JP3663649B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP3663649B2
JP3663649B2 JP00025595A JP25595A JP3663649B2 JP 3663649 B2 JP3663649 B2 JP 3663649B2 JP 00025595 A JP00025595 A JP 00025595A JP 25595 A JP25595 A JP 25595A JP 3663649 B2 JP3663649 B2 JP 3663649B2
Authority
JP
Japan
Prior art keywords
water
sensor
hot water
amount
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00025595A
Other languages
Japanese (ja)
Other versions
JPH08189702A (en
Inventor
裕文 河島
良司 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP00025595A priority Critical patent/JP3663649B2/en
Publication of JPH08189702A publication Critical patent/JPH08189702A/en
Application granted granted Critical
Publication of JP3663649B2 publication Critical patent/JP3663649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、熱交換器で瞬間加熱された高温の湯を水で混合し、給湯器の能力に応じた多量の湯を得られる給湯器に関するものである。
【0002】
【従来の技術】
従来のこの種の給湯器は図3に示すような構成になっていた。
【0003】
水は水入口より水温センサ1を通り、その下流で2経路に分かれる。その一方の水通路Mの水は、水量センサ2を通り、熱交換器3で熱を吸収して、出湯センサ4を通る。他方のバイパス路Sの水は水通路Mからの湯と合流し、合流した混合水は給湯センサ5を通り、湯出口より放出される。ガスはガス入口より元電磁弁8、ガスの比例弁9を通り、燃焼用空気のファン11によりバーナ10で燃焼される。
【0004】
給湯器の運転開始は、外部入力装置16の運転スイッチ17により入力され、設定温度は外部入力装置16の温度スイッチ18、19、20により入力される。水量センサ2により水量信号が入力されると、給湯器は燃焼を開始し、水温センサ1と水量センサ2と給湯センサ5と外部入力装置17の信号により、設定温度になるようにガスの元電磁弁8、ガスの比例弁9、燃焼用空気のファン11を駆動する。この場合、水通路Mの熱交換器3で加熱される湯はバイパス路Sを流れる水量に応じて出湯温度に対して高温の湯になる。
【0005】
【発明が解決しようとする課題】
このような構成の給湯器においては、バイパス路Sを流れる水量が測定できないために、水通路Mの水量センサ2の水量信号から水通路Mの水量を測定し、この水量にあらかじめ設定した一定の比率をかけてバイパス路Sを流れる水量を算出している。したがって、バイパス路Sを流れる水量が、給湯器の水通路のばらつきによりあらかじめ設定した一定の比率からずれていると、設定温度になるために必要な燃焼量と実際の燃焼量がずれるために、給湯器の出湯温度特性が悪くなることがあった。
【0006】
例えば図4に示すように、運転を停止してからの再出湯時において、後沸きWまたは前冷えDが大きくなり、シャワーなどの断続使用時の給湯特性が悪くなるという課題があった。
【0007】
そこで、本発明は上記従来の課題を解決するために、水通路のばらつきに関係なく、同レベルの出湯温度特性を得るために、バイパス路を流れる水量を正確に演算することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の給湯器の第1手段は、熱交換器と、給水温度を検知する水温センサおよび給水流量を検知する水量センサと、温水温度を検知する出湯センサと、水量センサより上流側の給水路と出湯センサより下流側の出湯路を通水接続したバイパス路と、このバイパス路との合流点よりも下流側の出湯路に設けて混合水温度を検知する給湯センサと、出湯路から混合水を出湯するときに前記給水温度、給水流量、温水温度、混合水温度の検知信号を受信し、バイパス路での通水流量を演算する水量演算手段を備えたものである。
【0009】
本発明の給湯器の第2手段は、前記バイパス路に、バイパス路を開閉する開閉弁を備えたものである。
【0010】
本発明の給湯器の第3手段は、前記バイパス路を複数個並列に備えたものである。
【0011】
本発明の給湯器の第4手段は、前記バイパス路に、バイパス路の通水流量を比例制御する水量制御弁を備えたものである。
【0012】
【作用】
本発明は上記した第1手段により、熱交換器で瞬間加熱した温水とバイパス路からの給水を混合した混合水を給湯するときに、水温センサが検知した給水温度、水量センサが検知した温水流量としての給水流量、出湯センサが検知した温水温度、給湯センサが検知した熱交換器からの温水とバイパス路からバイパスしてくる水の混合水温度の各検知信号を受信した水量演算手段は、これらの検知信号から給湯の熱量演算を行い、バイパス路の通水流量を算出する。
【0013】
このようにして、熱交換器への給水をバーナで加熱して温水を供給する、加熱手段を有した出湯路と、加熱手段を備えないバイパス路との合成路での熱量演算によって、加熱手段を備えないバイパス路での実際の通水流量を、水量センサがなくても求めることができる。
【0014】
次に、第2手段によれば、多量の湯を給湯したいときに開閉弁を開き、熱交換器での加熱量を調節して混合水温度を制御すればよく、バイパス路の通水流量を検知する水量センサがなくても設定温度を達成できる。
【0015】
次に、第3手段によれば、短時間に間欠して給湯使用するとき、給湯停止後から再給湯までの休止時間の長短によって、熱交換器内の湯の後沸き温度が変化するので、出湯センサで検知して通水すべきバイパス流量を水量演算手段で計算し、必要な個数の開閉弁を開いて給湯温度を設定温度に近づけることができる。
【0016】
次に、第4手段によれば、バイパス路の通水流量を水量制御弁によって比例制御できるから、第3手段によるよりも更に設定温度に近づけることができる。
【0017】
【実施例】
以下、本発明の実施例を図面に基づき説明する。
【0018】
図1は第1の実施例を示し、水は水入口より水温センサ1を通り、その下流で2経路に分かれる。その一方の水通路Mの水は、水量センサ2を通り、熱交換器3で熱を吸収して、出湯センサ4を通る。他方のバイパス路Sの水は水通路Mからの湯と合流し、合流した混合水は給湯センサ5を通り、湯出口より放出される。ガスはガス入口より元電磁弁8、ガスの比例弁9を通り、燃焼用空気のファン11によりバーナ10で燃焼される。
【0019】
給湯器の運転開始は、外部入力装置16の運転スイッチ17により入力され、設定温度は外部入力装置16の温度スイッチ18、19、20により入力される。水量センサ2により水量信号が入力されると、給湯器は燃焼を開始し、水温センサ1と水量センサ2と給湯センサ5と外部入力装置17の信号により、設定温度になるようにガスの元電磁弁8、ガスの比例弁9、燃焼用空気のファン11を駆動する。この場合、水通路Mの水量センサ2の水量信号から水通路Mの水量を測定し、この水量にあらかじめ設定した一定の比率をかけてバイパス路Sを流れる水量を算出し、設定温度になるように燃焼量を決定する。
【0020】
設定温度になれば、水温センサ1と水量センサ2と出湯センサ4と給湯センサ5の信号により、バイパス路Sを流れる水量を算出する。入水温度t0 、熱交換器3の水量l1 、熱交換器3の出湯温度t1 、バイパス路Sを流れる水量l2 、熱交換器3からの温水とバイパス路Sからの水の混合水温度t2 とすれば、
(l1 +l2 )t2 =l2 0 +l1 1
であり、バイパス路Sを流れる水量l2 は次式で求められる。
【0021】
2 =l1 (t1 −t2 )/(t2 −t0
したがって、バイパス路Sを流れる水量の比率αは、
α=l2 /l1
となる。
【0022】
水量検出装置2の水量信号により、給湯器が燃焼を停止し、再度燃焼を開始するときには、設定温度tS として設定温度になるために必要な燃焼量Qは、
Q=(tS −t0 )×〔l1 ×(1+α)〕
で算出される。
【0023】
バイパス路Sを流れる水量の比率αは器具ごとに算出されるものであり、バイパス路Sに水量センサがなくてもバイパス路Sの水量を正確に算出できるので、給湯器の水通路のばらつきに関係なく、同レベルの出湯温度特性を得ることができる。
【0024】
本発明の第2の実施例(図示はしていない)は、バイパス路Sにバイパス路Sを開閉する開閉弁を備えたものである。この開閉弁により、シャワーなどを使用する設定温度ではバイパス路Sを「開」として多量の湯を出湯し、高温の設定ではバイパス路Sを「閉」として高温湯を出湯できる。この開閉弁を備えたバイパス路Sを流れる水量の比率αは第1の実施例と同様に算出でき、給湯器の水通路のばらつきに関係なく、同レベルの出湯温度特性を得ることができる。
【0025】
本発明の第3の実施例は、図2に示すように、2本の並列なバイパス路S1 、S2 に、バイパス路S1 、S2 を開閉する開閉弁6、7を備えたものである。運転停止後の所定時間内に再運転する時に、熱交換器3内の湯の温度に応じて、複数の通路径の異なるバイパス路S1 、S2 の開閉弁6、7を効果的に順次開弁することにより、図4に示すような熱交換器の高温の湯による後沸きと熱交換器3の温の温度降下による前冷えの影響を小さくできることが知られている。このような制御を行う場合においても、各々のバイパス路S1 、S2 を流れる水量の比率は第1の実施例と同様に算出でき、給湯器の水通路のばらつきに関係なく、同レベルの出湯温度特性を得ることができる。
【0026】
本発明の第4の実施例(図示はしていない)は、バイパス路Sに、バイパス路Sの通水流量を制御する水量制御弁を備えたものである。運転停止後の所定時間内に再運転する時に、熱交換器3内の湯の温度に応じて、バイパス路Sの通水流量を水量制御弁により効果的に制御することにより、図4に示すような熱交換器3の高温の湯による後沸きと熱交換器3の温の温度降下による前冷えの影響を小さくできることが知られている。このような制御を行う場合においても、バイパス路Sを流れる水量の比率は第1の実施例と同様に算出でき、給湯器の水通路のばらつきに関係なく、同レベルの出湯温度特性を得ることができる。
【0027】
【発明の効果】
以上のように、本発明の給湯器の請求項1では、熱交換器への給水をバーナで加熱して温水を供給する、加熱手段を有した出湯路と、加熱手段を備えないバイパス路との合成路での熱量演算によって、加熱手段を備えないバイパス路での実際の通水流量を、水量センサがなくても求めることができるので、給湯器の水通路のばらつきに関係なく、同レベルの出湯温度特性を得ることができるという効果を有する。
【0028】
また、請求項2では、開閉弁を開いてバイパス路から混合用の給水を流し、水量センサをバイパス路に備えなくても、熱交換器での加熱量を調節して混合水温度を正確に制御しながら、多量の給湯ができる。
【0029】
また、請求項3では、短時間に間欠給湯使用して後沸き温度が変化しても、出湯センサで検知してバイパス流量を水量演算手段で計算し、必要な個数の開閉弁を開いて給湯温度を設定温度に近づけることができる。
【0030】
また、請求項4では、バイパス路の通水流量を水量制御弁によって比例制御できるから、請求項3によるよりも更に設定温度に近づけることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す給湯器の構成図
【図2】本発明の第3の実施例を示す給湯器の構成図
【図3】従来の給湯器の構成図
【図4】給湯特性図
【符号の説明】
1 水温センサ
2 水量センサ
3 熱交換器
4 出湯センサ
5 給湯センサ
10 バーナ
13 水量演算手段
K、M、N、S 水通路
[0001]
[Industrial application fields]
The present invention relates to a water heater that mixes hot water instantaneously heated by a heat exchanger with water to obtain a large amount of hot water according to the capacity of the water heater.
[0002]
[Prior art]
This type of conventional water heater is configured as shown in FIG.
[0003]
Water passes through the water temperature sensor 1 from the water inlet and is divided into two paths downstream thereof. The water in one of the water passages M passes through the water amount sensor 2, absorbs heat by the heat exchanger 3, and passes through the hot water sensor 4. The water in the other bypass passage S joins the hot water from the water passage M, and the mixed water that has joined passes through the hot water supply sensor 5 and is discharged from the hot water outlet. The gas passes through the original solenoid valve 8 and the gas proportional valve 9 from the gas inlet, and is burned by the burner 10 by the combustion air fan 11.
[0004]
The operation start of the water heater is input by the operation switch 17 of the external input device 16, and the set temperature is input by the temperature switches 18, 19, 20 of the external input device 16. When the water amount signal is input by the water amount sensor 2, the water heater starts to combust, and the source electromagnetic signal of the gas is set so as to reach the set temperature by the signals of the water temperature sensor 1, the water amount sensor 2, the hot water sensor 5 and the external input device 17. The valve 8, the gas proportional valve 9, and the combustion air fan 11 are driven. In this case, hot water heated by the heat exchanger 3 in the water passage M becomes hot water with respect to the hot water temperature according to the amount of water flowing through the bypass passage S.
[0005]
[Problems to be solved by the invention]
In the water heater having such a configuration, since the amount of water flowing through the bypass passage S cannot be measured, the amount of water in the water passage M is measured from the water amount signal of the water amount sensor 2 of the water passage M, and this water amount is set to a predetermined value. The amount of water flowing through the bypass S is calculated by multiplying the ratio. Therefore, if the amount of water flowing through the bypass passage S deviates from a predetermined ratio set in advance due to variations in the water passages of the water heater, the amount of combustion necessary to reach the set temperature deviates from the actual amount of combustion. The hot water temperature characteristics of the water heater sometimes deteriorated.
[0006]
For example, as shown in FIG. 4, when the hot water is discharged again after the operation is stopped, the post-boiling W or the pre-cooling D becomes large, and there is a problem that the hot water supply characteristic at the time of intermittent use such as a shower is deteriorated.
[0007]
Therefore, in order to solve the above-described conventional problems, an object of the present invention is to accurately calculate the amount of water flowing through a bypass passage in order to obtain the same level of hot water temperature characteristics regardless of variations in water passages.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the first means of the water heater of the present invention includes a heat exchanger, a water temperature sensor that detects a feed water temperature, a water amount sensor that detects a feed water flow rate, a hot water sensor that detects a hot water temperature, Hot water supply that detects the temperature of the mixed water by providing it in the water supply path upstream of the water volume sensor and the bypass path that connects the hot water supply path downstream of the hot water sensor and the hot water supply path downstream of the junction with this bypass path. A sensor and a water amount calculating means for receiving a detection signal of the feed water temperature, feed water flow rate, hot water temperature, mixed water temperature when the mixed water is discharged from the tap water passage and calculating the water flow rate in the bypass passage It is.
[0009]
The 2nd means of the water heater of this invention equips the said bypass path with the on-off valve which opens and closes a bypass path.
[0010]
The third means of the water heater according to the present invention comprises a plurality of the bypass paths in parallel.
[0011]
The 4th means of the water heater of this invention equips the said bypass path with the water quantity control valve which controls proportionally the water flow rate of a bypass path.
[0012]
[Action]
In the present invention, when supplying the mixed water obtained by mixing the hot water instantaneously heated by the heat exchanger and the feed water from the bypass passage, the water temperature detected by the water temperature sensor and the hot water flow rate detected by the water amount sensor are provided. The water amount calculation means that has received the detection signals of the feed water flow rate, the hot water temperature detected by the hot water sensor, the hot water from the heat exchanger detected by the hot water sensor and the mixed water temperature bypassed from the bypass path, From the detection signal, the calorific value of the hot water supply is calculated, and the water flow rate of the bypass passage is calculated.
[0013]
In this way, the heating means is calculated by calculating the amount of heat in the combined path of the hot water supply path having the heating means and the bypass path not provided with the heating means, which supplies the hot water by heating the water supply to the heat exchanger. It is possible to obtain the actual water flow rate in a bypass passage not provided with a water amount sensor without a water amount sensor.
[0014]
Next, according to the second means, when it is desired to supply a large amount of hot water, the on-off valve is opened, the amount of heating in the heat exchanger is adjusted to control the temperature of the mixed water, and the water flow rate of the bypass passage is controlled. The set temperature can be achieved without a water volume sensor to detect.
[0015]
Next, according to the third means, when using hot water intermittently for a short time, the hot water boiling temperature in the heat exchanger changes depending on the length of the downtime from the hot water supply stop to the re-hot water supply. The bypass flow rate that should be detected and passed through the hot water sensor is calculated by the water amount calculation means, and the required number of on-off valves can be opened to bring the hot water supply temperature closer to the set temperature.
[0016]
Next, according to the fourth means, since the water flow rate of the bypass passage can be proportionally controlled by the water amount control valve, it can be brought closer to the set temperature than by the third means.
[0017]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
FIG. 1 shows a first embodiment in which water passes through a water temperature sensor 1 from a water inlet and is divided into two paths downstream thereof. The water in one of the water passages M passes through the water amount sensor 2, absorbs heat by the heat exchanger 3, and passes through the hot water sensor 4. The water in the other bypass passage S joins the hot water from the water passage M, and the mixed water that has joined passes through the hot water supply sensor 5 and is discharged from the hot water outlet. The gas passes through the original solenoid valve 8 and the gas proportional valve 9 from the gas inlet, and is burned by the burner 10 by the combustion air fan 11.
[0019]
The operation start of the water heater is input by the operation switch 17 of the external input device 16, and the set temperature is input by the temperature switches 18, 19, 20 of the external input device 16. When the water amount signal is input by the water amount sensor 2, the water heater starts to combust, and the source electromagnetic signal of the gas is set so as to reach the set temperature by the signals of the water temperature sensor 1, the water amount sensor 2, the hot water sensor 5 and the external input device 17. The valve 8, the gas proportional valve 9, and the combustion air fan 11 are driven. In this case, the amount of water in the water passage M is measured from the water amount signal of the water amount sensor 2 in the water passage M, the amount of water flowing through the bypass passage S is calculated by multiplying this amount of water by a predetermined ratio, so that the set temperature is reached. Determine the amount of combustion.
[0020]
When the set temperature is reached, the amount of water flowing through the bypass S is calculated based on signals from the water temperature sensor 1, the water amount sensor 2, the hot water sensor 4, and the hot water supply sensor 5. Incoming water temperature t 0 , amount of water l 1 of heat exchanger 3, tapping temperature t 1 of heat exchanger 3, amount of water l 2 flowing through bypass path S, mixed water of warm water from heat exchanger 3 and water from bypass path S If the temperature is t 2 ,
(L 1 + l 2 ) t 2 = l 2 t 0 + l 1 t 1
And the amount of water l 2 flowing through the bypass S is obtained by the following equation.
[0021]
l 2 = l 1 (t 1 −t 2 ) / (t 2 −t 0 )
Therefore, the ratio α of the amount of water flowing through the bypass S is
α = l 2 / l 1
It becomes.
[0022]
When the water heater stops combustion by the water amount signal of the water amount detection device 2 and starts combustion again, the combustion amount Q required to reach the set temperature as the set temperature t S is:
Q = (t S −t 0 ) × [l 1 × (1 + α)]
Is calculated by
[0023]
The ratio α of the amount of water flowing through the bypass passage S is calculated for each appliance, and even if there is no water amount sensor in the bypass passage S, the amount of water in the bypass passage S can be accurately calculated. Regardless, the same level of hot water temperature characteristics can be obtained.
[0024]
In the second embodiment (not shown) of the present invention, an on-off valve for opening and closing the bypass passage S is provided in the bypass passage S. With this on-off valve, a large amount of hot water can be discharged by setting the bypass passage S to “open” at a set temperature using a shower or the like, and high temperature hot water can be discharged by setting the bypass passage S to “closed” at a high temperature setting. The ratio α of the amount of water flowing through the bypass passage S provided with this on-off valve can be calculated in the same manner as in the first embodiment, and the same level of hot water temperature characteristics can be obtained regardless of variations in the water passages of the water heater.
[0025]
In the third embodiment of the present invention, as shown in FIG. 2, two parallel bypass passages S 1 and S 2 are provided with on-off valves 6 and 7 for opening and closing the bypass passages S 1 and S 2. It is. When the engine is restarted within a predetermined time after the operation is stopped, a plurality of on-off valves 6 and 7 of the bypass passages S 1 and S 2 having different passage diameters are effectively sequentially arranged according to the temperature of hot water in the heat exchanger 3. It is known that by opening the valve, it is possible to reduce the influence of pre-boiling due to the hot boiling of the heat exchanger as shown in FIG. 4 and the temperature drop of the temperature of the heat exchanger 3. Even in the case where such control is performed, the ratio of the amount of water flowing through each of the bypass passages S 1 and S 2 can be calculated in the same manner as in the first embodiment, and the same level regardless of variations in the water passages of the water heater. Hot water temperature characteristics can be obtained.
[0026]
In the fourth embodiment (not shown) of the present invention, the bypass passage S is provided with a water amount control valve for controlling the water flow rate of the bypass passage S. When the operation is restarted within a predetermined time after the operation is stopped, the water flow rate in the bypass passage S is effectively controlled by the water amount control valve in accordance with the temperature of the hot water in the heat exchanger 3, as shown in FIG. It is known that the influence of the pre-cooling due to the subsequent boiling of the heat exchanger 3 with hot water and the temperature drop of the heat exchanger 3 can be reduced. Even when such control is performed, the ratio of the amount of water flowing through the bypass passage S can be calculated in the same manner as in the first embodiment, and the same level of tapping temperature characteristics can be obtained regardless of variations in the water passages of the water heater. Can do.
[0027]
【The invention's effect】
As described above, in claim 1 of the hot water supply apparatus of the present invention, the hot water supply path having the heating means for supplying the hot water by heating the water supply to the heat exchanger with the burner, and the bypass path not including the heating means, The actual water flow rate in the bypass passage without the heating means can be obtained without the water amount sensor by calculating the amount of heat in the combined passage of the same level. It has the effect that the hot water temperature characteristic of can be obtained.
[0028]
Further, according to the second aspect of the present invention, the mixing water temperature can be accurately adjusted by adjusting the heating amount in the heat exchanger without opening the on-off valve and allowing the water supply for mixing to flow from the bypass passage and providing the water amount sensor in the bypass passage. A large amount of hot water can be supplied while controlling.
[0029]
Further, in claim 3, even if intermittent hot water supply is used for a short time and the post-boiling temperature changes, the hot water sensor detects the bypass flow rate and calculates the bypass flow rate by the water amount calculation means, and opens the required number of on-off valves to supply hot water. The temperature can be brought close to the set temperature.
[0030]
Further, according to the fourth aspect, since the water flow rate of the bypass passage can be proportionally controlled by the water amount control valve, it can be made closer to the set temperature than that according to the third aspect.
[Brief description of the drawings]
FIG. 1 is a block diagram of a water heater showing a first embodiment of the present invention. FIG. 2 is a block diagram of a water heater showing a third embodiment of the present invention. FIG. 3 is a block diagram of a conventional water heater. Fig. 4 Characteristics of hot water supply [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water temperature sensor 2 Water quantity sensor 3 Heat exchanger 4 Hot water sensor 5 Hot water supply sensor 10 Burner 13 Water quantity calculating means K, M, N, S Water passage

Claims (4)

給水をバーナによって温水に加熱する熱交換器と、給水路に設けて給水温度を検知する水温センサおよび給水流量を検知する水量センサと、出湯路に設けて温水温度を検知する出湯センサと、前記水量センサより上流側の給水路と出湯センサより下流側の出湯路を連通したバイパス路と、このバイパス路との合流点よりも下流側の出湯路に設けて混合水温度を検知する給湯センサと、前記出湯路から混合水を出湯するときに前記給水温度、給水流量、温水温度、混合水温度の検知信号を受信し、前記バイパス路での通水流量を演算する水量演算手段とを備えた給湯器。A heat exchanger that heats the feed water to warm water with a burner, a water temperature sensor that detects the feed water temperature provided in the feed channel, a water amount sensor that detects the feed water flow rate, a hot water sensor that detects the warm water temperature provided in the outlet channel, A bypass passage in which a water supply path upstream of the water amount sensor and a hot water supply path downstream of the hot water sensor communicate with each other, and a hot water supply sensor for detecting the mixed water temperature provided in the hot water outlet downstream of the junction with the bypass path; And a water amount calculating means for receiving a detection signal of the feed water temperature, feed water flow rate, hot water temperature, and mixed water temperature when the mixed water is discharged from the tap water passage, and calculating the flow rate of water flow through the bypass passage. Water heater. バイパス路に、このバイパス路を開閉する開閉弁を備えた請求項1記載の給湯器。The water heater according to claim 1, further comprising an opening / closing valve for opening and closing the bypass path in the bypass path. バイパス路を複数個並列に備えた請求項1記載の給湯器。The water heater according to claim 1, wherein a plurality of bypass passages are provided in parallel. バイパス路に、このバイパス路の通水流量を比例制御する水量制御弁を備えた請求項1記載の給湯器。The water heater according to claim 1, wherein the bypass passage is provided with a water amount control valve for proportionally controlling a water flow rate of the bypass passage.
JP00025595A 1995-01-05 1995-01-05 Water heater Expired - Lifetime JP3663649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00025595A JP3663649B2 (en) 1995-01-05 1995-01-05 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00025595A JP3663649B2 (en) 1995-01-05 1995-01-05 Water heater

Publications (2)

Publication Number Publication Date
JPH08189702A JPH08189702A (en) 1996-07-23
JP3663649B2 true JP3663649B2 (en) 2005-06-22

Family

ID=11468821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00025595A Expired - Lifetime JP3663649B2 (en) 1995-01-05 1995-01-05 Water heater

Country Status (1)

Country Link
JP (1) JP3663649B2 (en)

Also Published As

Publication number Publication date
JPH08189702A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
JP2001116359A (en) Hot-water-supplying device
JP3663649B2 (en) Water heater
JPS63273757A (en) Large capacity hot water maker of parallel type
JPH0633903B2 (en) Bypass mixing type water heater
KR940004184B1 (en) Combustion control device of how water feeder
JPH056099B2 (en)
JP2615152B2 (en) Bypass mixing water heater
JP2855730B2 (en) Water heater
JP3211517B2 (en) Automatic hot water bath equipment
JP3386575B2 (en) Water heater and combustion control method using the same
JPH0271050A (en) Controller for hot water supplying apparatus
JPH1123058A (en) Combustion machine
JPH0715338B2 (en) Water heater controller
JP2914078B2 (en) Water heater
JPH11248150A (en) Combustor
JP2806118B2 (en) Water heater
JPH0293245A (en) Parallel mounting type hot water feeder
JPH0142766Y2 (en)
JPH0221157A (en) Hot water supplying apparatus with water bypass
JPS63290344A (en) Hot water supplier
JP3067366B2 (en) Water heater
JP3147619B2 (en) Automatic hot water bath equipment
JP2001317812A (en) Water heating equipment
JP3203630B2 (en) 1 can 2 circuit heating device
JPS62237248A (en) Water heater with water bypass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350