JP3661966B2 - AFC circuit for phase diversity receiver of optical PSK signal - Google Patents

AFC circuit for phase diversity receiver of optical PSK signal Download PDF

Info

Publication number
JP3661966B2
JP3661966B2 JP00608398A JP608398A JP3661966B2 JP 3661966 B2 JP3661966 B2 JP 3661966B2 JP 00608398 A JP00608398 A JP 00608398A JP 608398 A JP608398 A JP 608398A JP 3661966 B2 JP3661966 B2 JP 3661966B2
Authority
JP
Japan
Prior art keywords
signal
frequency
optical
psk
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00608398A
Other languages
Japanese (ja)
Other versions
JPH11205241A (en
Inventor
幹夫 前田
正男 山本
浩之 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP00608398A priority Critical patent/JP3661966B2/en
Publication of JPH11205241A publication Critical patent/JPH11205241A/en
Application granted granted Critical
Publication of JP3661966B2 publication Critical patent/JP3661966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光PSK(Phase Shift Keying;位相偏移キィイング)信号を位相ダイバーシティ方式で受信するコヒ−レント光伝送用受信機の局部発振光源のAFC(Automatic Frequency Control ;自動周波数制御)回路に関し、特に、デ−タによる変調の影響を受けることなく局部発振周波数を信号光の周波数に追従させることのできるように図ったAFC回路の構成に関する。
【0002】
【従来の技術】
従来、コヒーレント光伝送の研究は高い受光感度の利点を生かした通信系のポイント・ ツー・ポイント(Point-to-Point)の大容量長距離伝送に焦点が置かれてきた。しかし、近年、光増幅器の実現により受光感度の利点は半減した。
【0003】
一方、マルチポイント・ツー・マルチポイント(Multipoint-to-Multipoint)の形態を扱う、例えば放送素材信号の放送局内の伝送には、距離は短いものの、多くの分散したスタジオや調整室間で信号を任意に伝送するために、光波の多重と光分岐を用いたシステムが有効である。このような用途に好適なコヒーレント光伝送の変調方式としては、光FSK(Frequency Shift Keying;周波数偏移キィイング)と光PSKが主に研究されている。光PSKは光FSKよりも狭い帯域幅で伝送が可能で、多重数に着目すれば光PSKの方が有利である。光PSKの検波方式には、ヘテロダイン、ホモダイン、および位相ダイバーシティの3方式がある。
【0004】
ホモダイン方式は、イメージ妨害はないが、市販の半導体LD(Laser Diode ;レーザ・ ダイオード)を光源とした場合には、搬送波再生用の光PLL(Phase-Locked Loop;位相同期ループ)構成の観点から実現が難しい。
【0005】
光BPSK(Binary Phase Shift Keying ;2相PSK)信号のコヒーレント光伝送の受信方式のうち、信号光を局発光により中間周波数に変換するへテロダイン方式においては、中間周波数信号を逓倍することで送信データによる変調成分を取り除いてから周波数弁別して局発光源に帰還するAFCが下記の論文1に報告されている。
【0006】
論文1;Alberto Bononi:“Analysis of the Automatic Frequency Control in Heterodyne Optical Receivers ”(ヘテロダイン光受信機の自動周波数制御AFCの解析),J. Lightwave Technol. Vol.10, No.6, pp.794-803(1992)。
【0007】
へテロダイン方式では中間周波数が送信データのシンボル周波数の数倍以上の高い周波数に設定されるため、信号光と局発光との周波数差(ビート周波数)が設定された中間周波数より高いか低いかの極性を含めた周波数差に対応する電圧が得られる周波数弁別器を容易に構成することができる。しかし、ヘテロダイン方式はチャンネル選択にはイメージ妨害が発生するため、光PSK信号の狭いスペクトラムの利点を生かしきれない欠点がある。
【0008】
これに対し、位相ダイバーシティ方式はホモダインの搬送波再生の問題を解決できる方式であり、位相同期が不要で、ホモダインと同程度の高密度が期待できる。しかし、中間周波数が零である位相ダイバーシティ方式では、中間周波数の信号を逓倍して変調成分を除去し、周波数差の絶対値に対応した電圧を得ることはできるが、上記の極性を知ることができない。位相ダイバーシティ受信において、周波数差が送信データのシンボル周波数の約3%以内であればBPSK信号の復調BER特性の劣化が無視できることを利用して、これを満足するような低い中心周波数で動作する周波数弁別器を用いたAFCが下記の論文2に報告されている。
【0009】
論文2;A. W. Davis :“Phase Diversity Techniques for Coherent Optical Receivers ”(コヒーレント受信機用位相ダイバーシティ技術),J. Lightwave Technol. Vol.5, NO.4, pp.561-572 (1987)。
【0010】
論文2に記載されたAFCは、周波数差を厳密には零にできない。特に、光QPSK(Quadrature Phase Shift Keying ;4相PSK)信号を復調する場合には、局発光源の周波数と信号光の周波数の差周波数は送信シンボル周波数の約0.3%以内と、BPSK信号よりも一桁厳しい特性が要求される。従来技術で中心周波数がさらに低い周波数弁別器でAFCを構成すると、送信光の周波数変動により局発光源の周波数制御の極性が反転することとなるため、その要求特性の実現は困難である。
【0011】
零を中心周波数として動作する周波数弁別器として、FSK信号の位相ダイバーシティ受信機の復調回路技術を応用することは容易に類推可能であろう。この周波数弁別器は、図2に示すように、2つの直交成分I,Qを一対の微分器41で微分して周波数差の情報を得るとともに、これら周波数差の情報と2つの直交成分I,Qとをそれぞれ一対の乗算器44でたすき掛けに乗算した信号を減算器45で減算することで、データによる変調成分を除去して前述の極性を含めた周波数差に比例した電圧を得ようとするものであり、下記の論文3に報告されており、既知の技術である。ここで、ω、Φはそれぞれ信号光と局発光との周波数差および位相差である。また、46は減算器45の出力を平滑するLPF(Low Pass Filter ;低域フィルタ)である。
【0012】
論文3;前田他;“位相ダイバーシティ方式DPSKコヒーレント光伝送実験”、信学技報、OCS96−126(1997)。
【0013】
しかし、論文3に示されたような既知の周波数弁別技術は、次節の[発明が解決しようとする課題]で述べるように、送信データ(変調データ)が周波数弁別特性に混入してAFC特性が劣化するという問題がある。
【0014】
【発明が解決しようとする課題】
図2に示す微分器41の微分の操作として、入力信号を2分配し、一方の信号を遅延させて他方の信号から引く方法が考えられる。この遅延量をτdとすると、τdを光PSK信号のシンボル周波数の逆数τsと比べて十分小さく選べば、データの変調の影響を受けにくくすることができる。しかし、そのようにすると周波数差零(同調時)における周波数弁別器の感度が小さくなるとともに、広帯域な差動増幅器が必要となるという問題がある。この反対に、遅延量τdをτs程度に大きく選ぶと、周波数弁別器の感度は高くなるが、隣接シンボル間で位相が変化する時にAFC回路の出力がω(信号光と局発光との周波数差)によらず零となってしまうという問題がある。これら問題点を図3を用いて以下で詳述する。
【0015】
図3は図2の微分器41を遅延線42と差動増幅器43で構成した周波数弁別器を示す。47は遅延量τd/2の遅延線47である。ここで、時刻t+τdにおける信号光の位相をψとする。I、Q信号は一対の遅延線47によりτd/2だけ遅延してから乗算器44で乗算するものとし、時刻t+τd/2における位相をθとする。この周波数弁別器の出力信号f(ω)は下記の式(1)で示される。
【0016】
【数1】

Figure 0003661966
【0017】
上式(1)において、隣接するシンボル間で位相変化がない場合には、ψ−φとcos項の括弧内は共に零となるので、周波数弁別特性は下記の式(2)となる。
【0018】
【数2】
Figure 0003661966
【0019】
ところが、位相変化がπの場合にはt+τdからt+τsの間では上式(2)と同じであるが、tからt+τdの間では上式(1)のcosの括弧内がπ/2または−π/2となるため、f(ω)が零となり、上式(2)のAFC特性が劣化する。位相変化がπ/2の場合には、tからt+τdの間ではcos項の括弧内はπ/2または−π/2とはならないため、変調データが周波数弁別特性に混入してAFC特性が劣化する。一方、τdをτsと比べて小さくすれば、f(ω)が零となってしまう時間率を減らせるので、周波数弁別器の出力をLPF46で平滑することで劣化の程度を抑えることはできるが、局部発光源と信号光の周波数差を零とすることはできない。また、前述のように、同調時における感度低下と広帯域な差動増幅器が必要となるという問題がある。
【0020】
本発明は、上述のような課題を解決するために成されたもので、その目的は光PSK信号の位相ダイバーシティ受信機用AFC回路において変調データによるAFC特性の劣化をなくすことにある。
【0021】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、光PSK変調された光波を位相ダイバーシティ方式により遅延検波して復調するコヒーレント光伝送の受信機の局発光源の発振周波数を信号光の周波数に追従させるためのAFC回路において、遅延線と差動増幅器、乗算器、減算器を用いて直交する2つの中間周波数信号から該中間周波数信号の周波数差に対応した電圧を得る周波数弁別器と、前記2つの中間周波数信号を遅延検波して得たPSK復調信号から隣接シンボル間で位相変化が無い場合はサンプル動作、有る場合はホールド動作となるようなキィ信号を生成するキィ信号発生回路と、前記キィ信号により前記周波数弁別器の出力信号に対して隣接シンボル間で位相変化が無い場合はサンプル動作、有る場合はホールド動作となる選択制御を行って該選択結果を前記局発光源に帰還させるサンプルホールド回路とを組み合わせたことを特徴とする。
【0022】
ここで、前記PSKがBPSKであるとすることができる。
【0023】
また、前記PSKがQPSKであるとすることができる。
【0024】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を詳細に説明する。
【0025】
(第1の実施形態)
最初に、本発明の一実施形態におけるBPSK信号の受信機の構成を図1に示す。ここで、1は位相ダイバーシティ方式の光BPSK信号の受信機であり、下記の構成要素2〜15を用いて、送信機側(図示しない)で光BPSK変調された光BPSK信号を位相ダイバーシティ方式により遅延検波してBPSK変調以前の原信号に復調する。2は光BPSK変調されたBPSK信号光(入力信号光)を導入する入力光ファイバであり、例えば偏波保存光ファイバを用いることができる。3は90°光ハイブリッドであり、5の局発光源から供給される無変調の局発光と上記入力信号光とからそれらを90°偏移した光波を生成する。4は平衡型光受光器であり、例えばPIN- PD(ピン・フォトダイオード)からなり、光ハイブリット3の直交した出力光を受光して、局発光源5により周波数変換された直交した2つの中間周波数信号を出力する。
【0026】
6はそれぞれの平衡型光受光器4から供給される上記中間周波数信号I,Qを遅延量τsで遅延する遅延線である。7は乗算器であり、それぞれの平衡型光受光器4から供給される上記中間周波数信号I,Qとその信号を遅延線6でτs遅延した信号とを乗算する。乗算器7としては、例えば上記文献3で開示されたような比較的良好な直線性が得られるGilbert Cell型広帯域乗算器を用いることができる。8は加算器であり、両乗算器7の出力を加算する。9は識別判定器であり、加算器8から供給される信号から位相変化0の場合を識別することにより11のBPSK復調信号を生成する。
【0027】
10は図4のタイミングチャートに示す信号処理動作を行うキィ信号発生器であり、2つの中間周波数信号を遅延検波して得たBPSK復調信号11から隣接シンボル間で位相変化が無い場合はサンプル動作、有る場合はホールド動作となるようなキィ信号10aを生成する。
【0028】
12は位相ダイバーシティ用受信機1の局発光源5の発振周波数を信号光の周波数に追従させるためのAFC回路であり、周波数弁別器13、サンプルホールド回路14、LPF15、および局発光源5を含む。周波数弁別器13は図3で上述した構成の周波数弁別器であり、遅延線42、47と差動増幅器43、乗算器44、減算器45およびLPF46を用いて直交する2つの中間周波数信号I,Qからその中間周波数信号の周波数差に対応した電圧の信号を得る。サンプルホールド回路14は、周波数弁別器13と局発光源5の間に挿入されて、上記キィ信号10aのレベルに応じて、周波数弁別器13の出力信号に対して隣接シンボル間で位相変化が無い場合はサンプル動作、有る場合はホールド動作となる選択制御を行って、その選択結果をLPF15を介して局発光源5に帰還させる。LPF15はサンプルホールド回路14と局発発光源5との間に挿入されて、サンプルホールド回路14の出力を平滑する。局発光源5は送信機と同じ周波数特性を持つ。
【0029】
次に、受信機1の全体の動作を信号の流れに従って説明する。
【0030】
入力光ファイバ1を通って入力する光BPSK信号は、90°光ハイブリット3を通って2分されると共に、一方は90°偏移され、両者はそれぞれの平衡型受光器4に受光される。受光器4は信号光を局発光源5の無変調の局発光と共に受光すると、信号光は両者のうなりの周波数(ビート周波数)のI、Qに変換される。このように受光器4で直交検波したIとQには、交互に信号が現れるので、両者I、Qを遅延量τsの遅延線6と乗算器7とを用いて遅延検波して加算器8により加算することで、BPSK信号を復調できる。加算器8の出力は識別判定器9を通ってBPSK復調信号11となり、受信機1から出力される。
【0031】
さらに、上記信号I、QとBPSK復調信号11はAFC回路12の周波数弁別器13に供給される。また、BPSK復調信号11を基にキィ信号発生器10で生成されたキィ信号10aはAFC回路12のサンプルホールド回路14に供給される。
【0032】
図4はBPSK復調信号11とキィ信号10aとの対応を示す。本発明の特徴は、BPSK復調信号11の位相変化の有無により周波数弁別器13の出力を選択制御することにある。すなわち、光BPSK変調波の遅延検波による復調信号11から、図4に示すような位相変化0の場合のみ、識別判定器9の識別判定のタイミングでサンプル動作が能動状態となるキィ信号10aをキィ信号発生器10で生成する。このキィ信号10aを周波数弁別器13の後段のサンプルホールド回路14に加える。そして、サンプルホールド回路14で選択制御された周波数弁別信号をLPF15で平滑して局発光源5の電流に帰還する。位相変化がπの時にはサンプルホールド回路14の出力は零にはならないため、同調時に高い感度を得るためにはτdはτsと等しく選ぶと有利である。
【0033】
上述のように、本実施形態では、遅延検波したBPSK復調信号11から位相変化の無い場合のみ能動となるキィ信号10aを作り、サンプルホールド回路14で周波数弁別器13の出力をキィ信号10aを基にサンプルホールドしてから局発光源5に帰還する選択制御型のAFCを行っているので、変調データによるAFC特性の劣化をなくすことができ、局部発光源5の光波と信号光の周波数差を零にすることができる。
【0034】
(第2の実施形態)
次に、本発明の他の実施形態として位相ダイバーシティ方式の光QPSK信号の受信機の構成を図5に示す。ここで、16は位相ダイバーシティ方式の光QPSK信号の受信機であり、下記の構成要素17〜32を含む。17は図1の2と同様の入力光ファイバ、18は図1の3と同様の90°光ハイブリッドである。19は図1の4と同様の平衡型光受光器であって全体で2個あり、20の局発光源により周波数変換された直交した2つの中間周波数信号I、Qを出力する。21は図1の6と同様の遅延量τsの遅延線であって全体で4個あり、22は図1の7と同様の乗算器であって全体で4個ある。23は加算器、24は減算器であり、図5に示すようにそれぞれ2個づつ直列的に接続されている。25は図1の9と同様の識別判定器であって全体で2個あり、26は論理素子、27は図1の10と同じキィ信号発生器、28はQPSKの復調信号である。論理素子26は一対の識別判別器25からそれぞれ出力される一対のQPSK復調信号28に対して論理演算を下記のように行って、その演算結果をキィ信号発生器27に出力する。
【0035】
29は図1の12と同様の構成と機能を有するAFC回路であり、図3で述べた周波数弁別器30、サンプルホールド回路31、LPF32、および局発光源20を有する。
【0036】
本発明のAFC方式は許容周波数差がBPSKより一桁厳しいQPSKでは特に有効である。図5の28のQPSKの復調信号I′、Q′は下記の式(3)のように表わすことができる。
【0037】
【数3】
Figure 0003661966
【0038】
ここで、△Φは0、π/2、π、3π/2を取り得る。位相変化のない場合(△Φ=0)に図4と同じキィ信号を得るためには、論理素子26の入出力の関係をI′が正、Q′が負の時のみ出力が正とすれば良い。
【0039】
QPSKでは位相変化が起こらない確率はBPSKの半分となるので、33のキィ信号の数も半分となるが、キィ信号間でのビート周波数の変動は無視できる程度に小さいと考えられる。
【0040】
【発明の効果】
以上説明したように、本発明によれば、遅延検波により復調された信号をAFCのサンプルホールド回路に帰還し、位相変化が無かった場合のみ、識別判定のタイミングでサンプル動作を行わせるので、変調データによるAFC特性の劣化をなくすことができる。
【0041】
また、本発明は許容周波数差がBPSKより一桁厳しいQPSKでは特に有効である。
【図面の簡単な説明】
【図1】本発明の一実施形態における光BPSK信号の受信機の構成を示すブロック図である。
【図2】従来例における光PSK信号の位相ダイバーシティ方式受信機の周波数弁別器の原理を示すブロック図である。
【図3】本発明の実施形態において用いた微分器を遅延線と差動増幅器で構成した周波数弁別器を示すブロック図である。
【図4】本発明の一実施形態の図1で生成されるBPSK復調信号とキィ信号との対応を示す波形図である。
【図5】本発明の他の実施形態における光QPSK信号の受信機の構成を示すブロック図である。
【符号の説明】
1 位相ダイバーシティ方式の光BPSK信号の受信機
2 入力光ファイバ
3 90°光ハイブリッド
4 平衡型光受光器
5 局発光源
6 遅延量τsの遅延線
7 乗算器
8 加算器
9 識別判定器
10 キィ信号発生器
11 BPSK復調信号
12 AFC回路
13 周波数弁別器
14 サンプルホールド回路
15 LPF
16 位相ダイバーシティ方式の光QPSK信号の受信機
17 入力光ファイバ
18 90°光ハイブリッド
19 平衡型光受光器
20 局発光源
21 遅延量τsの遅延線
22 乗算器
23 加算器
24 減算器
25 識別判定器
26 論理素子
27 キィ信号発生器
28 QPSKの復調信号
29 AFC回路
30 周波数弁別器
31 サンプルホールド回路
32 LPF
41 微分器
42 遅延線
43 差動増幅器
44 乗算器
45 減算器
46 LPF
47 遅延線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an AFC (Automatic Frequency Control) circuit of a local oscillation light source of a coherent optical transmission receiver that receives an optical PSK (Phase Shift Keying) signal by a phase diversity method, In particular, the present invention relates to the configuration of an AFC circuit designed to allow the local oscillation frequency to follow the frequency of signal light without being affected by modulation by data.
[0002]
[Prior art]
Conventionally, research on coherent optical transmission has been focused on large-capacity long-distance transmission of point-to-point communication systems that take advantage of high light reception sensitivity. However, in recent years, the advantages of light receiving sensitivity have been halved by the realization of optical amplifiers.
[0003]
On the other hand, multipoint-to-multipoint, for example, transmission of broadcast material signals within a broadcasting station, although the distance is short, signals are transmitted between many distributed studios and adjustment rooms. A system using optical wave multiplexing and optical branching is effective for arbitrary transmission. Optical FSK (Frequency Shift Keying) and optical PSK are mainly studied as modulation methods suitable for such applications for coherent optical transmission. The optical PSK can be transmitted with a narrower bandwidth than the optical FSK, and the optical PSK is more advantageous when paying attention to the number of multiplexing. There are three optical PSK detection methods: heterodyne, homodyne, and phase diversity.
[0004]
The homodyne method does not interfere with the image, but when a commercially available semiconductor LD (Laser Diode) is used as the light source, from the viewpoint of the configuration of an optical PLL (Phase-Locked Loop) for carrier wave reproduction. Realization is difficult.
[0005]
Of the reception systems for coherent optical transmission of optical BPSK (Binary Phase Shift Keying; two-phase PSK) signals, in the heterodyne system that converts signal light to an intermediate frequency by local light, transmission data is multiplied by multiplying the intermediate frequency signal. The AFC which removes the modulation component due to the above and then returns to the local light source after frequency discrimination is reported in the following paper 1.
[0006]
Paper 1: Alberto Bononi: “Analysis of the Automatic Frequency Control in Heterodyne Optical Receivers”, J. Lightwave Technol. Vol.10, No.6, pp.794-803 (1992).
[0007]
In the heterodyne method, the intermediate frequency is set to a frequency that is several times higher than the symbol frequency of the transmission data, so whether the frequency difference (beat frequency) between the signal light and the local light is higher or lower than the set intermediate frequency. A frequency discriminator capable of obtaining a voltage corresponding to a frequency difference including polarity can be easily configured. However, the heterodyne system has a drawback that image interference occurs in channel selection, so that the advantage of the narrow spectrum of the optical PSK signal cannot be fully utilized.
[0008]
On the other hand, the phase diversity method is a method that can solve the problem of homodyne carrier recovery, and does not require phase synchronization and can be expected to have a high density similar to that of homodyne. However, in the phase diversity method in which the intermediate frequency is zero, it is possible to obtain a voltage corresponding to the absolute value of the frequency difference by multiplying the signal of the intermediate frequency to remove the modulation component, but know the above polarity. Can not. In the phase diversity reception, if the frequency difference is within about 3% of the symbol frequency of the transmission data, the frequency that operates at a low center frequency that satisfies this can be utilized by utilizing the fact that the demodulation BER characteristics of the BPSK signal can be ignored. AFC using a discriminator is reported in the following paper 2.
[0009]
Paper 2: AW Davis: “Phase Diversity Techniques for Coherent Optical Receivers”, J. Lightwave Technol. Vol.5, NO.4, pp.561-572 (1987).
[0010]
The AFC described in the paper 2 cannot strictly reduce the frequency difference to zero. In particular, when demodulating an optical QPSK (Quadrature Phase Shift Keying; 4-phase PSK) signal, the difference between the frequency of the local light source and the frequency of the signal light is within about 0.3% of the transmission symbol frequency. A characteristic that is one order of magnitude severer than that is required. If the AFC is configured with a frequency discriminator having a lower center frequency in the prior art, the frequency control polarity of the local light source is inverted due to the frequency variation of the transmitted light, and it is difficult to realize the required characteristics.
[0011]
As a frequency discriminator operating with zero as the center frequency, it can be easily analogized to apply the demodulation circuit technology of the phase diversity receiver of the FSK signal. As shown in FIG. 2, the frequency discriminator differentiates two orthogonal components I and Q by a pair of differentiators 41 to obtain information on the frequency difference, and information on these frequency differences and the two orthogonal components I and The subtractor 45 subtracts the signal obtained by multiplying the Q by the pair of multipliers 44 to subtract the signal by the subtractor 45, thereby obtaining a voltage proportional to the frequency difference including the polarity described above. It is reported in the following paper 3 and is a known technique. Here, ω and Φ are a frequency difference and a phase difference between the signal light and the local light, respectively. Reference numeral 46 denotes an LPF (Low Pass Filter) that smoothes the output of the subtracter 45.
[0012]
Paper 3: Maeda et al., “Phase Diversity DPSK Coherent Optical Transmission Experiment”, IEICE Technical Report, OCS 96-126 (1997).
[0013]
However, the known frequency discrimination technique as shown in the paper 3 is that the transmission data (modulation data) is mixed into the frequency discrimination characteristics and the AFC characteristics are not improved as described in [Problems to be solved by the invention] in the next section. There is a problem of deterioration.
[0014]
[Problems to be solved by the invention]
As an operation of differentiation of the differentiator 41 shown in FIG. 2, a method of dividing the input signal into two, delaying one signal and subtracting it from the other signal is conceivable. When this delay amount is τd, if τd is selected to be sufficiently smaller than the reciprocal τs of the symbol frequency of the optical PSK signal, it can be made less susceptible to the influence of data modulation. However, if this is done, the sensitivity of the frequency discriminator at a zero frequency difference (during tuning) is reduced, and a wideband differential amplifier is required. On the contrary, when the delay amount τd is selected to be as large as τs, the sensitivity of the frequency discriminator increases, but when the phase changes between adjacent symbols, the output of the AFC circuit is ω (the frequency difference between the signal light and the local light). There is a problem that it becomes zero regardless of. These problems will be described in detail below with reference to FIG.
[0015]
FIG. 3 shows a frequency discriminator in which the differentiator 41 of FIG. 2 is constituted by a delay line 42 and a differential amplifier 43. Reference numeral 47 denotes a delay line 47 having a delay amount τd / 2. Here, the phase of the signal light at time t + τd is ψ. The I and Q signals are delayed by τd / 2 by a pair of delay lines 47 and then multiplied by a multiplier 44, and the phase at time t + τd / 2 is θ. The output signal f (ω) of this frequency discriminator is expressed by the following equation (1).
[0016]
[Expression 1]
Figure 0003661966
[0017]
In the above equation (1), when there is no phase change between adjacent symbols, both ψ-φ and the parentheses in the cos term are zero, so the frequency discrimination characteristic is the following equation (2).
[0018]
[Expression 2]
Figure 0003661966
[0019]
However, when the phase change is π, it is the same as the above equation (2) between t + τd and t + τs, but between t and t + τd, the parenthesis of cos in the above equation (1) is π / 2 or −π Therefore, f (ω) becomes zero, and the AFC characteristic of the above equation (2) deteriorates. When the phase change is π / 2, since the parenthesis in the cos term is not π / 2 or −π / 2 between t and t + τd, the modulation data is mixed into the frequency discrimination characteristic and the AFC characteristic is deteriorated. To do. On the other hand, if τd is made smaller than τs, the time rate at which f (ω) becomes zero can be reduced. Therefore, the degree of deterioration can be suppressed by smoothing the output of the frequency discriminator with the LPF 46. The frequency difference between the local light source and the signal light cannot be made zero. In addition, as described above, there is a problem that sensitivity is lowered during tuning and a wideband differential amplifier is required.
[0020]
The present invention has been made to solve the above-described problems, and an object thereof is to eliminate deterioration of AFC characteristics due to modulation data in an AFC circuit for a phase diversity receiver of an optical PSK signal.
[0021]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 uses the oscillation frequency of the local light source of a coherent optical transmission receiver that demodulates an optical wave modulated by optical PSK modulation using a phase diversity method as the frequency of the signal light. In the AFC circuit for tracking, a frequency discriminator that obtains a voltage corresponding to a frequency difference between the intermediate frequency signals from two orthogonal intermediate frequency signals using a delay line, a differential amplifier, a multiplier, and a subtractor; A key signal generating circuit for generating a key signal that performs a sample operation when there is no phase change between adjacent symbols from a PSK demodulated signal obtained by delay detection of two intermediate frequency signals, and a hold operation when there is any; When there is no phase change between adjacent symbols with respect to the output signal of the frequency discriminator by the key signal, a sampling operation is selected, and if there is, a selection operation is performed. Performs control, characterized in that the combination of the sample and hold circuit for feeding back the selection result to the local light source.
[0022]
Here, the PSK may be BPSK.
[0023]
The PSK may be QPSK.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0025]
(First embodiment)
First, FIG. 1 shows the configuration of a BPSK signal receiver according to an embodiment of the present invention. Here, reference numeral 1 denotes a receiver for a phase diversity optical BPSK signal. By using the following components 2 to 15, an optical BPSK signal optically BPSK modulated on the transmitter side (not shown) is converted by the phase diversity method. Delay detection is performed to demodulate the original signal before BPSK modulation. Reference numeral 2 denotes an input optical fiber for introducing optical BPSK-modulated BPSK signal light (input signal light). For example, a polarization maintaining optical fiber can be used. Reference numeral 3 denotes a 90 ° optical hybrid, which generates light waves obtained by shifting them by 90 ° from unmodulated local light supplied from the local light source 5 and the input signal light. Reference numeral 4 denotes a balanced optical receiver, which is composed of, for example, a PIN-PD (pin photodiode), receives the orthogonal output light of the optical hybrid 3, and converts the two orthogonally frequency converted by the local light source 5. Output frequency signal.
[0026]
Reference numeral 6 denotes a delay line for delaying the intermediate frequency signals I and Q supplied from the respective balanced optical receivers 4 by a delay amount τs. A multiplier 7 multiplies the intermediate frequency signals I and Q supplied from the respective balanced optical receivers 4 and signals obtained by delaying the signals by a delay line 6 by τs. As the multiplier 7, for example, a Gilbert Cell type wideband multiplier that can obtain relatively good linearity as disclosed in the above-mentioned document 3 can be used. An adder 8 adds the outputs of both multipliers 7. Reference numeral 9 denotes an identification / determination unit, which generates 11 BPSK demodulated signals by identifying the case of phase change 0 from the signal supplied from the adder 8.
[0027]
A key signal generator 10 performs the signal processing operation shown in the timing chart of FIG. 4, and performs a sample operation when there is no phase change between adjacent symbols from the BPSK demodulated signal 11 obtained by delay detection of two intermediate frequency signals. If there is, the key signal 10a is generated so that the hold operation is performed.
[0028]
Reference numeral 12 denotes an AFC circuit for causing the oscillation frequency of the local light source 5 of the phase diversity receiver 1 to follow the frequency of the signal light, and includes the frequency discriminator 13, the sample hold circuit 14, the LPF 15, and the local light source 5. . The frequency discriminator 13 is a frequency discriminator having the configuration described above with reference to FIG. 3, and includes two intermediate frequency signals I, Q, which are orthogonal to each other using delay lines 42 and 47, a differential amplifier 43, a multiplier 44, a subtractor 45 and an LPF 46. A signal having a voltage corresponding to the frequency difference of the intermediate frequency signal is obtained from Q. The sample hold circuit 14 is inserted between the frequency discriminator 13 and the local light source 5, and there is no phase change between adjacent symbols with respect to the output signal of the frequency discriminator 13 according to the level of the key signal 10a. In this case, selection control is performed such that a sampling operation is performed, and a hold operation is performed if there is, and the selection result is fed back to the local light source 5 via the LPF 15. The LPF 15 is inserted between the sample hold circuit 14 and the local light emission source 5 to smooth the output of the sample hold circuit 14. The local light source 5 has the same frequency characteristics as the transmitter.
[0029]
Next, the overall operation of the receiver 1 will be described according to the signal flow.
[0030]
The optical BPSK signal input through the input optical fiber 1 is divided into two through the 90 ° optical hybrid 3 and one is shifted by 90 °, and both are received by the respective balanced light receivers 4. When the light receiver 4 receives the signal light together with the unmodulated local light of the local light source 5, the signal light is converted into I and Q of the beat frequency of both. Thus, since signals appear alternately in I and Q that have been orthogonally detected by the light receiver 4, both I and Q are subjected to delay detection using the delay line 6 and the multiplier 7 of the delay amount τs, and the adder 8. BPSK signal can be demodulated. The output of the adder 8 passes through the discrimination / determination unit 9 to become a BPSK demodulated signal 11 and is output from the receiver 1.
[0031]
Further, the signals I and Q and the BPSK demodulated signal 11 are supplied to the frequency discriminator 13 of the AFC circuit 12. The key signal 10 a generated by the key signal generator 10 based on the BPSK demodulated signal 11 is supplied to the sample hold circuit 14 of the AFC circuit 12.
[0032]
FIG. 4 shows the correspondence between the BPSK demodulated signal 11 and the key signal 10a. A feature of the present invention resides in that the output of the frequency discriminator 13 is selectively controlled depending on whether or not the phase of the BPSK demodulated signal 11 is changed. That is, the key signal 10a in which the sampling operation is activated at the timing of the discrimination determination of the discrimination determiner 9 only from the demodulated signal 11 by the delay detection of the optical BPSK modulated wave as shown in FIG. It is generated by the signal generator 10. This key signal 10a is applied to the sample hold circuit 14 at the subsequent stage of the frequency discriminator 13. The frequency discrimination signal selected and controlled by the sample and hold circuit 14 is smoothed by the LPF 15 and fed back to the current of the local light source 5. Since the output of the sample and hold circuit 14 does not become zero when the phase change is π, it is advantageous to select τd equal to τs in order to obtain high sensitivity during tuning.
[0033]
As described above, in the present embodiment, a key signal 10a that is active only when there is no phase change is generated from the delay-detected BPSK demodulated signal 11, and the output of the frequency discriminator 13 is based on the key signal 10a by the sample and hold circuit 14. Since the selective control type AFC is performed to return to the local light source 5 after being sampled and held, the deterioration of the AFC characteristic due to the modulation data can be eliminated, and the frequency difference between the light wave of the local light source 5 and the signal light can be reduced. Can be zero.
[0034]
(Second Embodiment)
Next, FIG. 5 shows the configuration of a phase diversity optical QPSK signal receiver as another embodiment of the present invention. Here, reference numeral 16 denotes a phase diversity optical QPSK signal receiver, which includes the following components 17-32. 17 is an input optical fiber similar to 2 in FIG. 1, and 18 is a 90 ° optical hybrid similar to 3 in FIG. Reference numeral 19 denotes a balanced optical receiver similar to 4 in FIG. 1, and there are two in total, and outputs two orthogonal intermediate frequency signals I and Q that are frequency-converted by 20 local light sources. Reference numeral 21 denotes a delay line having a delay amount τs similar to 6 in FIG. 1, and there are four as a whole. Reference numeral 22 denotes a multiplier similar to 7 in FIG. Reference numeral 23 denotes an adder, and 24 denotes a subtracter, and two are connected in series as shown in FIG. 25 is a total of two discriminating / determining units similar to 9 in FIG. 1, 26 is a logic element, 27 is the same key signal generator as 10 in FIG. 1, and 28 is a demodulated signal of QPSK. The logic element 26 performs a logical operation on the pair of QPSK demodulated signals 28 output from the pair of identification discriminators 25 as follows, and outputs the calculation result to the key signal generator 27.
[0035]
29 is an AFC circuit having the same configuration and function as 12 in FIG. 1, and includes the frequency discriminator 30, the sample hold circuit 31, the LPF 32, and the local light source 20 described in FIG.
[0036]
The AFC system of the present invention is particularly effective in QPSK where the allowable frequency difference is one order of magnitude more severe than that of BPSK. The demodulated signals I ′ and Q ′ of 28 QPSK in FIG. 5 can be expressed as the following equation (3).
[0037]
[Equation 3]
Figure 0003661966
[0038]
Here, ΔΦ can be 0, π / 2, π, 3π / 2. In order to obtain the same key signal as in FIG. 4 when there is no phase change (ΔΦ = 0), the output of the logic element 26 should be positive only when I ′ is positive and Q ′ is negative. It ’s fine.
[0039]
In QPSK, the probability that a phase change does not occur is half that of BPSK, so the number of 33 key signals is also halved, but the fluctuation of the beat frequency between the key signals is considered to be negligibly small.
[0040]
【The invention's effect】
As described above, according to the present invention, the signal demodulated by the delay detection is fed back to the AFC sample and hold circuit, and only when there is no phase change, the sampling operation is performed at the timing of discrimination determination. Degradation of AFC characteristics due to data can be eliminated.
[0041]
The present invention is particularly effective in QPSK where the allowable frequency difference is one order of magnitude more severe than that of BPSK.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of an optical BPSK signal receiver according to an embodiment of the present invention.
FIG. 2 is a block diagram showing the principle of a frequency discriminator of a phase diversity receiver of an optical PSK signal in a conventional example.
FIG. 3 is a block diagram showing a frequency discriminator in which a differentiator used in the embodiment of the present invention is configured by a delay line and a differential amplifier.
FIG. 4 is a waveform diagram showing the correspondence between the BPSK demodulated signal and the key signal generated in FIG. 1 according to the embodiment of the present invention.
FIG. 5 is a block diagram showing a configuration of an optical QPSK signal receiver according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Receiver of optical diversity BPSK signal 2 Input optical fiber 3 90 ° optical hybrid 4 Balanced optical receiver 5 Local light source 6 Delay line τs delay line 7 Multiplier 8 Adder 9 Discriminator / determiner 10 Key signal Generator 11 BPSK demodulated signal 12 AFC circuit 13 Frequency discriminator 14 Sample hold circuit 15 LPF
16 Phase diversity optical QPSK signal receiver 17 Input optical fiber 18 90 ° optical hybrid 19 Balanced optical receiver 20 Local light source 21 Delay line τs delay line 22 Multiplier 23 Adder 24 Subtractor 25 Discriminator 26 Logic element 27 Key signal generator 28 QPSK demodulated signal 29 AFC circuit 30 Frequency discriminator 31 Sample hold circuit 32 LPF
41 Differentiator 42 Delay Line 43 Differential Amplifier 44 Multiplier 45 Subtractor 46 LPF
47 Delay line

Claims (3)

光PSK変調された光波を位相ダイバーシティ方式により遅延検波して復調するコヒーレント光伝送の受信機の局発光源の発振周波数を信号光の周波数に追従させるためのAFC回路において、
遅延線と差動増幅器、乗算器、減算器を用いて直交する2つの中間周波数信号から該中間周波数信号の周波数差に対応した電圧を得る周波数弁別器と、
前記2つの中間周波数信号を遅延検波して得たPSK復調信号から隣接シンボル間で位相変化が無い場合はサンプル動作、有る場合はホールド動作となるようなキィ信号を生成するキィ信号発生回路と、
前記キィ信号により前記周波数弁別器の出力信号に対して隣接シンボル間で位相変化が無い場合はサンプル動作、有る場合はホールド動作となる選択制御を行って該選択結果を前記局発光源に帰還させるサンプルホールド回路と
を組み合わせたことを特徴とする光PSK信号の位相ダイバーシティ受信機用AFC回路。
In an AFC circuit for making the oscillation frequency of a local light source of a coherent optical transmission receiver that demodulates optical PSK-modulated light waves by delay detection by a phase diversity method, follow the frequency of the signal light,
A frequency discriminator that obtains a voltage corresponding to the frequency difference between the intermediate frequency signals from two orthogonal frequency signals using a delay line and a differential amplifier, a multiplier, and a subtractor;
A key signal generating circuit that generates a key signal that performs a sample operation when there is no phase change between adjacent symbols from a PSK demodulated signal obtained by delay detection of the two intermediate frequency signals, and a hold operation when there is a phase change;
When there is no phase change between adjacent symbols with respect to the output signal of the frequency discriminator by the key signal, selection control is performed such that a sampling operation is performed, and if there is a holding operation, the selection result is fed back to the local light source. An AFC circuit for a phase diversity receiver of an optical PSK signal, which is combined with a sample hold circuit.
前記PSKがBPSKであることを特徴とする請求項1に記載のAFC回路。The AFC circuit according to claim 1, wherein the PSK is BPSK. 前記PSKがQPSKであることを特徴とする請求項1に記載のAFC回路。The AFC circuit according to claim 1, wherein the PSK is QPSK.
JP00608398A 1998-01-14 1998-01-14 AFC circuit for phase diversity receiver of optical PSK signal Expired - Fee Related JP3661966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00608398A JP3661966B2 (en) 1998-01-14 1998-01-14 AFC circuit for phase diversity receiver of optical PSK signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00608398A JP3661966B2 (en) 1998-01-14 1998-01-14 AFC circuit for phase diversity receiver of optical PSK signal

Publications (2)

Publication Number Publication Date
JPH11205241A JPH11205241A (en) 1999-07-30
JP3661966B2 true JP3661966B2 (en) 2005-06-22

Family

ID=11628663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00608398A Expired - Fee Related JP3661966B2 (en) 1998-01-14 1998-01-14 AFC circuit for phase diversity receiver of optical PSK signal

Country Status (1)

Country Link
JP (1) JP3661966B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359964B (en) * 2007-07-31 2011-06-15 富士通株式会社 Frequency bias monitoring apparatus and light coherent receiver
CN101388729B (en) * 2007-09-14 2012-05-09 富士通株式会社 Phase unbalance monitoring device, amplitude unbalance monitoring device and device using them
EP3798593A1 (en) * 2008-02-21 2021-03-31 Intuitive Surgical Operations, Inc. High precision wavelength measurement and control of a tunable laser
WO2012117951A1 (en) * 2011-03-01 2012-09-07 日本電気株式会社 Optical receiver and optical receiving method
JP6209853B2 (en) * 2013-05-01 2017-10-11 富士通オプティカルコンポーネンツ株式会社 Optical communication system, optical transmitter, and optical receiver

Also Published As

Publication number Publication date
JPH11205241A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
US7346279B1 (en) Optical transceiver using heterodyne detection and a transmitted reference clock
US8036541B2 (en) Coherent optical receiver
US5222103A (en) Differential quadrature phase shift keying encoder for subcarrier systems
EP0329186B1 (en) Polarization diversity optical receiver for coherent optical communication
US7218850B2 (en) Apparatus and method for monitoring signal-to-noise ratio in optical transmission systems
JP3661966B2 (en) AFC circuit for phase diversity receiver of optical PSK signal
JP5598958B2 (en) Dividing optical phase tracking demodulator
JPS59104847A (en) Radio communicating system
CN113114377B (en) QPSK signal frequency offset estimation method for spatial coherent laser communication
EP1081870A1 (en) Detection of noise in a frequency demodulated FM-audio broadcast signal
EP0484914B1 (en) Demodulator and method for demodulating digital signals modulated by a minimum shift keying
US6704375B1 (en) Device for the homodyne reception of optically phase-keyed signals
US7388902B2 (en) Method for receiving spectrum spreading signals with frequency shift correction
JP2017175326A (en) Digital coherent receiver, optical space communication system, and doppler shift capturing method thereof
JPH1141207A (en) System and method for data multiplex transmission in optical psk coherent optical transmission
CN115441959A (en) Coherent optical communication homodyne demodulation carrier synchronization recovery method insensitive to line width
US6704344B1 (en) Broad-brand MPSK spread spectrum communications receiver with carrier recovery and tracking using correlation techniques
US6625204B1 (en) Synchronization and bit detection in a single spreading sequence SAMA receiver
JPH09149010A (en) Diversity device
US11838057B2 (en) Optical communication using double sideband suppressed carrier modulation
JPH0522354A (en) Optical communication system
US6246730B1 (en) Method and arrangement for differentially detecting an MPSK signal using a plurality of past symbol data
JPH1093527A (en) Carrier regeneration circuit
JP3310545B2 (en) Spread spectrum demodulator and spread spectrum communication apparatus using the same
KR19980015798A (en) Carrier recovery apparatus of quadrature phase shift demodulator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees