JP3661955B2 - Heat exchanger for liquid heating and manufacturing method thereof - Google Patents

Heat exchanger for liquid heating and manufacturing method thereof Download PDF

Info

Publication number
JP3661955B2
JP3661955B2 JP32672995A JP32672995A JP3661955B2 JP 3661955 B2 JP3661955 B2 JP 3661955B2 JP 32672995 A JP32672995 A JP 32672995A JP 32672995 A JP32672995 A JP 32672995A JP 3661955 B2 JP3661955 B2 JP 3661955B2
Authority
JP
Japan
Prior art keywords
heat exchange
exchange element
main
sub
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32672995A
Other languages
Japanese (ja)
Other versions
JPH09166393A (en
Inventor
俊也 岡野
幹雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Industrial Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Takagi Industrial Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Industrial Co Ltd, Tokyo Gas Co Ltd filed Critical Takagi Industrial Co Ltd
Priority to JP32672995A priority Critical patent/JP3661955B2/en
Publication of JPH09166393A publication Critical patent/JPH09166393A/en
Application granted granted Critical
Publication of JP3661955B2 publication Critical patent/JP3661955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液体を加熱するための熱交換器とこの製造方法に関するものである。
【0002】
【従来の技術】
従来、浴槽の湯水を加熱するための風呂釜や、蒸気発生装置、そして図19に示すような沸騰温度が異なる2液の混合体の液体分離装置101などに用いられる熱交換器には、通常図20〜図24に示されるような構造の熱交換素子102が使用されている。この熱交換素子102は、同一形状の熱交換素子102を並列させると共に、連絡通路121により複数連結させて熱交換器を構成し、これを燃焼室107の排気通路105内に位置させてバーナ106により加熱するものである。バーナ106には燃料と共に燃焼に必要な一次空気、二次空気が図示しないファンモータより供給されるようになっている。
【0003】
又、熱交換素子102には混合液供給管108より供給された混合液109が満たされ、バーナ106の燃焼による加熱空気が排気通路105を通過して熱交換素子102に熱量を与え、内部の混合液109を昇温し、沸騰温度に到達させるようになっている。
【0004】
又、混合液109内の沸騰温度の低い液体は、液体分離室110において蒸気として分離されて蒸気排出管111より蒸気112として外部に排出され、沸騰温度の高い液体114は分離液排出管113より外部に排出されるようになっている。
【0005】
この液体分離装置101に用いられている熱交換素子102の構造を図20〜図24に示した断面構造図を用いて更に詳しく説明すると、熱交換素子102の中央上下には連通口121が開けられ、この連通口121から内部の空洞に液体を満たせるように構成されており、その表面には熱交換素子102の強度および受熱面積を増加するための凸部123、128などが設けられている。126は他の熱交換素子102と連結時に当接するための接続用凸部であって、この接続用凸部126には鍔状に外方または内方に張り出した連通接続部122が設けられている。
【0006】
この熱交換素子102は右側素子102aと左側素子102bを接合して構成するもので、この右側素子102aと左側素子102bは周縁接続部120において溶接により接合されている。
【0007】
この熱交換素子102の両端に近い位置には、外側に向けて熱交換素子102同士が隣接したときに間隙が生じて排気通路105が形成されるように、帯状凸部125が形成されている。この帯状凸部125は排気通路105を通過する燃焼による加熱空気が熱交換素子102の側方から逃げるのを防止して、熱交換素子102の表面を介して効率よく熱量を与えるために設けると共に、熱交換素子102の内部膨張に対する強度を維持するために設けられている。
【0008】
図21は熱交換素子102のI−I′断面図、図22はJ−J′断面図、図23はK−K′断面図、図24はL−L′断面を表すものである。
続いて、熱交換素子102の製造方法をJ−J′断面の部分を表す図25を用いて説明する。
【0009】
まず、右側素子102aと左側素子102bの外面同士を連通口121に設けた連通接続部122が嵌合するようにして取り付ける。続いて、連通接続部122に溶接W1 を施して接合する。
【0010】
次に左側素子102bと右側素子102a′の内面同士を合わせ、周縁接合部120に溶接W2 を施し、以下この動作を繰り返して熱交換器を製作するものである。この溶接W2 は、周縁接合部120が面として溶接されるように例えばディスク型溶接機を用いる。
【0011】
【発明が解決しようとする課題】
近年、機器の設置スペースの確保のために熱交換器を含む燃焼装置においても小型化が要求されるようになってきた。また図19に示すような液体分離装置101においても、内部の圧力による破損を防止する必要から熱交換素子102の容量を小さくする必要が出てきた。
【0012】
そこで、現在では、図25のように熱交換素子102の幅aを狭くして熱交換素子102の小型化を図り、更に、容量を縮小することによって内部圧力の耐性を強化することが考えられているが、幅aを狭くすることにより、溶接W2 を施す時の溶接角度θが広がり、この結果溶接W2 時にW2 方向への力を加えにくいために適切な接合面120を形成しにくいという問題がある。そして、この接合面120が適切に面接合されていない場合、内部圧力により破断または腐食が発生しやすくなり、またb方向に加わる力が増大して熱交換素子102に歪みなどが生じてしまい、熱交換素子102の小型化は困難である。
【0013】
本発明は、小型化及び耐久性の向上が可能な熱交換器の構造とこの製法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記課題を解決するために提案する本発明の構成は次のとおりである。
1.主熱交換素子間に副熱交換素子を配置して互いを対向する面に形成した連絡通路で連結することにより一体化すると共に、前記主熱交換素子と副熱交換素子の受熱面積の比率を55%:45%〜70%:30%の範囲内に設定して成る液体加熱用熱交換器。
【0015】
2.左右対称に形成した副右側素子と副左側素子を合わせてその周縁を接合することにより副熱交換素子を形成する、
左右対称に形成した主右側素子と主左側素子を夫々前記副熱交換素子の左右に位置させると共に、この主右側素子と主左側素子を前記副熱交換素子に対して対向する面に形成した連絡通路で連結することにより熱交換素子ユニットを形成する、
前記熱交換素子ユニットの主右側素子には他の熱交換素子ユニットの主左側素子を合わせてその周縁を接合し、主左側素子には更に他の熱交換素子ユニットの主右側素子を合わせてその周縁を接合する、
ことにより形成する液体加熱用熱交換器の製造方法。
【0016】
上記構成において、主熱交換素子と副熱交換素子を構成する素材としては、ステンレス又は銅等である。主熱交換素子と副熱交換素子を連結する連結通路の位置及び数は特に限定されないが、位置を変えることにより、熱交換器内を通過する流体に流れの変化をつけて、熱交換効率の向上を図るようにするとよい。
【0017】
主熱交換素子と副熱交換素子の受熱面積の比率は55%:45%〜70%:30%に構成するのが好ましい。これは、主熱交換素子の受熱面積が必要とする面積の55%未満の場合、副熱交換素子が主熱交換素子の間の排気経路に収納することが難しくなり、また内部圧力に対する耐久性が低下する。一方70%を超えると、副熱交換素子の寸法が小さくなりすぎ、主熱交換素子の能力を補助する能力が低下してしまうためである。
【0018】
上記構成の熱交換器は、例えば内部に熱源としてのガスバーナを配置した燃焼室内に組み込まれ、最も外側に位置する主熱交換素子又は副熱交換素子の一方の連通口から流体を流入し、主・副熱交換素子を順々に経由して他方の主又は副熱交換素子の連通口から流出させ、この間に前記ガスバーナの燃焼ガスにより加熱する。熱交換器内を通過する流体は、強制又は比重差で流れる。
【0019】
【発明の実施の形態】
本発明の実施の態様を図をもって詳細に説明する。
図1は本発明に係る熱交換器を組み込んだ液体分離装置1の概略説明図である。
この液体分離装置1の熱交換部には主熱交換素子2が複数配列されており、この主熱交換素子2の間に形成される排気通路5には副熱交換素子3が設けられている。
この主熱交換素子2と副熱交換素子3は連絡通路4により連結されて熱交換器としての集合体をなしており、この熱交換器内には混合液9が内包されるように構成されている。
【0020】
主熱交換素子2と副熱交換素子3はバーナ6の燃焼により発生する燃料ガスが、図示しないファンモータ等による送風力により排気通路5を介して上方に排気され、このときにこの排気熱による熱量を受熱して内部の混合液9が加熱昇温する。7は燃焼室である。
混合液供給管8から熱交換器内に供給された混合液9は、主熱交換素子2と副熱交換素子3の内部にて加熱され、液体分離室10で沸騰温度の低い液体は蒸気12として蒸気排出管11より外部に排出され、また沸騰温度の高い液体としての分離液14は分離液排出管13より外部に排出されるように構成されている。
この混合液9を加熱して蒸気12と分離液14に分離するためには、バーナ6の燃焼能力のほか、効率よく加熱するための最適な熱交換器の受熱面積が必要である。
【0021】
この受熱面積は燃料ガスの種類、ガス圧、バーナの燃焼量、熱交換素子の熱効率、熱伝導性、液体の比熱などにより求められるものである。
主熱交換素子2は、熱交換器全体を小型化するために最適な受熱面積の60%位に構成し、その不足する40%の受熱面積を副熱交換素子3によって補い、主熱交換素子2間に形成される副熱交換素子3との組み合わせによって受熱面積を損なわず、かつそれぞれの熱交換素子の内容量を小さくすることによって、全体的に小型に構成すると共に内部圧力の上昇に対する耐久性を向上することができる。
すなわち、この主熱交換素子2と副熱交換素子3を交互に、そして適宜数配列することにより、必要とする熱交換器が形成される。
【0022】
次に図2〜図8に基づいて主熱交換素子2の説明を行う。
図2は主熱交換素子2の正面図、図3は上面図、図4は側面図である。また、図5は主熱交換素子の正面図を描いた図2におけるA−A′断面図、図6はB−B′断面図、図7はC−C′断面図、図8はD−D′断面図である。
【0023】
主熱交換素子2は、プレス加工された主右側素子2aと主左側素子2bの2枚の素子を接合部20にて接合することにより構成されている。
主熱交換素子2には3つの主連通口21が接続用凸部26により外方に突出するように穿たれており、この主連通口21から内部27に液体が満たされるように構成されている。また、主熱交換素子2の表面には凸部23、凹部24が適所に設けられている。この凸部23は隣接する副熱交換素子3の後述する凸部33と対向した位置に設けてられており、内部の圧力の上昇時に副熱交換素子3の凸部33と当接して、主熱交換素子2および副熱交換素子3の膨張を抑制するために設けられている。また、凹部24は主熱交換素子2の内部27にて対向するように設けられており、主熱交換素子2内の内部圧力が低下したときに、主熱交換素子2の収縮による変形を抑制するように設けられている。
【0024】
この主熱交換素子2の両端に近い外面にはそれぞれ帯状凸部25が設けられ、主熱交換素子2の本体の幅より両端の幅が大きくなるように構成されており、隣接する他の主熱交換素子2の帯状凸部25と当接することにより排気通路5を形成するようになっている。この帯状凸部25は、隣接する主熱交換素子2のものと当接することにより、内部圧力の上昇による膨張を抑制すると共に、排気通路5内を通過する排気が側方から漏出しないようにしている。排気通路5は副熱交換素子3や各熱交換素子の凸部などにより排気に対する圧力損失が多大であるため、側方が開放されているところから排気熱が逃げてしまい、各熱交換素子にて良好に受熱することができなくなる。そこで、副熱交換素子3を主熱交換素子2により形成される排気通路5に設けることにより、主熱交換素子2の不足する受熱量を副熱交換素子3にて補い、小型な液体燃焼装置を構成している。
主連通口21の周縁には副熱交換素子3を接合するための連通接合部22が内側方向に設けられている。
【0025】
次に図9〜図15に基づいて副熱交換素子3の説明を行う。
図9は副熱交換素子3の正面図、図10は上面図、図11は側面図である。
また、図12は副熱交換素子3の正面図を描いた図9におけるE−E′断面図、図13はF−F′断面図、図14はG−G′断面図、図15はH−H′断面図である。
副熱交換素子3は副右側素子3aと副左側素子3bを周縁接合部30を接合して構成している。
【0026】
副熱交換素子3には副連通口31が穿たれており、この副連通口31より内部35に液体を満たすように構成され、副熱交換素子3の表面には凸部33、凹部34が形成されている。凸部33は主熱交換素子2の凸部23と当接する位置に設けられ、主熱交換素子3の凸部23と当接することにより、内部圧力の上昇による変形を防止している。同様に凹部34は副熱交換素子3の内部35にて対向するように設けられており、内部圧力が低下したときに、副熱交換素子3の収縮による変形を抑制するように設けられている。
副連通口31の周縁には、連通接合部32が外方向に設けられている。
【0027】
次に、図16〜図18に基づいて本発明の液体分離装置1の熱交換器の組立方法を説明する。先ず、副熱交換素子3は図16(A)、(B)を用いて、主熱交換素子2を形成する主右側素子2aと主左側素子2bを前記副熱交換素子3に合体して熱交換素子ユニットと熱交換器を組み立てる方法を図17(A)、(B)及び図18(A)、(B)に基づいて説明する。
まず、図16(A)に示すように副熱交換素子3の副右側素子3aと副左側素子3bを合わせて固定する。そして図16(B)に示すように、周縁接合部30にディスク型溶接機などを用いて溶接W1 を施して副熱交換素子3を形成する。
【0028】
続いて、図17(A)に示すように、完成した副熱交換素子3に主熱交換素子2の主右側素子2aと主左側素子2bの外側をそれぞれ連通接続部22、32が嵌合するように合わせて固定する。
そして、図17(B)に示すように、嵌合した連通接続部22、32に溶接W2 を施し、副熱交換素子3の外側に主熱交換素子2の主右側素子2aと主左側素子2bを固定して熱交換素子ユニットを構成する。
【0029】
次に、図18(A)に示すように、別の熱交換ユニットの副熱交換素子3に接合された主熱交換素子2を構成するための主右側素子2aに対して主左側素子2b′を合わせ、同様に主右側素子2bに対して主左側素子2a′を合わせて固定する。
そして、図18(B)に示すように、周縁接合部20にディスク型溶接機などで溶接W3 を施すと、主熱交換素子2が形成され、以後は同様の工程を繰り返すごとに所望の熱交換能力をもつ熱交換器が形成される。なお、図18(A)、(B)において、上下に位置する熱交換素子ユニットの副熱交換素子3の図示は省略してある。
【0030】
以上のように製作された熱交換器は、図18(B)に示すように、主熱交換素子2の間の排気通路5に設けられる副熱交換素子3が不足する受熱面積を補うように構成しているため、主熱交換素子2同士の幅aは特に狭く構成する必要が無く、このため、主熱交換素子2同士の幅a間で溶接W3 を施すときの応力により主熱交換素子2の変形が発生せず、受熱面積を減少させずとも小型な熱交換器が構成され、また、夫々の熱交換素子の内容量を減少させることができることから、圧力上昇による耐久性が向上する。
【0031】
上記構成の熱交換器を用いて、図1に示す液体加熱装置を製作し、図19の加熱装置との耐久性を比較した。
図1の液体分離装置の熱交換器の総受熱面積は0.156m2 で、主熱交換素子2と副熱交換素子3の受熱面積の比率は前記のとおり6:4である。
主熱交換素子2の総受熱面積は0.0936m2 、副熱交換素子3の総面積は0.0624m2 とした。総熱効率は72%である。
同様に図19の液体分離装置の熱交換器の総受熱面積は0.156m2 で総熱効率は72%であった。
図1と図19の液体分離装置の熱交換器内部に1kgの圧力から−1kgの圧力を繰り返し掛けて耐久性を試験したところ、図19の液体分離装置は約1000回で熱交換素子に亀裂が発生して試験を中止したが、図1の液体分離装置では10万回繰り返しても異常が発生しなかった。
【0032】
【発明の効果】
本発明による効果は次のとおりである。
a.熱交換器は、主熱交換素子と副熱交換素子を交互に配列して合体させると共に、主熱交換素子と副熱交換素子の伝熱面積の比率を55%:45%〜70%:30%の範囲内に設定して副熱交換素子により主熱交換素子による伝熱面積の不足分を補うように構成した。この結果、伝熱効率が高く、この分熱交換器を小型化できる。
【0033】
b.先に副熱交換素子を形成し、これに主左側素子及び主右側素子を夫々接合して熱交換素子ユニットを形成し、熱交換器の設計に応じて熱交換素子ユニットの主左側素子には他の熱交換素子ユニットの主右側素子を、主右側素子には主左側素子を接合して熱交換素子ユニットを複数合体させるようにした。この結果、主熱交換素子の間に副熱交換素子が存在するため、従来のように伝熱面積を大きくとるために主熱交換素子を接近させて容積当りの主熱交換素子の数を多くする必要がなくなる。よって、主熱交換素子同士は離れるため、溶接を施すときの応力により、主熱交換素子に変形が発生せず、耐久性が向上する。
【0034】
c.小型の熱交換器を構成できるため、主及び副熱交換素子の内容量を減少させることができるから、圧力上昇もこの分減少し、よって各素子に求められる応力も小さくなるので、耐久性が向上する。特に、ガスバーナのON、OFF等により間欠的に熱応力を受ける場合、従来の熱交換器であると、各接合部に応力が集中してここから破損にいたることも多かったが、圧力上昇が小さくなった分この応力の集中も少なくなり、耐久性が向上する。
【図面の簡単な説明】
【図1】 本発明に係る液体分離装置の概略図。
【図2】 主熱交換素子の正面図。
【図3】 主熱交換素子の上面図。
【図4】 主熱交換素子の側面図。
【図5】 主熱交換素子のA−A′線断面図。
【図6】 主熱交換素子のB−B′線断面図。
【図7】 主熱交換素子のC−C′線断面図。
【図8】 主熱交換素子のD−D′線断面図。
【図9】 副熱交換素子の正面図。
【図10】 副熱交換素子の上面図。
【図11】 副熱交換素子の側面図。
【図12】 副熱交換素子のE−E′線断面図。
【図13】 副熱交換素子のF−F′線断面図。
【図14】 副熱交換素子のG−G′線断面図。
【図15】 副熱交換素子のH−H′線断面図。
【図16A】 副熱交換素子の接合を表す図。
【図16B】 副熱交換素子の接合を表す図。
【図17A】 副熱交換素子と主熱交換素子の右側素子と左側素子との接合を表す図。
【図17B】 副熱交換素子と主熱交換素子の右側素子と左側素子との接合を表す図。
【図18A】 熱交換素子ユニットに他の熱交換素子の接合を表す図。
【図18B】 熱交換素子ユニットに他の熱交換素子の接合を表す図。
【図19】 従来の液体分離装置の概略図。
【図20】 従来の熱交換素子の正面図。
【図21】 従来の熱交換素子のI−I′線断面図。
【図22】 従来の熱交換素子のJ−J′線断面図。
【図23】 従来の熱交換素子のK−K′線断面図。
【図24】 従来の熱交換素子のL−L′線断面図。
【図25】 従来の熱交換素子の接合図。
【符号の説明】
1 液体分離装置
2 主熱交換素子
3 副熱交換素子
4 連絡通路
5 排気通路
6 バーナ
7 燃焼室
8 混合液供給管
9 混合液
10 液体分離室
11 蒸気排出管
12 蒸気
13 分離液排出管
14 分離液
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger for heating a liquid and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, a heat exchanger used for a bath for heating hot water in a bathtub, a steam generator, and a liquid separator 101 of a two-liquid mixture having different boiling temperatures as shown in FIG. A heat exchange element 102 having a structure as shown in FIGS. 20 to 24 is used. The heat exchanging elements 102 have the same shape and are connected in parallel, and a plurality of connecting passages 121 are connected to form a heat exchanger, which is positioned in the exhaust passage 105 of the combustion chamber 107 and burner 106. It heats by. The burner 106 is supplied with primary air and secondary air necessary for combustion together with fuel from a fan motor (not shown).
[0003]
Further, the heat exchange element 102 is filled with the liquid mixture 109 supplied from the liquid mixture supply pipe 108, and heated air generated by the combustion of the burner 106 passes through the exhaust passage 105 to give heat to the heat exchange element 102. The liquid mixture 109 is heated to reach the boiling temperature.
[0004]
Further, the liquid having a low boiling temperature in the mixed liquid 109 is separated as vapor in the liquid separation chamber 110 and discharged to the outside as a vapor 112 from the vapor discharge pipe 111, and the liquid 114 having a high boiling temperature is discharged from the separation liquid discharge pipe 113. It is designed to be discharged outside.
[0005]
The structure of the heat exchange element 102 used in the liquid separation apparatus 101 will be described in more detail with reference to the cross-sectional structure diagrams shown in FIGS. 20 to 24. In addition, a liquid is filled in the internal cavity from the communication port 121, and convex portions 123 and 128 for increasing the strength and heat receiving area of the heat exchange element 102 are provided on the surface thereof. . Reference numeral 126 denotes a connection convex portion for contacting with another heat exchange element 102 at the time of coupling. The connection convex portion 126 is provided with a communication connection portion 122 projecting outward or inward in a bowl shape. Yes.
[0006]
The heat exchange element 102 is configured by joining a right element 102a and a left element 102b, and the right element 102a and the left element 102b are joined by welding at a peripheral connection portion 120.
[0007]
A band-like convex portion 125 is formed at a position close to both ends of the heat exchange element 102 so that a gap is formed when the heat exchange elements 102 are adjacent to each other and the exhaust passage 105 is formed. . The belt-like convex portion 125 is provided to prevent heated air generated by combustion passing through the exhaust passage 105 from escaping from the side of the heat exchange element 102 and to efficiently apply heat through the surface of the heat exchange element 102. The heat exchange element 102 is provided to maintain strength against internal expansion.
[0008]
21 is a cross-sectional view taken along the line II ′ of the heat exchange element 102, FIG. 22 is a cross-sectional view taken along the line JJ ′, FIG. 23 is a cross-sectional view taken along the line KK ′, and FIG.
Next, a method for manufacturing the heat exchange element 102 will be described with reference to FIG.
[0009]
First, the outer surfaces of the right element 102a and the left element 102b are attached so that the communication connection portion 122 provided in the communication port 121 is fitted. Subsequently, welding W 1 is applied to the communication connection portion 122 and joined.
[0010]
Next, the inner surfaces of the left element 102b and the right element 102a ′ are aligned with each other, weld W 2 is applied to the peripheral joint 120, and this operation is repeated to manufacture a heat exchanger. For this welding W 2 , for example, a disk-type welding machine is used so that the peripheral joint 120 is welded as a surface.
[0011]
[Problems to be solved by the invention]
In recent years, in order to secure equipment installation space, a combustion apparatus including a heat exchanger has been required to be downsized. Also in the liquid separation apparatus 101 as shown in FIG. 19, it is necessary to reduce the capacity of the heat exchange element 102 because it is necessary to prevent damage due to internal pressure.
[0012]
Therefore, at present, as shown in FIG. 25, it is conceivable to reduce the width a of the heat exchanging element 102 to reduce the size of the heat exchanging element 102 and to further enhance the resistance to internal pressure by reducing the capacity. However, by reducing the width a, the welding angle θ when performing the welding W 2 is widened. As a result, it is difficult to apply a force in the W 2 direction during the welding W 2, so that an appropriate joint surface 120 is formed. There is a problem that it is difficult. If the bonding surface 120 is not properly surface-bonded, the internal pressure tends to cause breakage or corrosion, and the force applied in the b direction increases to cause distortion or the like in the heat exchange element 102. It is difficult to reduce the size of the heat exchange element 102.
[0013]
An object of this invention is to provide the structure of this heat exchanger which can be reduced in size and durability, and this manufacturing method.
[0014]
[Means for Solving the Problems]
The configuration of the present invention proposed in order to solve the above problems is as follows.
1. The sub heat exchange elements are arranged between the main heat exchange elements and integrated by connecting with a communication passage formed on the surfaces facing each other, and the ratio of the heat receiving area of the main heat exchange element and the sub heat exchange element is determined. A heat exchanger for heating a liquid, which is set in a range of 55%: 45% to 70%: 30%.
[0015]
2. A sub heat exchange element is formed by joining the peripheral edges of the sub right element and the sub left element formed symmetrically,
The main right element and the main left element formed symmetrically are positioned on the left and right sides of the sub heat exchange element, respectively, and the main right element and the main left element are formed on the surface facing the sub heat exchange element. A heat exchange element unit is formed by connecting with a passage,
The main left side element of the heat exchange element unit is aligned with the main left side element of another heat exchange element unit and the periphery thereof is joined. The main left side element is further aligned with the main right side element of another heat exchange element unit. Joining the edges,
The manufacturing method of the heat exchanger for liquid heating formed by this.
[0016]
In the above configuration, the material constituting the main heat exchange element and the sub heat exchange element is stainless steel or copper. The position and number of connecting passages that connect the main heat exchange element and the sub heat exchange element are not particularly limited, but changing the position changes the flow of the fluid passing through the heat exchanger, thereby improving the heat exchange efficiency. It is recommended to improve.
[0017]
The ratio of the heat receiving area of the main heat exchange element and the sub heat exchange element is preferably 55%: 45% to 70%: 30%. This is because if the heat receiving area of the main heat exchange element is less than 55% of the required area, it becomes difficult for the auxiliary heat exchange element to be housed in the exhaust path between the main heat exchange elements, and the durability against internal pressure Decreases. On the other hand, if it exceeds 70%, the size of the auxiliary heat exchange element becomes too small, and the ability to assist the ability of the main heat exchange element is lowered.
[0018]
The heat exchanger configured as described above is incorporated in, for example, a combustion chamber in which a gas burner serving as a heat source is disposed, and fluid is introduced from one communication port of the main heat exchange element or the sub heat exchange element located on the outermost side. -It flows out from the communicating port of the other main or sub heat exchange element through the sub heat exchange element one by one, and in the meantime, it is heated by the combustion gas of the gas burner. The fluid passing through the heat exchanger flows with forced or specific gravity difference.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic explanatory view of a liquid separation apparatus 1 incorporating a heat exchanger according to the present invention.
A plurality of main heat exchange elements 2 are arranged in the heat exchange section of the liquid separation device 1, and a sub heat exchange element 3 is provided in the exhaust passage 5 formed between the main heat exchange elements 2. .
The main heat exchange element 2 and the sub heat exchange element 3 are connected by a communication passage 4 to form an assembly as a heat exchanger, and the mixed liquid 9 is included in the heat exchanger. ing.
[0020]
In the main heat exchange element 2 and the sub heat exchange element 3, the fuel gas generated by the combustion of the burner 6 is exhausted upward through the exhaust passage 5 by a blowing force by a fan motor or the like (not shown). Receiving the amount of heat, the mixed liquid 9 inside is heated and heated. 7 is a combustion chamber.
The mixed liquid 9 supplied from the mixed liquid supply pipe 8 into the heat exchanger is heated inside the main heat exchange element 2 and the sub heat exchange element 3, and the liquid having a low boiling temperature is vapor 12 in the liquid separation chamber 10. The separation liquid 14 as a liquid having a high boiling temperature is discharged from the vapor discharge pipe 11 to the outside through the separation liquid discharge pipe 13.
In order to heat the mixed liquid 9 and separate it into the vapor 12 and the separated liquid 14, in addition to the combustion ability of the burner 6, an optimum heat receiving area of the heat exchanger for efficient heating is required.
[0021]
This heat receiving area is determined by the type of fuel gas, gas pressure, burner combustion amount, thermal efficiency of the heat exchange element, thermal conductivity, specific heat of the liquid, and the like.
The main heat exchange element 2 is configured to be about 60% of the optimum heat receiving area for downsizing the entire heat exchanger, and the insufficient heat receiving area of 40% is compensated by the sub heat exchange element 3, and the main heat exchange element By combining with the auxiliary heat exchange element 3 formed between the two, the heat receiving area is not impaired, and the internal capacity of each heat exchange element is reduced, so that the overall configuration is reduced and durability against an increase in internal pressure is achieved. Can be improved.
That is, the required heat exchanger is formed by arranging the main heat exchange elements 2 and the sub heat exchange elements 3 alternately and appropriately in several numbers.
[0022]
Next, the main heat exchange element 2 will be described with reference to FIGS.
2 is a front view of the main heat exchange element 2, FIG. 3 is a top view, and FIG. 4 is a side view. 5 is a cross-sectional view taken along the line AA ′ in FIG. 2 depicting a front view of the main heat exchange element, FIG. 6 is a cross-sectional view taken along the line BB ′, FIG. 7 is a cross-sectional view taken along the line CC ′, and FIG. It is D 'sectional drawing.
[0023]
The main heat exchange element 2 is constituted by joining two elements, ie, a pressed main right element 2a and a main left element 2b, at the joint portion 20.
The main heat exchange element 2 is formed with three main communication ports 21 so as to protrude outward by the connecting convex portions 26, and the inside 27 is filled with the liquid from the main communication port 21. Yes. Further, a convex portion 23 and a concave portion 24 are provided at appropriate positions on the surface of the main heat exchange element 2. The convex portion 23 is provided at a position facing a convex portion 33 (described later) of the adjacent sub heat exchange element 3, and comes into contact with the convex portion 33 of the sub heat exchange element 3 when the internal pressure increases. It is provided to suppress the expansion of the heat exchange element 2 and the auxiliary heat exchange element 3. In addition, the recess 24 is provided so as to face the inside 27 of the main heat exchange element 2 and suppresses deformation due to contraction of the main heat exchange element 2 when the internal pressure in the main heat exchange element 2 decreases. It is provided to do.
[0024]
The outer surface close to both ends of the main heat exchange element 2 is provided with band-like convex portions 25, respectively, and is configured such that the width of both ends is larger than the width of the main body of the main heat exchange element 2, and other adjacent main heat exchange elements 2 are arranged. The exhaust passage 5 is formed by contacting the belt-like convex portion 25 of the heat exchange element 2. This belt-like convex portion 25 is in contact with the adjacent main heat exchange element 2 to suppress expansion due to an increase in internal pressure and prevent the exhaust passing through the exhaust passage 5 from leaking from the side. Yes. Since the exhaust passage 5 has a large pressure loss with respect to the exhaust gas due to the auxiliary heat exchange element 3 and the convex portions of each heat exchange element, the exhaust heat escapes from the side where the side is open, Heat cannot be received well. Therefore, by providing the auxiliary heat exchange element 3 in the exhaust passage 5 formed by the main heat exchange element 2, the amount of heat received by the main heat exchange element 2 is compensated by the auxiliary heat exchange element 3, and a small liquid combustion apparatus is provided. Is configured.
A communication joint portion 22 for joining the sub heat exchange element 3 is provided on the periphery of the main communication port 21 in the inner direction.
[0025]
Next, the auxiliary heat exchange element 3 will be described with reference to FIGS.
9 is a front view of the auxiliary heat exchange element 3, FIG. 10 is a top view, and FIG. 11 is a side view.
12 is a cross-sectional view taken along the line EE ′ in FIG. 9 depicting a front view of the auxiliary heat exchange element 3, FIG. 13 is a cross-sectional view taken along the line FF ′, FIG. 14 is a cross-sectional view taken along the line GG ′, and FIG. It is -H 'sectional drawing.
The sub heat exchange element 3 is configured by joining a sub right side element 3 a and a sub left side element 3 b with a peripheral joint 30.
[0026]
The sub heat exchange element 3 is provided with a sub communication port 31, and the sub communication port 31 is configured to fill the interior 35 with liquid, and a convex portion 33 and a concave portion 34 are formed on the surface of the sub heat exchange element 3. Is formed. The convex portion 33 is provided at a position where it abuts against the convex portion 23 of the main heat exchange element 2, and prevents deformation due to an increase in internal pressure by abutting against the convex portion 23 of the main heat exchange element 3. Similarly, the recess 34 is provided so as to face the inside 35 of the sub heat exchange element 3 and is provided so as to suppress deformation due to contraction of the sub heat exchange element 3 when the internal pressure is reduced. .
On the peripheral edge of the sub-communication port 31, a communication joint portion 32 is provided outward.
[0027]
Next, a method for assembling the heat exchanger of the liquid separator 1 according to the present invention will be described with reference to FIGS. First, the auxiliary heat exchanging element 3 combines the main right side element 2a and the main left side element 2b forming the main heat exchanging element 2 with the auxiliary heat exchanging element 3 with reference to FIGS. 16 (A) and 16 (B). A method of assembling the exchange element unit and the heat exchanger will be described with reference to FIGS. 17 (A), 17 (B) and FIGS. 18 (A), 18 (B).
First, as shown in FIG. 16 (A), the sub right element 3a and the sub left element 3b of the sub heat exchange element 3 are fixed together. Then, as shown in FIG. 16B, the auxiliary heat exchange element 3 is formed by performing welding W 1 on the peripheral joint 30 using a disk-type welding machine or the like.
[0028]
Subsequently, as shown in FIG. 17 (A), the communication connecting portions 22 and 32 are fitted to the completed sub heat exchange element 3 on the outside of the main right element 2a and the main left element 2b of the main heat exchange element 2, respectively. And fix together.
Then, as shown in FIG. 17B, welding W 2 is applied to the connected communication connecting portions 22 and 32, and the main right side element 2a and the main left side element of the main heat exchange element 2 are provided outside the auxiliary heat exchange element 3. 2b is fixed to constitute the heat exchange element unit.
[0029]
Next, as shown in FIG. 18A, the main left side element 2b ′ with respect to the main right side element 2a for constituting the main heat exchange element 2 joined to the sub heat exchange element 3 of another heat exchange unit. Similarly, the main left side element 2a 'is aligned and fixed to the main right side element 2b.
Then, as shown in FIG. 18 (B), when welding W 3 is performed on the peripheral joint 20 with a disk type welding machine or the like, the main heat exchange element 2 is formed, and thereafter the desired process is repeated each time the same process is repeated. A heat exchanger having heat exchange capability is formed. 18A and 18B, the auxiliary heat exchange element 3 of the heat exchange element unit positioned above and below is not shown.
[0030]
As shown in FIG. 18B, the heat exchanger manufactured as described above compensates for the heat receiving area where the auxiliary heat exchange element 3 provided in the exhaust passage 5 between the main heat exchange elements 2 is insufficient. Therefore, the width a between the main heat exchange elements 2 does not need to be particularly narrow. For this reason, the main heat exchange is caused by stress when welding W 3 is performed between the widths a between the main heat exchange elements 2. The element 2 is not deformed, and a small heat exchanger can be constructed without reducing the heat receiving area, and the internal capacity of each heat exchange element can be reduced, thereby improving durability due to pressure increase. To do.
[0031]
The liquid heating device shown in FIG. 1 was manufactured using the heat exchanger having the above-described configuration, and the durability was compared with that of the heating device of FIG.
The total heat receiving area of the heat exchanger of the liquid separation apparatus of FIG. 1 is 0.156 m @ 2, and the ratio of the heat receiving areas of the main heat exchange element 2 and the sub heat exchange element 3 is 6: 4 as described above.
The total heat receiving area of the main heat exchange element 2 was 0.0936 m @ 2, and the total area of the sub heat exchange element 3 was 0.0624 m @ 2. The total thermal efficiency is 72%.
Similarly, the total heat receiving area of the heat exchanger of the liquid separator shown in FIG. 19 was 0.156 m @ 2 and the total heat efficiency was 72%.
When the durability was tested by repeatedly applying a pressure of 1 kg to -1 kg inside the heat exchanger of the liquid separator shown in FIGS. 1 and 19, the liquid separator shown in FIG. 19 cracked the heat exchanger element about 1000 times. However, the liquid separation apparatus of FIG. 1 showed no abnormality even after repeated 100,000 times.
[0032]
【The invention's effect】
The effects of the present invention are as follows.
a. In the heat exchanger, the main heat exchange element and the sub heat exchange element are alternately arranged and combined, and the ratio of the heat transfer area of the main heat exchange element and the sub heat exchange element is 55%: 45% to 70%: 30. % Of the heat transfer area due to the main heat exchange element is compensated by the auxiliary heat exchange element. As a result, the heat transfer efficiency is high, and the heat exchanger can be reduced in size.
[0033]
b. First, the auxiliary heat exchange element is formed, and the main left side element and the main right side element are joined to each to form a heat exchange element unit. Depending on the design of the heat exchanger, the main left side element of the heat exchange element unit The main right side element of another heat exchange element unit was joined to the main right side element, and a plurality of heat exchange element units were combined. As a result, there are sub heat exchange elements between the main heat exchange elements, so that the number of main heat exchange elements per volume is increased by bringing the main heat exchange elements closer to increase the heat transfer area as in the conventional case. There is no need to do it. Therefore, since the main heat exchange elements are separated from each other, the main heat exchange element is not deformed by the stress when welding is performed, and the durability is improved.
[0034]
c. Since a small heat exchanger can be configured, the contents of the main and sub heat exchange elements can be reduced, so the pressure rise is reduced by this amount, and the stress required for each element is also reduced. improves. In particular, when the thermal burner is intermittently subjected to thermal stress due to ON / OFF of the gas burner, the conventional heat exchanger often causes stress to concentrate at each joint, resulting in damage from this point. The smaller the concentration, the less the concentration of stress and the durability is improved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a liquid separation apparatus according to the present invention.
FIG. 2 is a front view of a main heat exchange element.
FIG. 3 is a top view of the main heat exchange element.
FIG. 4 is a side view of a main heat exchange element.
FIG. 5 is a cross-sectional view of the main heat exchange element taken along the line AA ′.
FIG. 6 is a cross-sectional view of the main heat exchange element taken along line BB ′.
FIG. 7 is a cross-sectional view of the main heat exchange element taken along the line CC ′.
FIG. 8 is a cross-sectional view of the main heat exchange element taken along the line DD ′.
FIG. 9 is a front view of the auxiliary heat exchange element.
FIG. 10 is a top view of the auxiliary heat exchange element.
FIG. 11 is a side view of the auxiliary heat exchange element.
FIG. 12 is a cross-sectional view of the auxiliary heat exchange element taken along line EE ′.
FIG. 13 is a cross-sectional view of the auxiliary heat exchange element taken along line FF ′.
FIG. 14 is a sectional view of the auxiliary heat exchange element taken along the line GG ′.
FIG. 15 is a sectional view of the auxiliary heat exchange element taken along line HH ′.
FIG. 16A is a diagram illustrating joining of auxiliary heat exchange elements.
FIG. 16B is a diagram illustrating joining of the auxiliary heat exchange elements.
FIG. 17A is a diagram showing the joining of the right and left elements of the auxiliary heat exchange element and the main heat exchange element.
FIG. 17B is a diagram showing the joining of the right and left elements of the sub heat exchange element and the main heat exchange element.
FIG. 18A is a diagram illustrating joining of another heat exchange element to the heat exchange element unit.
FIG. 18B is a diagram illustrating joining of another heat exchange element to the heat exchange element unit.
FIG. 19 is a schematic view of a conventional liquid separation apparatus.
FIG. 20 is a front view of a conventional heat exchange element.
FIG. 21 is a cross-sectional view taken along the line II ′ of a conventional heat exchange element.
FIG. 22 is a cross-sectional view of a conventional heat exchange element taken along line JJ ′.
FIG. 23 is a cross-sectional view of a conventional heat exchange element taken along the line KK ′.
FIG. 24 is a cross-sectional view of a conventional heat exchange element taken along line LL ′.
FIG. 25 is a bonding diagram of a conventional heat exchange element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Liquid separator 2 Main heat exchange element 3 Sub heat exchange element 4 Communication path 5 Exhaust path 6 Burner 7 Combustion chamber 8 Mixture supply pipe 9 Mixture 10 Liquid separation chamber 11 Steam discharge pipe 12 Steam 13 Separation liquid discharge pipe 14 Separation liquid

Claims (2)

主熱交換素子間に副熱交換素子を配置して互いを対向する面に形成した連絡通路で連結することにより一体化すると共に、前記主熱交換素子と副熱交換素子の受熱面積の比率を55%:45%〜70%:30%の範囲内に設定して成る液体加熱用熱交換器。The sub heat exchange elements are arranged between the main heat exchange elements and integrated by connecting with a communication passage formed on the surfaces facing each other, and the ratio of the heat receiving area of the main heat exchange element and the sub heat exchange element is determined. A heat exchanger for heating a liquid, which is set in a range of 55%: 45% to 70%: 30%. 左右対称に形成した副右側素子と副左側素子を合わせてその周縁を接合することにより副熱交換素子を形成する、
左右対称に形成した主右側素子と主左側素子を夫々前記副熱交換素子の左右に位置させると共に、この主右側素子と主左側素子を前記副熱交換素子に対して対向する面に形成した連絡通路で連結することにより熱交換素子ユニットを形成する、
前記熱交換素子ユニットの主右側素子には他の熱交換素子ユニットの主左側素子を合わせてその周縁を接合し、主左側素子には更に他の熱交換ユニットの主右側素子を合わせてその周縁を接合する、
ことにより形成する液体加熱用熱交換器の製造方法。
A sub heat exchange element is formed by joining the peripheral edges of the sub right element and the sub left element formed symmetrically,
The main right element and the main left element formed symmetrically are positioned on the left and right sides of the sub heat exchange element, respectively, and the main right element and the main left element are formed on the surface facing the sub heat exchange element. A heat exchange element unit is formed by connecting with a passage,
The main left side element of the other heat exchange element unit is joined to the main right side element of the heat exchange element unit and its periphery is joined, and the main left side element of another heat exchange unit is further joined to the main right side element of the heat exchange element unit. Joining,
The manufacturing method of the heat exchanger for liquid heating formed by this.
JP32672995A 1995-12-15 1995-12-15 Heat exchanger for liquid heating and manufacturing method thereof Expired - Fee Related JP3661955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32672995A JP3661955B2 (en) 1995-12-15 1995-12-15 Heat exchanger for liquid heating and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32672995A JP3661955B2 (en) 1995-12-15 1995-12-15 Heat exchanger for liquid heating and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09166393A JPH09166393A (en) 1997-06-24
JP3661955B2 true JP3661955B2 (en) 2005-06-22

Family

ID=18191030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32672995A Expired - Fee Related JP3661955B2 (en) 1995-12-15 1995-12-15 Heat exchanger for liquid heating and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3661955B2 (en)

Also Published As

Publication number Publication date
JPH09166393A (en) 1997-06-24

Similar Documents

Publication Publication Date Title
CN106288868B (en) Heat exchanger
JP4462054B2 (en) Plate heat exchanger, hot water device and heating device provided with the same
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
US20100175861A1 (en) Laser-welded heat exchanger tube assembly
JP3661955B2 (en) Heat exchanger for liquid heating and manufacturing method thereof
JP3675478B2 (en) Welded plate heat exchanger and method for welding a heat transfer plate to a plate heat exchanger
JPH01181092A (en) Heat exchanger
JP2001304787A (en) Exhaust heat exchanger
KR20030057382A (en) Heat exchange unit
JPH0648151B2 (en) Plate heat exchanger
JPS6237694A (en) Heat exchanger
JP2009243563A (en) Pipe coupling structure with hollow component
JP2007107799A (en) Tank structure of radiator
KR20170018911A (en) A heater and a heat exchanger installation
JPH063076A (en) Manufacture of laminated heat exchanger
JP4105902B2 (en) Heat exchanger for liquid metal cooling furnace and method for producing heat exchanger for liquid metal cooling furnace
KR102028433B1 (en) Tube joint structure of heat exchanger of boiler using for sealing material
JPS6183882A (en) Plate type heat exchanger
JPS6358099A (en) Method for manufacturing plate fin type heat exchanger
JPH06147787A (en) Heat exchanger
JP2006138560A (en) Heat exchanger
JPH05256592A (en) Heat exchanger
JP3764552B2 (en) Plate fin heat exchanger
JPH01174898A (en) Tube for heat exchanger
KR100819012B1 (en) Laminate type heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees