JP3662440B2 - Method and apparatus for three-dimensional measurement of physical properties of transparent aggregate - Google Patents

Method and apparatus for three-dimensional measurement of physical properties of transparent aggregate Download PDF

Info

Publication number
JP3662440B2
JP3662440B2 JP11427599A JP11427599A JP3662440B2 JP 3662440 B2 JP3662440 B2 JP 3662440B2 JP 11427599 A JP11427599 A JP 11427599A JP 11427599 A JP11427599 A JP 11427599A JP 3662440 B2 JP3662440 B2 JP 3662440B2
Authority
JP
Japan
Prior art keywords
aggregate
light
emission
conversion
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11427599A
Other languages
Japanese (ja)
Other versions
JP2000304699A (en
Inventor
公平 曽我
亮男 牧島
博之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP11427599A priority Critical patent/JP3662440B2/en
Publication of JP2000304699A publication Critical patent/JP2000304699A/en
Application granted granted Critical
Publication of JP3662440B2 publication Critical patent/JP3662440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラスやプラスチックス等の透明な液体および固体、すなわち透明凝集体の3次元立体における任意の点の温度その他の物性を非接触で計測する方法および装置に関する。
【0002】
【従来の技術】
蛍光物質の蛍光寿命時間が温度に依存する光学的特性を利用し、光源により蛍光物質を励起させて、蛍光物質の温度に依存する蛍光寿命時間を測定することにより温度を測定する原理を利用した光学温度測定方法および装置は公知である(特公平4−10574号公報、特公平4−12410号公報、特開平6−26941号公報、特公平7−46063号公報、米国特許第4,789,992号明細書・図面)。
【0003】
これらの公知の測定方法および装置では、被測定物の表面に蛍光物質を塗布するか、プローブの先端の光ファイバに蛍光物質を取り付けて被測定物に接触または非接触で温度測定を行っている。
【0004】
また、非接触の温度測定手段としては、蛍光強度が温度に依存性を有する蛍光性のトレーサー粒子を流体に供給し、紫外線などの励起光を照射してトレーサー粒子の蛍光強度を計測して非接触で温度測定を行う方法(特開平9−126837号公報)や、測定対象に一体化させたイッテルビウムを発光中心として含むインジウムリン単結晶からなる半導体を発光させ、フォトルミネッセンス光の強度により温度を測定する装置(特開平9−33364号公報)等も公知である。
【0005】
【発明が解決しようとする課題】
プラスチックスやガラスの成型品の製造工程において、温度をはじめとする物性値の把握は、その成形不良を防ぐための直接的な制御因子になり、利益向上のための生産効率の向上のみならず、不良品を減らし、エネルギー効率を高めることによる環境問題への対策といった観点からも極めて重要である。
【0006】
しかし、固体や液体などの凝集体からなる材料の成形過程において、物性値が3次元的にどのような値をとるかについて知るために、凝集体内部の任意の点の物性を非接触で測定する方法は現在のところ存在しない。
【0007】
例えば、プラスチック成型時の金型内の樹脂の温度制御は、樹脂製品の「ひけ」などの欠陥除去のために従来から重要な要素とされながらも、成型中の樹脂の任意の点における温度の測定手段がなかった。そのため、数千万円の金型を試行錯誤しながら作成せざるを得ないのが実情であった。
【0008】
また、結晶化ガラスを作成する際に、ガラス中では結晶化度に分布が生じている。冷却後にガラスを切断することによりガラス中の結晶化度の分布を計測することは可能だが、3次元的に任意の点の結晶化度の観測をガラスに非接触で行うことは困難であった。
【0009】
このように、凝集体内部の温度や結晶化度などの物性を任意の点において立体的に測定することは非常に困難である。
【0010】
【課題を解決するための手段】
本発明は、この様な問題を解決するものであって、2波長励起のアップコンバージョンによる点発光によって、透明凝集体の3次元的に任意の点における温度、結晶化度といった物性の立体的計測を非接触で行うことを可能にしたものである。
【0011】
すなわち、本発明は、透明の固体および液体からなる凝集体にアップコンバージョンを示す蛍光物質を含有させ、該凝集体に2種類の波長のそれぞれの光源からの光を互いに異なる方向から交差するように入射し、該光の交点において該アップコンバージョンを示す蛍光物質をアップコンバージョンにより点発光させ、該点発光の発光特性を検知し、基準特性との比較により凝集体内部の任意の点における物性値を求めることを特徴とする透明凝集体の物性の立体的計測方法を提供するものである。
【0012】
また、本発明は、2種類の波長のそれぞれのパルス光源からなる光照射手段、アップコンバージョンを示す蛍光物質を含有させた透明凝集体に該2種類の波長のそれぞれのパルス光源からの光を互いに異なる方向から交差するように入射させるための手段、該2種類の波長のそれぞれのパルス光源の照射タイミングを変化させるレーザー同期信号制御手段、および該光の交点における点発光の発光特性を検知する手段とを備えたことを特徴とする凝集体内部の任意の点における物性を立体的に計測する装置を提供するものである。
【0013】
本発明の方法および装置において、該アップコンバージョンを示す蛍光物質は、その発光特性および残光特性が温度に依存性をもつものである場合は、2波長励起アップコンバージョンを用いることにより、凝集体内部の任意の点における温度を立体的に計測することができる。
【0014】
本発明の方法および装置において、該アップコンバージョンを示す蛍光物質は、その発光特性および残光特性が凝集体の結晶化度に依存性をもつものである場合は、2波長励起アップコンバージョンを用いることにより、凝集体内部の任意の点における結晶化度を立体的に計測することができる。
【0015】
その他、凝集体の物性であって、アップコンバージョンを示す蛍光物質の発光特性および/または残光特性が依存する物性であれば本発明の方法および装置を適用してその物性を立体的に計測することができる。
【0016】
【作用】
アップコンバージョンとは、3準位系以上の準位系において中間励起状態を経ることによりマルチステップで励起を行い、入射光よりも高いエネルギー(短い波長)の光を発する現象であり、希土類イオンの発光について多くの報告例がある。
【0017】
2波長励起アップコンバージョンは、図2に示すように、第一ステップと第二ステップで異なる波長1、波長2の光を用いることにより、単一波長によるアップコンバージョンよりも高い効率(短い波長3)でアップコンバージョンを起こす方法である。
【0018】
例えば、希土類イオン含有ガラスを二つのパルスレーザ(670nm,630nm)で励起し、一段目の励起に対する二段目の励起のタイミングを変化させてアップコンバージョン発光を起こすことができる。
【0019】
例えば、Tm3+を0.6mol%含むバルク状のZBLAN(53ZrF4 −20BaF2 −4LaF3 −3AlF3 −20NaF)ガラスを試料とし、この試料を両側から照射タイミングが制御されたOPOと色素レーザ(DCM)で励起し、その照射タイミングを変化させると450nmと480nmの発光の強度変化は図3に示すようになり、一段目に対して二段目の照射を3msほど遅らせた時、単一波長で励起した場合よりも高い発光強度を示し、また励起光照射タイミングを2波長同時とした場合よりも、約8倍程度に発光強度が増大する。
【0020】
この場合、光源からの光を互いに異なる方向から入射した場合、単一波長励起では、励起光が伝搬した全ての点において発光が起こるため、得られる発光は直線状の領域からの発光となるが、図1に示すように、光源からの波長1および波長2の2種類の波長の光を透明凝集体3に入射すると波長1および波長2の2種類の波長の光が共存する領域、すなわち両者の交点Pのみがアップコンバージョン発光に寄与するため、入射光の交点においてのみ点発光させることが可能である。そして、例えば、670nm、630nmの2つのパルスレーザをタイミングを少しずらして一点で交わるように照射すると、450nmと480nmの高エネルギー光の点発光(アップコンバージョン発光)が見られる。そして、希土類イオンのようにアップコンバージョンを示す蛍光物質の発光では温度によって異なる発光寿命を有するので、発光点での温度を特定できる。
【0021】
【発明の実施の形態】
アップコンバージョンを示す蛍光物質であるTb3+やTm3+等の希土類イオンの発光スペクトルの観測によって、その時間変化を計測し、温度によって変化する発光寿命を求めて発光点における温度を計測することができる。また、スペクトルを測定すると、アップコンバージョンを示す蛍光物質の周囲の構造変化を求めることができる。希土類イオンとしては、Tb3+やTm3+の他、Pr3+、Nd3+、Sm3+、Eu3+、Dy3+、Ho3+、Er3+も使用できる。
【0022】
本発明の測定装置は、図4に示すように、波長1のパルス光源1と波長2のパルス光源2からなる2種類の波長の光源からなる光照射手段、該2種類の波長の光源からの光を異なる方向から被測定対象物である透明凝集体に入射させるための手段、パルス光源1およびパルス光源2の照射タイミングを変化させるレーザー同期信号制御手段および点発光の発光特性を検知する手段とを備えている。また、これらの手段の制御・データ取り込み・解析用にコンピュータを用いる。
【0023】
2種類の波長のそれぞれの光源からの光を異なる方向から透明凝集体に交差するように入射させるための手段としては、例えば、パルス光源1からの光に対応する可動ミラーA、パルス光源2からの光に対応する固定ミラーCおよび可動ミラーBを用い、これらをミラー駆動制御信号により制御し、3次元立体の任意の測定点において入射光が交差するように制御する。ミラーを用いる代わりに光ファイバを用いることもできる。
【0024】
点発光の発光特性を検知する手段としては、検出器および分光器などが用いられるが、発光特性を検知し温度を特定するための手段は先行文献等に開示されている計測手段と同様に光検知器、比較器、演算装置、表示装置などからなる計測装置を適宜用いることができる。
【0025】
例えば、デジタルオシロスコープを用いて、時間分解で得られた蛍光の時間tに対する減衰を指数関数I0 exp(-t/τ) でフイットし、蛍光寿命τを求める。求めたτを予め測定したτと温度Tを関係づけるための検量値と比較し、温度を決定する。
【0026】
例えば、希土類イオンとしてTm3+を微量ドープしたガラスやプラスチックスを用意し、これに対して、励起光として670nmおよび630nmの光を異なる方向から交差するように入射すると、その交点において450nmのアップコンバージョン発光が起こる。一方、希土類イオンのある準位からの発光は、温度によって異なる発光寿命を有するので、それぞれの温度における発光寿命を予め測定しておくと、それを検量線として、2波長励起アップコンバージョンによる発光でデジタルオシロスコープを用いて計測した発光の時間変化から、その点における温度を求めることができる。
【0027】
また、結晶化ガラスを作成する際に、ガラスにTm3+を微量ドープする。これに対して、励起光として670nmおよび630nmの光を入射するとその交点において450nmのアップコンバージョン発光が起こる。一方、希土類イオンのある準位からの発光スペクトルは、その局所的な構造によって異なるスペクトルを有するので、それぞれの結晶化度における発光スぺクトルを予め測定しておくと、それとの比較により、2波長励起アップコンバージョンによる発光を分光器により測定したスペクトルから、その交点における結晶化度を求めることができる。
【0028】
さらに、射出成形をはじめとするポリマー成形では、成形による変形や温度分布が製造上の重要な制御因子となる。そこで、石英などの透明材料により成形機を構成し、本発明の方法により、成形機の外部から2種類の波長のそれぞれの光源からの光を互いに異なる方向から成形機内部の原料に入射するようにする。原料に微量のアップコンバージョンを示す蛍光物質を加えて、微量に含まれた蛍光物質の発光点を3次元的に画像解析等によって追跡し、同時に発光寿命を計測することにより、3次元的な温度分布に加えて、加工時の変形による変位を3次元的に計測することもできる。
【0029】
さらに、樹脂等の金型成形において、原料に微量のアップコンバージョンを示す蛍光物質を加え、2種類の波長の光源を互いに異なる方向から入射できるように励起レーザ用の光ファイバを金型中に埋め込み、さらに発光のセンシング用の光ファイバも金型中に埋め込むことにより、異なる方向から入射した2種類の波長の光の交点の点発光を計測することにより金型内部の透明凝集体の温度・変位の3次元的な計測も行うことができる。
【0030】
【発明の効果】
本発明の方法および装置によれば、透明凝集体の3次元立体の任意の点の物性を非接触で特定できることとなり、固体、液体を問わず、ガラスやプラスチックス等の透明凝集体の3次元立体の任意の点の温度をはじめとする種々の物理情報を測定点の精度がよく、しかも、簡易にかつ素早く立体的に検出することができる。
【図面の簡単な説明】
【図1】本発明の方法の原理を示す概念図。
【図2】2波長励起アップコンバージョンエネルギー準位図
【図3】希土類イオンの670nm、630nm励起の発光スペクトル強度を示すグラフ。
【図4】本発明の透明凝集体の物性の立体的測定装置の概念図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for measuring the temperature and other physical properties of any point in a three-dimensional solid of a transparent liquid and solid such as glass and plastics, that is, a transparent aggregate, in a non-contact manner.
[0002]
[Prior art]
Utilizing the optical property that the fluorescence lifetime of a fluorescent substance depends on temperature, the principle of measuring temperature by exciting the fluorescent substance with a light source and measuring the fluorescence lifetime depending on the temperature of the fluorescent substance Optical temperature measuring methods and apparatuses are known (Japanese Patent Publication No. 4-10574, Japanese Patent Publication No. 4-12410, Japanese Patent Application Laid-Open No. Hei 6-26941, Japanese Patent Publication No. 7-46063, US Pat. No. 4,789, No. 992 specification / drawing).
[0003]
In these known measurement methods and apparatuses, a fluorescent substance is applied to the surface of the object to be measured, or a fluorescent substance is attached to the optical fiber at the tip of the probe, and the temperature is measured in contact or non-contact with the object to be measured. .
[0004]
As a non-contact temperature measuring means, fluorescent tracer particles whose fluorescence intensity is temperature-dependent are supplied to the fluid, and excitation light such as ultraviolet rays is irradiated to measure the fluorescence intensity of the tracer particles. A method of measuring temperature by contact (Japanese Patent Laid-Open No. 9-126937) or a semiconductor made of indium phosphide single crystal containing ytterbium integrated as an object to be measured as a light emission center, and controlling the temperature by the intensity of photoluminescence light. An apparatus for measuring (Japanese Patent Laid-Open No. 9-33364) is also known.
[0005]
[Problems to be solved by the invention]
In the manufacturing process of plastics and glass moldings, grasping physical properties such as temperature is a direct control factor to prevent molding defects, and not only increases production efficiency to improve profits. It is also extremely important from the viewpoint of measures against environmental problems by reducing defective products and increasing energy efficiency.
[0006]
However, in order to know what three-dimensional physical property values are taken in the molding process of aggregates such as solids and liquids, the physical properties of any point inside the aggregates are measured without contact. There is currently no way to do this.
[0007]
For example, the temperature control of the resin in the mold at the time of plastic molding is traditionally an important element for removing defects such as “sink” of resin products, but the temperature at any point of the resin during molding is controlled. There was no measuring means. Therefore, the actual situation was that we had to create a mold of tens of millions of yen through trial and error.
[0008]
Moreover, when producing crystallized glass, distribution occurs in the crystallinity in the glass. Although it is possible to measure the distribution of crystallinity in the glass by cutting the glass after cooling, it was difficult to observe the crystallinity at any point in three dimensions in a non-contact manner. .
[0009]
Thus, it is very difficult to three-dimensionally measure physical properties such as temperature and crystallinity inside the aggregate at an arbitrary point.
[0010]
[Means for Solving the Problems]
The present invention solves such problems, and three-dimensional measurement of physical properties such as temperature and crystallinity at an arbitrary three-dimensional point of a transparent aggregate by point emission by up-conversion with two-wavelength excitation. Can be performed in a non-contact manner.
[0011]
That is, in the present invention, a fluorescent substance exhibiting upconversion is contained in an aggregate composed of a transparent solid and a liquid so that the light from each light source of two types of wavelengths intersects the aggregate from different directions. Incidence and point emission of the fluorescent substance exhibiting the upconversion at the intersection of the light by upconversion, detecting the emission characteristics of the point emission, and comparing the physical property value at any point inside the aggregate by comparison with the reference characteristics The present invention provides a method for three-dimensional measurement of the physical properties of a transparent aggregate characterized by the requirement.
[0012]
The present invention also provides light irradiation means comprising pulse light sources of two types of wavelengths, and transparent aggregates containing a fluorescent material exhibiting upconversion to each other from the light from the pulse light sources of the two types of wavelengths. Means for making light incident from different directions, laser synchronous signal control means for changing the irradiation timing of each of the two types of wavelengths, and means for detecting emission characteristics of point emission at the intersection of the light An apparatus for three-dimensionally measuring the physical properties at an arbitrary point inside the aggregate is provided.
[0013]
In the method and apparatus of the present invention, when the fluorescent substance exhibiting upconversion has temperature-dependent emission characteristics and afterglow characteristics, by using two-wavelength excitation upconversion, The temperature at an arbitrary point can be measured three-dimensionally.
[0014]
In the method and apparatus of the present invention, the fluorescent substance exhibiting up-conversion uses two-wavelength excitation up-conversion when the emission characteristics and afterglow characteristics depend on the crystallinity of the aggregate. Thus, the crystallinity at an arbitrary point inside the aggregate can be measured three-dimensionally.
[0015]
In addition, if the physical property of the aggregate is a physical property that depends on the light emission characteristics and / or afterglow characteristics of the fluorescent material exhibiting upconversion, the physical property is measured three-dimensionally by applying the method and apparatus of the present invention. be able to.
[0016]
[Action]
Upconversion is a phenomenon in which excitation is performed in multistep by passing through an intermediate excitation state in a level system of three or more levels, and light with a higher energy (short wavelength) than incident light is emitted. There are many reported examples of luminescence.
[0017]
As shown in FIG. 2, the two-wavelength excitation up-conversion has a higher efficiency (short wavelength 3) than that of single-wavelength up-conversion by using light of different wavelengths 1 and 2 in the first step and the second step. This is a method for up-conversion.
[0018]
For example, a rare earth ion-containing glass can be excited with two pulse lasers (670 nm and 630 nm), and the second-stage excitation timing can be changed with respect to the first-stage excitation to cause upconversion emission.
[0019]
For example, a bulk ZBLAN (53ZrF 4 -20BaF 2 -4LaF 3 -3AlF 3 -20NaF) glass containing 0.6 mol% of Tm 3+ is used as a sample, and this sample is subjected to OPO and dye laser whose irradiation timing is controlled from both sides. When it is excited with (DCM) and the irradiation timing is changed, the intensity change of light emission at 450 nm and 480 nm becomes as shown in FIG. 3, and when the second stage irradiation is delayed by about 3 ms from the first stage, The emission intensity is higher than when excited by a wavelength, and the emission intensity increases by about 8 times compared to the case where the excitation light irradiation timing is set to two wavelengths simultaneously.
[0020]
In this case, when light from the light source is incident from different directions, light emission occurs at all points where the excitation light has propagated in single-wavelength excitation, and the resulting light emission is emitted from a linear region. As shown in FIG. 1, when light of two wavelengths, wavelength 1 and wavelength 2, from a light source is incident on the transparent aggregate 3, a region where light of two wavelengths of wavelength 1 and wavelength 2 coexists, that is, both Since only the intersection point P contributes to up-conversion light emission, it is possible to cause point light emission only at the intersection point of incident light. For example, when two pulse lasers of 670 nm and 630 nm are irradiated so that the timings are slightly shifted and intersect at one point, point emission (up-conversion emission) of high energy light at 450 nm and 480 nm is observed. And since the light emission of the fluorescent substance which shows upconversion like rare earth ions has a light emission lifetime which changes with temperature, the temperature in a light emission point can be specified.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Measure the time change by observing the emission spectrum of rare earth ions such as Tb 3+ and Tm 3+, which are fluorescent substances showing upconversion, and measure the temperature at the emission point by obtaining the emission lifetime that changes with temperature. Can do. Moreover, when the spectrum is measured, the structural change around the fluorescent material exhibiting upconversion can be obtained. As rare earth ions, Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Dy 3+ , Ho 3+ , Er 3+ can be used in addition to Tb 3+ and Tm 3+ .
[0022]
As shown in FIG. 4, the measuring apparatus of the present invention comprises a light irradiating means comprising two types of light sources having a wavelength 1 pulse light source 1 and a wavelength 2 pulse light source 2, and a light source having the two types of wavelengths. Means for causing light to enter the transparent aggregate that is the object to be measured from different directions, laser synchronous signal control means for changing the irradiation timing of the pulse light source 1 and pulse light source 2, and means for detecting the light emission characteristics of point emission It has. In addition, a computer is used for control, data capture, and analysis of these means.
[0023]
As a means for making the light from each light source of two kinds of wavelengths enter from different directions so as to cross the transparent aggregate, for example, from the movable mirror A corresponding to the light from the pulse light source 1, the pulse light source 2 The fixed mirror C and the movable mirror B corresponding to the light of the above are used, and these are controlled by the mirror drive control signal so that the incident light intersects at an arbitrary measurement point of the three-dimensional solid. An optical fiber can be used instead of a mirror.
[0024]
A detector, a spectroscope, and the like are used as the means for detecting the light emission characteristics of the point light emission, but the means for detecting the light emission characteristics and specifying the temperature is the same as the measuring means disclosed in the prior art. A measuring device including a detector, a comparator, a calculation device, a display device, and the like can be used as appropriate.
[0025]
For example, using a digital oscilloscope, the fluorescence decay time with respect to time t obtained by time resolution is fitted with an exponential function I 0 exp (−t / τ) to obtain the fluorescence lifetime τ. The obtained τ is compared with a calibration value for relating the previously measured τ and the temperature T to determine the temperature.
[0026]
For example, glass or plastics with a small amount of Tm 3+ doped as rare earth ions is prepared, and when light of 670 nm and 630 nm is incident from different directions as excitation light, it is increased by 450 nm at the intersection. Conversion luminescence occurs. On the other hand, light emission from a certain level of rare earth ions has a light emission lifetime that varies depending on the temperature. Therefore, if the light emission lifetime at each temperature is measured in advance, it can be emitted by two-wavelength excitation upconversion using this as a calibration curve. The temperature at that point can be obtained from the time change of light emission measured using a digital oscilloscope.
[0027]
Moreover, when producing crystallized glass, a small amount of Tm 3+ is doped into the glass. On the other hand, when light of 670 nm and 630 nm is incident as excitation light, 450 nm up-conversion light emission occurs at the intersection. On the other hand, since the emission spectrum from a certain level of rare earth ions has a spectrum that differs depending on the local structure, if the emission spectrum at each crystallinity is measured in advance, it is found that 2 The crystallinity at the intersection can be obtained from the spectrum obtained by measuring the light emission by wavelength excitation up-conversion with a spectroscope.
[0028]
Furthermore, in polymer molding such as injection molding, deformation due to molding and temperature distribution are important control factors in production. Therefore, a molding machine is constituted by a transparent material such as quartz, and by the method of the present invention, light from each light source of two types of wavelengths is incident on the raw material inside the molding machine from different directions from the outside of the molding machine. To. By adding a fluorescent material that shows a small amount of up-conversion to the raw material, the emission point of the fluorescent material contained in a small amount is traced three-dimensionally by image analysis, etc. In addition to the distribution, displacement due to deformation during processing can also be measured three-dimensionally.
[0029]
Furthermore, when molding metal molds such as resins, an optical fiber for the excitation laser is embedded in the mold so that a small amount of fluorescent material showing up-conversion is added to the raw material so that two types of light sources with different wavelengths can be incident from different directions. In addition, by embedding an optical fiber for sensing light emission in the mold, the temperature and displacement of the transparent agglomerates inside the mold are measured by measuring the point emission at the intersection of two types of light incident from different directions. The three-dimensional measurement can also be performed.
[0030]
【The invention's effect】
According to the method and apparatus of the present invention, the physical properties of an arbitrary point of the three-dimensional solid of the transparent aggregate can be specified in a non-contact manner, and the three-dimensional of the transparent aggregate such as glass or plastics, whether solid or liquid. Various physical information including the temperature of an arbitrary point of the solid can be detected three-dimensionally easily and quickly with high accuracy of the measurement point.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing the principle of the method of the present invention.
FIG. 2 is a graph showing the emission spectrum intensity of a rare-earth ion excited at 670 nm and 630 nm.
FIG. 4 is a conceptual diagram of a three-dimensional measurement apparatus for physical properties of a transparent aggregate according to the present invention.

Claims (4)

透明の固体および液体からなる凝集体にアップコンバージョンを示す蛍光物質を含有させ、該凝集体に2種類の波長のそれぞれの光源からの光を互いに異なる方向から交差するように入射し、該光の交点において該アップコンバージョンを示す蛍光物質をアップコンバージョンにより点発光させ、該点発光の発光特性を検知し、基準特性との比較により凝集体内部の任意の点における物性値を求めることを特徴とする透明凝集体の物性の立体的計測方法。A fluorescent substance exhibiting up-conversion is contained in an aggregate composed of a transparent solid and a liquid, and light from each light source having two types of wavelengths is incident on the aggregate so as to intersect from different directions. A fluorescent substance exhibiting the up-conversion at the intersection is point-emitted by up-conversion, the emission characteristic of the point emission is detected, and a physical property value at an arbitrary point inside the aggregate is obtained by comparison with a reference characteristic A three-dimensional measurement method for the physical properties of transparent aggregates. 該アップコンバージョンを示す蛍光物質は、その発光特性および残光特性が温度に依存性をもつものであり、凝集体内部の任意の点における温度を計測することを特徴とする請求項1記載の透明凝集体の物性の立体的計測方法。The transparent substance according to claim 1, wherein the fluorescent substance exhibiting up-conversion has temperature-dependent emission characteristics and afterglow characteristics, and the temperature at an arbitrary point inside the aggregate is measured. A three-dimensional measurement method of physical properties of aggregates. 該アップコンバージョンを示す蛍光物質は、その発光特性および残光特性が凝集体の結晶化度に依存性をもつものであり、凝集体内部の任意の点における結晶化度を計測することを特徴とする請求項1記載の透明凝集体の物性の立体的計測方法。The fluorescent substance exhibiting up-conversion is characterized in that its light emission characteristics and afterglow characteristics depend on the crystallinity of the aggregate, and the crystallinity at an arbitrary point inside the aggregate is measured. The three-dimensional measurement method for the physical properties of the transparent aggregate according to claim 1. 2種類の波長のそれぞれのパルス光源からなる光照射手段、アップコンバージョンを示す蛍光物質を含有させた透明凝集体に該2種類の波長のそれぞれのパルス光源からの光を互いに異なる方向から交差するように入射させるための手段、該2種類の波長のそれぞれのパルス光源の照射タイミングを変化させるレーザー同期信号制御手段、および該光の交点における点発光の発光特性を検知する手段とを備えたことを特徴とする凝集体内部の任意の点における物性を立体的に計測する装置。Light irradiating means comprising pulse light sources of two kinds of wavelengths and a transparent aggregate containing a fluorescent substance exhibiting upconversion so that light from the pulse light sources of the two kinds of wavelengths intersects from different directions. A laser synchronization signal control means for changing the irradiation timing of the respective pulse light sources of the two types of wavelengths, and a means for detecting the light emission characteristics of the point emission at the intersection of the lights. An apparatus for three-dimensionally measuring physical properties at an arbitrary point inside an aggregate.
JP11427599A 1999-04-21 1999-04-21 Method and apparatus for three-dimensional measurement of physical properties of transparent aggregate Expired - Fee Related JP3662440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11427599A JP3662440B2 (en) 1999-04-21 1999-04-21 Method and apparatus for three-dimensional measurement of physical properties of transparent aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11427599A JP3662440B2 (en) 1999-04-21 1999-04-21 Method and apparatus for three-dimensional measurement of physical properties of transparent aggregate

Publications (2)

Publication Number Publication Date
JP2000304699A JP2000304699A (en) 2000-11-02
JP3662440B2 true JP3662440B2 (en) 2005-06-22

Family

ID=14633759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11427599A Expired - Fee Related JP3662440B2 (en) 1999-04-21 1999-04-21 Method and apparatus for three-dimensional measurement of physical properties of transparent aggregate

Country Status (1)

Country Link
JP (1) JP3662440B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3848623B2 (en) * 2003-01-16 2006-11-22 松下電器産業株式会社 Fluorescence measuring device
JP5050140B2 (en) * 2005-03-10 2012-10-17 大日本印刷株式会社 Phosphor fine particle dispersion for three-dimensional display device, and three-dimensional display device using the same
JP5594718B2 (en) * 2006-04-25 2014-09-24 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティ オブ オクラホマ Optical surface display and method for rendering three-dimensional images
WO2017203894A1 (en) * 2016-05-23 2017-11-30 日産自動車株式会社 Display device and method for controlling display device

Also Published As

Publication number Publication date
JP2000304699A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
Xue et al. Tuning plasmonic enhancement of single nanocrystal upconversion luminescence by varying gold nanorod diameter
Buchler et al. Measuring the Quantum Efficiency of the Optical Emission<? format?> of Single Radiating Dipoles Using a Scanning Mirror
US7517144B2 (en) Method of determining the temperature in a system
US5598005A (en) Non-destructive method for determining the extent of cure of a polymerizing material and the solidification of a thermoplastic polymer based on wavelength shift of fluroescence
JPWO2008047514A1 (en) Microphase separation structure, immobilized microphase separation structure, and tunable laser oscillator, temperature sensor, and optical filter including the structure
JP3662440B2 (en) Method and apparatus for three-dimensional measurement of physical properties of transparent aggregate
Murase et al. Consistent determination of photoluminescence quantum efficiency for phosphors in the form of solution, plate, thin film, and powder
US6840669B2 (en) Methods and devices for sensing temperature and another physical parameter with a single optical probe
JP2008542748A (en) Apparatus, method, and computer program for spectroscopic measurement and analysis
Labrador-Páez et al. Excitation pulse duration response of upconversion nanoparticles and its applications
Varapnickas et al. Processes of direct laser writing 3D nano-lithography
Martins et al. An overview of luminescent primary thermometers
Varapnickas et al. Processes of laser direct writing 3D nanolithography
Perveņecka et al. An innovative approach to photolithography for optical recording of high-resolution two-dimensional structures in a negative SU8 photoresist by activation of up-conversion luminescence in Yb3+ and Tm3+ doped NaYF4 nanoparticles
WO2021125333A1 (en) Method for evaluating orientation of nanowire in transparent material, method for managing steps in which said method is used, and method for producing resin cured article
CN105336638A (en) Etching terminal detection system
JP2008046134A (en) Method of specifying laser stability of optical material, crystal selected by this method, and use of selected crystal
Itaya et al. Fluorescence characterization of ablated polymeric materials: Poly (methyl methacrylate) doped with 1‐ethylpyrene
Al-aaraji et al. Study the effect of thickness change on optical properties of Rhodamine B
Ishitobi et al. On fluorescence blinking of single molecules in polymers
Tamulaitis et al. Transient optical absorption technique to test timing properties of LYSO: Ce scintillators for the CMS Barrel Timing Layer
EP1319933A1 (en) Sensor for non-contact measurement of a parameter of the surrounding with spatial and temporal resolution and its use for determination of the mode structure of a laser beam
JP2005031076A (en) Method for quantitatively determining durability of synthetic fused quartz to pulsed laser
Vladescu et al. Optical measurements for excitation of CdTe quantum dots
Mühlig Direct and absolute absorption measurements in optical materials and coatings by laser-induced deflection (LID) technique

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees