is particularly preferred.
The titanium dioxide used in the present invention may be rutile type or anatase type, and its crystal form is not limited. The particle size is not particularly limited as long as it does not hinder granulation. Usually, it is preferably 100 μm or less.
[0011]
Regarding the method of mixing titanium dioxide with coal, titanium dioxide may be mixed before pulverization of coal or may be mixed after pulverization, and the method is not particularly limited.
The final ratio between activated carbon and titanium dioxide varies depending on the degree of activation. Further, the amount of titanium dioxide mixed into the coal is not particularly limited, but is preferably within a range that does not impair the granulation property, and is roughly 20% by weight or less, more preferably 10% by weight or less based on coal. .
[0012]
A mixture of coal and titanium dioxide is granulated and crushed to the actual size used to produce crushed coal. This crushed charcoal is heated and dried at about 600 to 900 ° C. to decompose and carbonize the carbonaceous organic matter. Subsequently, activation is performed by heating in the presence of water vapor. The temperature at the time of activation may be higher than the temperature at the time of carbonization, and is preferably 900 to 1100 ° C.
[0013]
The activated carbon of the present invention can be used in the same manner as conventionally used activated carbon, and it does not matter how to use a fluidized bed, a fixed bed or the like. A conventional apparatus can be used as it is, and it is not necessary to enlarge the apparatus. Furthermore, by using the activated carbon of the present invention under irradiation of ultraviolet rays or sunlight, the removal of harmful substances in water or in the gas phase is accompanied by decomposition and removal by photocatalytic reaction of titanium dioxide compared to adsorption removal by activated carbon alone. , Its removal ability will increase dramatically. In particular, activated carbon is suitably used for water to be treated or gas to be treated, which contains a large amount of organic halogen compounds, odorous substances, and the like that have been difficult to remove by adsorption. In addition, there are advantages such as that the activated carbon is less likely to grow algae and the time until regeneration of the activated carbon is longer, so that the maintenance and management of the apparatus becomes easier than ever.
[0014]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited by the following Example.
(Example 1)
1 kg of bituminous coal is pulverized to about 1 mm, mixed with 33 g of titanium dioxide (Anatase “MC-50”) manufactured by Ishihara Sangyo Co., Ltd., and further pulverized to 45 μm or less with a vibration type pulverizer. It was crushed to about .6 to 1.2 mm. N 2 was carbonized at 750 ° C. in an airflow of 5 liters / minute, and activated for 2 hours in a 900 ° C. kiln introduced with nitrogen gas containing 50 vol% of water vapor at 1 liter / minute. The specific surface area was 1050 m 2 / g as measured by the BET method with a nitrogen adsorption device manufactured by Carlo Elba (“Sorptomatic 2100”). When the X-ray diffraction measurement of the obtained sample was performed (FIG. 1), only carbon and titanium dioxide (anatase and rutile) were detected, and no by-product was detected. The solid content concentration of titanium dioxide was 8 wt% as determined by ICP emission spectroscopic analysis. SEM observation (including EDX) and TEM observation (including EDX) were performed in order to confirm the presence of titanium dioxide in the activated carbon granules. 2 to 5 show SEM photographs with different magnifications (magnifications are 800, 100, 300, and 500 times, respectively). It was confirmed from the X-ray spectrum of Ti by SEM-EDX (SEM: Hitachi S-4500, EDX: Delta System of Kevex) that the grains of several hundred nm were titanium dioxide. It can be clearly seen that the pores of the activated carbon are not filled with titanium dioxide. Therefore, titanium dioxide is present on the surface without reducing the adsorption ability of the activated carbon. Further, FIGS. 6, 7 and 8 show TEM photographs (magnification is 25,000 and times), and FIG. 9 shows an EDX spectrum (Hitachi H-9000NA, Kevex Delta System). From this, it can be seen that titanium dioxide is present in the activated carbon at the nm level and is firmly fixed. Furthermore, the structure is extremely efficient in that titanium dioxide always exists in the wavelength range of the excitation light.
[0015]
0.1 g of the activated carbon thus obtained was placed in an Erlenmeyer flask containing 130 ml of raw water of 17 ppm chloroform, and a chloroform removal test was performed under a 140 W ultraviolet lamp irradiation while stirring with a stirrer. Two hours later, when the chloroform concentration was measured by the headspace method, it was reduced to 7 ppm.
[0016]
(Comparative Example 1)
A chloroform removal test was conducted in the same manner as in Example 1 except that the ultraviolet lamp was not irradiated. As a result, the chloroform concentration after 2 hours was 10.5 ppm.
From this, it can be seen that the activated carbon imparted with photocatalytic ability has better removal ability.
[0017]
【The invention's effect】
The activated carbon of the present invention can greatly improve the ability to remove harmful substances in water or gas phase, and provides a great industrial advantage.
[Brief description of the drawings]
1 is an X-ray diffraction result of a sample obtained in Example 1. FIG. 2 is an SEM photograph showing a particle structure of a sample obtained in Example 1. FIG. 3 is a particle of a sample obtained in Example 1. SEM photograph showing the structure FIG. 4 SEM photograph showing the particle structure of the sample obtained in Example 1. FIG. 5 SEM photograph showing the particle structure of the sample obtained in Example 1. FIG. FIG. 7 is a TEM photograph showing the particle structure of the sample obtained in Example 1. FIG. 8 is a TEM photograph showing the particle structure of the sample obtained in Example 1. 9 is an EDX spectrum of the sample obtained in Example 1. FIG.

Claims (3)

石炭を粉砕し、造粒し、解砕し、炭化し、賦活して石炭系活性炭を製造する方法において、造粒前の石炭に、二酸化チタンを添加することを特徴とする石炭系活性炭の製造方法。  Production of coal-based activated carbon characterized by adding titanium dioxide to coal before granulation in a method of pulverizing, granulating, pulverizing, carbonizing and activating coal to produce coal-based activated carbon Method. 粉砕後の石炭に二酸化チタンを添加する請求項1記載の製造方法。  The production method according to claim 1, wherein titanium dioxide is added to the pulverized coal. 粉砕前の石炭に二酸化チタンを添加する請求項1記載の製造方法。  The production method according to claim 1, wherein titanium dioxide is added to the coal before pulverization.
JP18795495A 1995-02-03 1995-06-30 Method for producing activated carbon Expired - Fee Related JP3663679B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP18795495A JP3663679B2 (en) 1995-06-30 1995-06-30 Method for producing activated carbon
TW085101266A TW369510B (en) 1995-02-03 1996-02-01 Activated carbon and process for producing the same
CN96104345A CN1137021A (en) 1995-02-03 1996-02-02 Activated carbon and process for producing the same
EP96300734A EP0725036B1 (en) 1995-02-03 1996-02-02 Activated carbon and process for producing the same
DE69603515T DE69603515T2 (en) 1995-02-03 1996-02-02 Activated carbon and process for its production
KR1019960002801A KR960031341A (en) 1995-02-03 1996-02-02 Activated carbon and method for producing the same
US08/904,837 US5965479A (en) 1995-02-03 1997-08-01 Activated carbon and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18795495A JP3663679B2 (en) 1995-06-30 1995-06-30 Method for producing activated carbon

Publications (2)

Publication Number Publication Date
JPH0920509A JPH0920509A (en) 1997-01-21
JP3663679B2 true JP3663679B2 (en) 2005-06-22

Family

ID=16215077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18795495A Expired - Fee Related JP3663679B2 (en) 1995-02-03 1995-06-30 Method for producing activated carbon

Country Status (1)

Country Link
JP (1) JP3663679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623687B (en) * 2013-11-19 2016-05-11 攀钢集团攀枝花钢铁研究院有限公司 A kind of fused salt chlorimation tail gas alkaline cleaning tower Method of blockage removal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098793A1 (en) * 2001-05-30 2002-12-12 Nippon Steel Corporation Activated carbon and method for production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103623687B (en) * 2013-11-19 2016-05-11 攀钢集团攀枝花钢铁研究院有限公司 A kind of fused salt chlorimation tail gas alkaline cleaning tower Method of blockage removal

Also Published As

Publication number Publication date
JPH0920509A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
Saleh Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies
Zheng et al. Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation
US5965479A (en) Activated carbon and process for producing the same
Erjavec et al. Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts
Alikhani et al. Photocatalytic degradation and adsorption of herbicide 2, 4-dichlorophenoxyacetic acid from aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilized on the activated carbon under visible light
Mechnou et al. Use of phosphorus-doped microporous carbon from olive mill wastewater for effective removal of Crystal violet and Methylene blue
Athalathil et al. Characterization and performance of carbonaceous materials obtained from exhausted sludges for the anaerobic biodecolorization of the azo dye Acid Orange II
Ning et al. Fabrication of hydrochar functionalized Fe–Mn binary oxide nanocomposites: characterization and 17β-estradiol removal
Hu et al. Direct conversion of wet sewage sludge to carbon catalyst for sulfamethoxazole degradation through peroxymonosulfate activation
Bayrakdar et al. Efficient treatment for textile wastewater through sequential photo Fenton-like oxidation and adsorption processes for reuse in irrigation
JP2007054694A (en) Method for decomposing hardly decomposable chlorinated organic compound, and carbon nanotube composite material
Zhang et al. Potassium permanganate modification of hydrochar enhances sorption of Pb (II), Cu (II), and Cd (II)
Khraisheh et al. Removal of carbamazepine from water by a novel TiO2–coconut shell powder/UV process: composite preparation and photocatalytic activity
Zhu et al. Interfacial mechanism of the synergy of biochar adsorption and catalytic ozone micro-nano-bubbles for the removal of 2, 4-dichlorophenoxyacetic acid in water
EP0725036B1 (en) Activated carbon and process for producing the same
Manirajah et al. Evaluation of low cost-activated carbon produced from waste tyres pyrolysis for removal of 2-chlorophenol
Mahanna et al. Enhanced catalytic oxidation of reactive dyes by reuse of adsorption residuals as a heterogeneous catalyst with persulfate/UV process
López-Francés et al. Nanographite: A highly active and durable metal-free ozonation catalyst with application in natural waters
El-Shafie et al. TiO2-functionalized biochar from pistachio nutshells: adsorptive removal and photocatalytic decolorization of methyl orange
Shakil et al. Synthesis and application of carboxymethyl cellulose-graphene oxide composite for the mitigation of Pb2+ and Cd2+ from aqueous solution
JPH08208211A (en) Activated carbon
JP3663685B2 (en) Method for producing activated carbon
JP3663679B2 (en) Method for producing activated carbon
Jiménez-Bautista et al. Solar-assisted photodegradation of pesticides over pellet-shaped TiO2-kaolin catalytic macrocomposites at semi-pilot-plant scale: Elucidation of photo-mechanisms and water matrix effect
JP3663682B2 (en) Production method of granulated activated carbon

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees