JP3662902B2 - Sizing method for specially shaped cylindrical parts - Google Patents

Sizing method for specially shaped cylindrical parts Download PDF

Info

Publication number
JP3662902B2
JP3662902B2 JP2002320882A JP2002320882A JP3662902B2 JP 3662902 B2 JP3662902 B2 JP 3662902B2 JP 2002320882 A JP2002320882 A JP 2002320882A JP 2002320882 A JP2002320882 A JP 2002320882A JP 3662902 B2 JP3662902 B2 JP 3662902B2
Authority
JP
Japan
Prior art keywords
core
lower punch
component
region
sizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002320882A
Other languages
Japanese (ja)
Other versions
JP2004156079A (en
Inventor
武博 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2002320882A priority Critical patent/JP3662902B2/en
Publication of JP2004156079A publication Critical patent/JP2004156079A/en
Application granted granted Critical
Publication of JP3662902B2 publication Critical patent/JP3662902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Gears, Cams (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、非円形穴付きインターナルヘリカルギヤなどの特殊形状円筒状部品を処理対象にしたサイジング方法とサイジング金型並びにサイジング装置に関する。
【0002】
【従来の技術】
自動車の自動変速機などに用いられるインターナルヘリカルギヤの一例を図5(a)、(b)に示す。
【0003】
このヘリカルギヤ30は、一端側に偏った領域(これを第1領域と云う)にキーとキー溝のある非円形穴31を有する。また、他の領域(これを第2領域と云う)の内面に円筒の他端から一端側に向けて延び出すはす歯32と歯溝33を有する。
【0004】
このインターナルヘリカルギヤ30を、生産性の良い粉末冶金法で製造する場合、圧粉体を焼結した後に焼結品のサイジングやコイニングを行う。
【0005】
ところで、この焼結品のインターナルヘリカルギヤのサイジングは、これまで、第1領域を再圧縮する工程と、第2領域を再圧縮する工程を分けて別々に実施していた。
【0006】
その理由は、ギヤの軸方向寸法Lがばらつくと、ギヤの端面と非円形穴の相対位置が周方向にずれ、非円形穴をサイジング用金型のコアに対して相対的に位置決めしたときにギヤのはす歯と、それに対応してコアに設けられた歯溝の位相にずれが生じてそれ等の噛み合いに支障が出るからである。
【0007】
【発明が解決しようとする課題】
上述したように、サイジングを2回に分けて行うと、作業が2工程となり、生産性が低下する。また、金型も2セット必要になり、サイジングコストが高くなる。
【0008】
そこで、この発明は、従来2度に分けて行っていたサイジングを1工程で行えるようにすることを課題としている。
【0009】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、一端側に偏った第1領域に内面に凸部のある非円形穴を有し、第1領域に続く第2領域の内周面に他端から第1領域側に向けて一定リードLでねじれて延び出す突条及び/若しくは溝を有する特殊形状円筒状部品を、
前記第1領域の非円形穴に挿入するコアA、前記第2領域の穴に挿入して第1領域の穴の凸部の内側端面を受け支えるコアB、コアBに対し相対回転可能に位置決めされて相対回転によりリードLで軸方向に相対移動する下パンチ、及び上パンチとダイを用いて、
(1)部品とその部品の他端を受け支える下パンチを、それ等に対応して設けた位置決め手段で相対的に位置決めする過程、
(2)位置決めした部品と下パンチを一緒に回転させて部品の非円形穴をコアAに対して位置決めする過程、
を経てサイジング処理する方法を採る。ここで云う突条にははす歯も含まれる。
【0010】
また、この方法を実施するために、この発明においては、サイジング対象円筒状部品の第1領域の非円形穴に挿入するコアAと、外周面に一定リードLでねじれた溝又は突条を有し、その溝又は突条を前記部品の第2領域に設けられたリードLのねじれをもつ突条又は溝に噛み合わせて部品の第2領域の穴に挿入する回転可能なコアBと、部品に係止させる位置決め用の凸部又は凹部を上端に備える下パンチと、部品の上面を加圧する上パンチと、部品を挿入するダイと、コアBと下パンチにそれ等の相対回転時にリードLで軸方向相対移動を生じさせるガイド機構とから成るサイジング金型及び、その金型と、この金型の上パンチを駆動する上ラムと、ダイを保持するダイプレートと、前記金型のコアA、Bと下パンチの支持プレートを昇降させる下ラムと、前記支持プレートと下パンチ間に介在されて下パンチをコアBの上端近くまで押し上げるアクチュエータを組み合わせて成るサイジング装置も併せて提供する。
【0011】
なお、この発明の方法でサイジングされた円筒状部品は、他端に下パンチとの位置決め部を有するものになる。
【0012】
【作用】
この発明においては、金型のコアを円筒状部品(以下単に部品と云う)の非円形穴に挿入するコアAと第2領域の穴に挿入するコアBに分け、部品の軸方向寸法のばらつきによって起こる両端面部の相対位置の周方向へのずれをコアAとコアBの相対回転によって吸収する。
【0013】
即ち、下パンチと部品を相対的に位置決めして一緒に回転させるとコアA、Bが相対回転し、その相対回転で部品の両端面間に生じた周方向の相対位置のずれが吸収されて非円形穴がコアAに対して位置決めされる。
【0014】
なお、コアBと下パンチとの間に相対回転が生じると、コアBと下パンチとの間にリードLでの軸方向相対移動が生じてコアBと下パンチの噛み合い部の位相のずれが防止される。従って、下パンチに対するコアBの位置決め状態は崩れず、下パンチとの位置決めがなされた部品はコアAだけでなくコアBに対しても位置決めされる。
【0015】
このために1工程でのサイジングが可能になる。
【0016】
その1工程でのサイジングを可能ならしめるこの発明の金型は、下パンチとコアBを共に回転可能となして両者をガイド機構を設けて位置決めし、この状態で下パンチと部品を位置決めして部品をコアBに対して位置決めするので位置決めが容易である。
【0017】
また、下パンチと下パンチ支持プレートとの間に設けたアクチュエータで下パンチをコアBの上端とほぼ同じ高さ位置まで押し上げて部品をセットすることができるので、位置決めが更に容易になる。
【0018】
【発明の実施の形態】
以下、図1及び図2を参照し、この発明のサイジング方法、サイジング用金型、サイジング装置の実施形態を説明する。なお、サイジング対象として、ここでは、図5に示したインターナルヘリカルギヤ30(以下単にギヤと云う)を例に挙げる。
【0019】
図中1は、上ラム2で押し下げる上パンチ、3はギヤ30の他端を受け支える下パンチ、4は下パンチ支持プレート、5は下パンチ支持プレート4を昇降させる下ラム、6は下パンチ3と下パンチ支持プレート4との間に設けたシリンダアクチュエータ、7はダイ、8はダイ7を保持するダイプレートである。
【0020】
下パンチ3の内側には、独立したコアA、Bが配置されている。コアAは下ラム5に直結され、一方、コアBは、下ラム5にスラスト軸受9を介して回転可能に連結されている。
【0021】
下パンチ3もスラスト軸受10を介して回転可能に支持されている。
【0022】
コアAは、ギヤ30の非円形穴31に適合して嵌まる大径部11を上端に有している。また、コアBは、コアAの小径部の外周に配置してその上端でギヤ30の第1領域に設けられた凸部34の内側端面を受け支えるようにしている。このコアBの外周には、ギヤ30のはす歯32と歯溝33(図3(a)参照)に適合して噛み合うはす歯12と歯溝13を設けてある。
【0023】
また、コアBの外側に配置した下パンチ3の内周面には、コアBのはす歯12、歯溝13に適合して噛み合わせてガイド機構16を構成するはす歯14と歯溝15(図3(b)参照)を設け、さらに、下パンチ3の上端にギヤ30の他端に形成される凹部35(図4参照)と係合させる位置決め用の凸部17を設けている。凸部17は1個あればよい。複数設けることもできるが、その場合には、ギヤ30と下パンチ3の位置決めが一点のみでなされるように凸部17を周方向の等分点を避けた位置に設ける。
【0024】
このほか、上パンチ1の内面側はコアAの大径部11の外周に適合して嵌まる形状にし、さらに、コアAの大径部11とコアBとの間にコアA、Bの相対回転を円滑化するためのスラスト軸受18を設けている。
【0025】
このように構成したサイジング金型及びサイジング装置は、図1に示すように、下ラム5を駆動してコアA、Bと下パンチ3をダイ7の上方に突出させる。また、このとき、下パンチ3は、ギヤ30の位置決めとセッティングを容易化するためにシリンダアクチュエータ6でコアBの上端と面位置がほぼ揃うところまで上方に押し上げておく。
【0026】
この状態でギヤ30を図4に示した凹部35と凸部17で位置決めして下パンチ3の上端に載せる。次いで、下パンチ3とギヤ30を一緒に回転させ、ギヤ30の非円形穴31をコアAに設けたガイド36に案内させてコアAに対して位置決めする。このとき、ギヤ30の軸方向寸法に誤差があるとコアBと下パンチ3が誤差量相当分軸方向に相対移動し、ガイド機構16の働きでコアA、B間にギヤの両端面の周方向位置ずれ量相当分の相対回転が生じる。
【0027】
以上の準備を整えたら、コアAとの相対位置決めがなされている上パンチ1を降下させ、上下のパンチ1、3でギヤ30を挟んだらシリンダアクチュエータ6を上ラム2の力で押し戻しながら下パンチ3を降下させてギヤ30の凸部34をコアAの大径部11の外周に押し込む。その後、下ラム5と共にコアA、Bと下パンチ3を降下させ、上パンチ1で加圧したギヤ30の全体を図2に示すようにダイ7の中にダイ7に設けたガイド37に案内させて押し込んでサイジングのための圧縮を行う。その押込み時には、ギヤ30のはす歯32と噛み合ったコアBがはす歯のリードの影響で回転し、ギヤ30は回転しない。
【0028】
なお、この発明の方法は、はす歯に代わるリード溝やリード用突条などを設けた部品や、非円形穴に代えて外周にスプラインなどの凸部を設けた部品、第2領域のはす歯を外周面に設けた部品(エクスターナルヘリカルギヤ)などのサイジングにも応用できる。
【0029】
非円形穴に代わる凸部を外周に設けた部品やはす歯或いはそれに代わるリード溝、リード用突条などを第2領域の外周に設けた部品は、下パンチを少なくとも内下パンチと外下パンチの2つに分けた金型を用いてサイジングを行う。部品の内面にはす歯などが形成されていなければコアA、Bは独立させる必要がない。なお、このような部品のサイジングにおいても、下パンチと部品を両者の間に位置決め手段を設けて互いに位置決めする。また、内下パンチはシリンダアクチュエータで部品の位置決め、セッティングがし易くなる高さ位置まで押し上げられるようにしておく。
【0030】
【発明の効果】
以上述べたように、この発明の方法、金型及び装置によればサイジング対象部品とそれを受け支える下パンチを互いに位置決めし、その後、部品と下パンチを一緒に回転させて独立させたコアA、B間に相対回転を生じさせ、そのコアA、Bの相対回転によって部品の軸方向寸法のばらつきに起因した部品両端面の周方向相対位置のずれを吸収するので、従来2回に分けて行っていたサイジング作業を1回で済ませることができ、生産性が向上する。
【0031】
また、従来2セット必要とした金型も1セットになり、サイジングコストも低減できる。
【図面の簡単な説明】
【図1】この発明のサイジング用金型、サイジング装置の実施形態を示す断面図
【図2】インターナルヘリカルギヤを圧縮した状態を示す図
【図3】(a)コアBとギヤ30の噛み合い状態を示す部分拡大断面図
(b)下パンチとコアBの噛み合い状態を示す部分拡大断面図
【図4】下パンチとギヤの相互位置決め手段の一例を示す図
【図5】(a)サイジング対象の一例(インターナルヘリカルギヤ)を示す端面図
(b)同上のギヤの断面図
【符号の説明】
1 上パンチ
2 上ラム
3 下パンチ
4 下パンチ支持プレート
5 下ラム
6 シリンダアクチュエータ
7 ダイ
8 ダイプレート
9、10、18 スラスト軸受
11 大径部
12、14 はす歯
13、15 歯溝
16 ガイド機構
17 位置決め用の凸部
A、B コア
30 インターナルヘリカルギヤ
31 非円形穴
32 はす歯
33 歯溝
34 凸部
35 凹部
36 コアAのガイド
37 ダイのガイド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sizing method, a sizing die, and a sizing apparatus for processing a specially shaped cylindrical part such as an internal helical gear with a non-circular hole.
[0002]
[Prior art]
An example of an internal helical gear used in an automatic transmission of an automobile is shown in FIGS. 5 (a) and 5 (b).
[0003]
The helical gear 30 has a non-circular hole 31 having a key and a key groove in a region biased toward one end (referred to as a first region). Moreover, it has a helical tooth 32 and a tooth groove 33 extending from the other end of the cylinder toward the one end side on the inner surface of another region (this is referred to as a second region).
[0004]
When the internal helical gear 30 is manufactured by a powder metallurgy method with high productivity, the sintered compact is sized and coined after the green compact is sintered.
[0005]
By the way, the sizing of the internal helical gear of the sintered product has been carried out separately by dividing the step of recompressing the first region and the step of recompressing the second region.
[0006]
The reason is that if the axial dimension L of the gear varies, the relative position of the end face of the gear and the non-circular hole shifts in the circumferential direction, and the non-circular hole is positioned relative to the core of the sizing mold. This is because there is a shift in the phase of the gear's helical teeth and the corresponding tooth gaps provided in the core, which impedes their engagement.
[0007]
[Problems to be solved by the invention]
As described above, when the sizing is performed twice, the work becomes two steps, and the productivity is lowered. In addition, two sets of molds are required, which increases the sizing cost.
[0008]
Therefore, the present invention has an object to enable sizing that has been performed in two steps in a single step.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, the first region biased toward one end has a non-circular hole having a convex portion on the inner surface, and the other end on the inner peripheral surface of the second region following the first region. A specially-shaped cylindrical part having a protrusion and / or a groove extending by twisting with a constant lead L toward the first region side from
The core A inserted into the non-circular hole in the first region, the core B inserted into the hole in the second region and supporting the inner end face of the convex portion of the hole in the first region, and positioned so as to be relatively rotatable with respect to the core B Using the lower punch that moves relative to the axis in the lead L by relative rotation, and the upper punch and die,
(1) A process of relatively positioning the component and the lower punch that supports the other end of the component by positioning means provided corresponding to the component,
(2) A process of positioning the non-circular hole of the component with respect to the core A by rotating the positioned component and the lower punch together,
The method of sizing processing is taken through. The protrusion mentioned here includes a tooth.
[0010]
In order to carry out this method, in the present invention, the core A to be inserted into the non-circular hole in the first region of the cylindrical part to be sized, and the groove or the ridge that is twisted by the constant lead L on the outer peripheral surface are provided. A rotatable core B that engages the groove or protrusion with the twisted protrusion or groove of the lead L provided in the second region of the component and inserts it into the hole in the second region of the component; A lower punch having a convex or concave portion for positioning at the upper end, an upper punch for pressing the upper surface of the component, a die for inserting the component, and a lead L when the core B and the lower punch are rotated relative to each other. And a sizing die comprising a guide mechanism for causing relative movement in the axial direction, an upper ram for driving the upper punch of the die, a die plate for holding the die, and a core A of the die. , B and lower punch support plate A lower ram to the interposed between the support plate and the lower punch provided together also sizing device comprising a combination of actuators to push up near the top of the core B the lower punch.
[0011]
The cylindrical part sized by the method of the present invention has a positioning part with the lower punch at the other end.
[0012]
[Action]
In this invention, the core of the mold is divided into a core A that is inserted into a non-circular hole of a cylindrical part (hereinafter simply referred to as a part) and a core B that is inserted into a hole in the second region, and variations in the axial dimensions of the parts. The shift in the circumferential direction of the relative positions of both end faces caused by the above is absorbed by the relative rotation of the core A and the core B.
[0013]
That is, when the lower punch and the component are relatively positioned and rotated together, the cores A and B rotate relative to each other, and the relative rotation between the two end faces of the component caused by the relative rotation is absorbed. A non-circular hole is positioned with respect to the core A.
[0014]
When relative rotation occurs between the core B and the lower punch, an axial relative movement of the lead L occurs between the core B and the lower punch, and the phase shift between the meshed portions of the core B and the lower punch occurs. Is prevented. Therefore, the positioning state of the core B with respect to the lower punch is not collapsed, and the component positioned with the lower punch is positioned not only with respect to the core A but also with respect to the core B.
[0015]
For this reason, sizing in one step becomes possible.
[0016]
The mold according to the present invention, which enables sizing in one step, allows both the lower punch and the core B to be rotated, positions both with a guide mechanism, and positions the lower punch and parts in this state. Since the component is positioned with respect to the core B, positioning is easy.
[0017]
In addition, the actuator can be set between the lower punch and the lower punch support plate by pushing up the lower punch to a position substantially the same as the upper end of the core B, so that positioning is further facilitated.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to FIG.1 and FIG.2, embodiment of the sizing method of this invention, the metal mold | die for sizing, and a sizing apparatus is demonstrated. Here, as an example of the sizing object, an internal helical gear 30 (hereinafter simply referred to as a gear) shown in FIG. 5 is taken as an example.
[0019]
In the figure, 1 is an upper punch that is pushed down by the upper ram 2, 3 is a lower punch that supports the other end of the gear 30, 4 is a lower punch support plate, 5 is a lower ram that raises and lowers the lower punch support plate 4, and 6 is a lower punch. 3 is a cylinder actuator provided between the lower punch support plate 4 and 7 is a die, and 8 is a die plate for holding the die 7.
[0020]
Independent cores A and B are arranged inside the lower punch 3. The core A is directly connected to the lower ram 5, while the core B is rotatably connected to the lower ram 5 via a thrust bearing 9.
[0021]
The lower punch 3 is also rotatably supported via a thrust bearing 10.
[0022]
The core A has a large-diameter portion 11 that fits into the non-circular hole 31 of the gear 30 at the upper end. The core B is arranged on the outer periphery of the small-diameter portion of the core A and supports the inner end face of the convex portion 34 provided in the first region of the gear 30 at the upper end. On the outer periphery of the core B, there are provided a tooth 12 and a tooth groove 13 which are fitted and meshed with a tooth 32 and a tooth groove 33 (see FIG. 3A) of the gear 30.
[0023]
Further, the inner teeth of the lower punch 3 arranged on the outer side of the core B are engaged with the helical teeth 12 and the tooth grooves 13 of the core B so as to be engaged with each other. 15 (see FIG. 3B), and further, a positioning projection 17 for engaging with a recess 35 (see FIG. 4) formed at the other end of the gear 30 is provided at the upper end of the lower punch 3. . There may be only one convex portion 17. In this case, the convex portion 17 is provided at a position that avoids the equally divided points in the circumferential direction so that the gear 30 and the lower punch 3 are positioned at only one point.
[0024]
In addition, the inner surface side of the upper punch 1 has a shape that fits and fits to the outer periphery of the large-diameter portion 11 of the core A, and the relative relationship between the cores A and B is between the large-diameter portion 11 of the core A and the core B. A thrust bearing 18 is provided for smooth rotation.
[0025]
As shown in FIG. 1, the sizing mold and sizing apparatus configured as described above drive the lower ram 5 to project the cores A and B and the lower punch 3 above the die 7. At this time, the lower punch 3 is pushed upward by the cylinder actuator 6 until the upper end and the surface position of the core B are substantially aligned to facilitate positioning and setting of the gear 30.
[0026]
In this state, the gear 30 is positioned by the concave portion 35 and the convex portion 17 shown in FIG. 4 and placed on the upper end of the lower punch 3. Next, the lower punch 3 and the gear 30 are rotated together, and the non-circular hole 31 of the gear 30 is guided by the guide 36 provided in the core A and positioned with respect to the core A. At this time, if there is an error in the axial dimension of the gear 30, the core B and the lower punch 3 move relative to each other in the axial direction by an amount corresponding to the error amount. Relative rotation corresponding to the direction displacement amount occurs.
[0027]
When the above preparation is completed, the upper punch 1, which is positioned relative to the core A, is lowered, and when the gear 30 is sandwiched by the upper and lower punches 1, 3, the cylinder punch 6 is pushed back by the force of the upper ram 2 while lower punch 3 is lowered and the convex portion 34 of the gear 30 is pushed into the outer periphery of the large-diameter portion 11 of the core A. Thereafter, the cores A and B and the lower punch 3 are lowered together with the lower ram 5, and the entire gear 30 pressurized by the upper punch 1 is guided to a guide 37 provided in the die 7 in the die 7 as shown in FIG. And press to compress for sizing. At the time of the pushing, the core B engaged with the helical teeth 32 of the gear 30 rotates due to the influence of the helical lead, and the gear 30 does not rotate.
[0028]
It should be noted that the method of the present invention can be applied to parts provided with lead grooves or lead protrusions instead of helical teeth, parts provided with convex portions such as splines on the outer periphery instead of non-circular holes, It can also be applied to the sizing of parts (external helical gears) with teeth on the outer peripheral surface.
[0029]
Parts with protrusions instead of non-circular holes on the outer periphery or parts with helical teeth or alternative lead grooves, lead ridges, etc. on the outer periphery of the second area are at least the lower punch and the outer lower punch. Sizing is performed using a die divided into two punches. The cores A and B do not need to be made independent unless the teeth or the like are formed on the inner surface of the component. Even in the sizing of such parts, the lower punch and the parts are positioned with respect to each other by providing positioning means between them. Further, the inner and lower punches are pushed up to a height position where the parts can be easily positioned and set by the cylinder actuator.
[0030]
【The invention's effect】
As described above, according to the method, mold and apparatus of the present invention, the core A in which the part to be sized and the lower punch supporting the part are positioned with respect to each other, and then the part and the lower punch are rotated together to be independent. , B causes relative rotation, and the relative rotation of the cores A and B absorbs the deviation of the relative position in the circumferential direction of both end surfaces due to the variation in the axial dimension of the component. The sizing operation that has been performed can be completed in one time, and productivity is improved.
[0031]
In addition, the number of molds that conventionally required two sets becomes one set, and the sizing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a sizing die and sizing device according to the present invention. FIG. 2 is a view showing a state where an internal helical gear is compressed. (B) Partial enlarged cross-sectional view showing the meshed state of the lower punch and the core B. FIG. 4 is a view showing an example of mutual positioning means of the lower punch and the gear. End view showing an example (internal helical gear) (b) Cross section of the same gear [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Upper punch 2 Upper ram 3 Lower punch 4 Lower punch support plate 5 Lower ram 6 Cylinder actuator 7 Die 8 Die plates 9, 10, 18 Thrust bearing 11 Large diameter part 12, 14 Helical teeth 13, 15 Tooth groove 16 Guide mechanism 17 Protrusions A and B for positioning Core 30 Internal helical gear 31 Non-circular hole 32 Helical teeth 33 Tooth grooves 34 Convex parts 35 Concave parts 36 Guide for core A 37 Guide for die

Claims (4)

一端側に偏った第1領域に内面に凸部のある非円形穴を有し、第1領域に続く第2領域の内周面に他端から第1領域側に向けて一定リードLでねじれて延び出す突条及び/若しくは溝を有する特殊形状円筒状部品を、
前記第1領域の非円形穴に挿入するコアA、前記第2領域の穴に挿入して第1領域の穴の凸部の内側端面を受け支えるコアB、コアBに対し相対回転可能に位置決めされて相対回転によりリードLで軸方向に相対移動する下パンチ、及び上パンチとダイを用いて、
(1)部品とその部品の他端を受け支える下パンチを、それ等に対応して設けた位置決め手段で相対的に位置決めする過程、
(2)位置決めした部品と下パンチを一緒に回転させて部品の非円形穴をコアAに対して位置決めする過程、
を経てサイジング処理する特殊形状円筒状部品のサイジング方法。
The first area biased toward one end has a non-circular hole with a convex portion on the inner surface, and is twisted with a constant lead L from the other end toward the first area on the inner peripheral surface of the second area following the first area. Specially shaped cylindrical parts having ridges and / or grooves extending
The core A inserted into the non-circular hole in the first region, the core B inserted into the hole in the second region and supporting the inner end face of the convex portion of the hole in the first region, and positioned so as to be relatively rotatable with respect to the core B Using the lower punch that moves relative to the axis in the lead L by relative rotation, and the upper punch and die,
(1) A process of relatively positioning the component and the lower punch that supports the other end of the component by positioning means provided corresponding to the component,
(2) A process of positioning the non-circular hole of the component with respect to the core A by rotating the positioned component and the lower punch together,
Sizing method for specially shaped cylindrical parts that undergo sizing treatment via
サイジング対象円筒状部品の第1領域の非円形穴に挿入するコアAと、外周面に一定リードLでねじれた溝又は突条を有し、その溝又は突条を前記部品の第2領域に設けられたリードLのねじれをもつ突条又は溝に噛み合わせて部品の第2領域の穴に挿入する回転可能なコアBと、部品に係止させる位置決め用の凸部又は凹部を上端に備える下パンチと、部品の上面を加圧する上パンチと、部品を挿入するダイと、コアBと下パンチにそれ等の相対回転時にリードLで軸方向相対移動を生じさせるガイド機構とから成るサイジング金型。The core A to be inserted into the non-circular hole in the first region of the cylindrical part to be sized, and the groove or ridge twisted by the constant lead L on the outer peripheral surface, and the groove or ridge in the second region of the part A rotatable core B that engages with a ridge or groove having a twist of the provided lead L and is inserted into a hole in the second region of the component, and a positioning convex portion or concave portion that is engaged with the component are provided at the upper end. A sizing metal comprising a lower punch, an upper punch for pressing the upper surface of the component, a die for inserting the component, and a guide mechanism for causing the core B and the lower punch to move in the axial direction relative to the lead L when they rotate relative to each other. Type. 請求項2記載の金型と、この金型の上パンチを駆動する上ラムと、ダイを保持するダイプレートと、前記金型のコアA、Bと下パンチの支持プレートを昇降させる下ラムと、前記支持プレートと下パンチ間に介在されて下パンチをコアBの上端近くまで押し上げるアクチュエータを組み合わせて成るサイジング装置。A mold according to claim 2, an upper ram for driving an upper punch of the mold, a die plate for holding a die, a lower ram for raising and lowering the cores A and B of the mold and a support plate for the lower punch. A sizing device comprising a combination of actuators interposed between the support plate and the lower punch to push the lower punch to near the upper end of the core B. 他端に下パンチとの位置決め部を有する請求項1記載の方法でサイジングされた非円形穴付きインターナルヘリカルギヤ等の特殊形状円筒状部品。A specially shaped cylindrical part such as an internal helical gear with a non-circular hole sized by the method according to claim 1, wherein the other end has a positioning part with a lower punch.
JP2002320882A 2002-11-05 2002-11-05 Sizing method for specially shaped cylindrical parts Expired - Lifetime JP3662902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320882A JP3662902B2 (en) 2002-11-05 2002-11-05 Sizing method for specially shaped cylindrical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320882A JP3662902B2 (en) 2002-11-05 2002-11-05 Sizing method for specially shaped cylindrical parts

Publications (2)

Publication Number Publication Date
JP2004156079A JP2004156079A (en) 2004-06-03
JP3662902B2 true JP3662902B2 (en) 2005-06-22

Family

ID=32801598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320882A Expired - Lifetime JP3662902B2 (en) 2002-11-05 2002-11-05 Sizing method for specially shaped cylindrical parts

Country Status (1)

Country Link
JP (1) JP3662902B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105057675B (en) * 2015-09-16 2017-08-22 重庆聚能粉末冶金有限公司 end tooth shaping automatic feeding and discharging mechanism
US20230071870A1 (en) 2020-06-09 2023-03-09 Sumitomo Electric Sintered Alloy, Ltd. Sintered material, sizing device, and method for manufacturing sintered material

Also Published As

Publication number Publication date
JP2004156079A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP2007245220A (en) Forging device
JP3662902B2 (en) Sizing method for specially shaped cylindrical parts
JP2007021520A (en) Powder molding device for deformed helical gear and powder molding method
JP3341981B2 (en) Helical gear sizing device and sizing method
JP3531151B2 (en) Molding equipment for powder molding used in the manufacture of Oldham rings
JP6487525B1 (en) Helical gear forming equipment
JP2006212665A (en) Apparatus and method for molding helical gear
JPH09176701A (en) Forming metallic mold for helical gear formed body with deformed part
JP6537132B2 (en) Apparatus and method for manufacturing sintered component
JP3151798B2 (en) Mold for powder molding
JP3690631B2 (en) Rack shaft manufacturing method and apparatus
JP3503799B2 (en) Apparatus and method for repressing molded article having helical teeth
JP3908884B2 (en) Gear forming apparatus and gear forming method
JPH10230396A (en) Powder molding device for helical gear
JPH0754014A (en) Powder compacting method of planetary gear holding plate
JPH0631372A (en) Manufacture of spiral bevel gear
JP3374962B2 (en) Molding equipment for powder molding used in the manufacture of Oldham rings
JP3324110B2 (en) Method for producing multi-stage helical gear and powder molding die thereof
JPS63103005A (en) Molding device for helical gear
JP3397746B2 (en) Method of manufacturing metal product in which thick portion is integrally formed on the outer peripheral portion of thin metal disk, and apparatus for manufacturing such metal product
JP2006334661A (en) Powder molding device, and powder molding method using the same
JP2000317571A (en) Herical gear forming die
JPS63103004A (en) Molding device for helical gear
JP3538831B2 (en) Method of manufacturing cylinder end plate for rotary compressor
JP2003220442A (en) Method for forge-forming gear with crowning and device used in the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050324

R150 Certificate of patent or registration of utility model

Ref document number: 3662902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250