JP3661897B2 - Edge processing method for air port on curved surface - Google Patents

Edge processing method for air port on curved surface Download PDF

Info

Publication number
JP3661897B2
JP3661897B2 JP17323396A JP17323396A JP3661897B2 JP 3661897 B2 JP3661897 B2 JP 3661897B2 JP 17323396 A JP17323396 A JP 17323396A JP 17323396 A JP17323396 A JP 17323396A JP 3661897 B2 JP3661897 B2 JP 3661897B2
Authority
JP
Japan
Prior art keywords
air port
curved surface
shape
drilling tool
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17323396A
Other languages
Japanese (ja)
Other versions
JPH1015719A (en
Inventor
浩司 川平
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP17323396A priority Critical patent/JP3661897B2/en
Publication of JPH1015719A publication Critical patent/JPH1015719A/en
Application granted granted Critical
Publication of JP3661897B2 publication Critical patent/JP3661897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/70Shape
    • F05B2250/71Shape curved

Landscapes

  • Milling Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は曲面上に設けられ所定精度の空気の通過流量を必要とする空気口のエッジ加工方法に関する。
【0002】
【従来の技術】
航空用ガスタービンエンジン等では曲面で構成された板材に開口を設け冷却用等の空気を取り入れて高温部分の冷却を行っている。図1はジエットエンジンの低圧タービン動翼を支持するコーンシャフトの構成を示す縦断面である。回転軸1の後端は軸心Cを中心軸とする軸後端円錐1aとなっており、この軸後端円錐1aに接続して第1円錐2と第2円錐3が軸心Cを中心軸とし、互いに逆向きに設けられている。第1円錐2の後端には低圧タービン動翼4が結合され、この回転力を回転軸1に伝達する。
【0003】
第1円錐2には第1空気口5、第2円錐3には第2空気口6が設けられ空気を所定精度の流量で流して冷却等に使用している。このような空気口5,6を流れる空気流量を正確に推定するには、各空気口5,6の流量係数を確定しておく必要がある。またこのような開口の周囲には応力集中が起こり易く疲労強度が低下し寿命が短くなることから応力集中を少なくする形状にしなければならない。このため、従来は開口前面のエッジを全周一様に円弧とする(Rを取ると言う)ようにしていた。開口が平板に設けられている場合は、全周一様にRを取ることは容易であるが、曲板に設けられた開口の場合困難であるので、多軸NCマシンでR取りが行われていた。
【0004】
図6は多軸NCマシンによるR取りを示す図で、(a)は断面図、(b)は(a)のX−X矢視図を示す。曲面板10には直径dの開口11が設けられており、空気の流入する側の前面エッジ部12は多軸NC制御される回転穴開工具14によりR取りがなされる。R止まり13の位置は開口外周よりt離れた同心円となっている。なお、後面エッジ部のRは小さくてよく、流量係数にもあまり影響ないので手作業で容易にできる。
【0005】
【発明が解決しようとする課題】
このように全周均一にR取りするためには、多軸、例えば5軸NCマシンを必要とし、加工機械が限られ、しかも機械占有時間が長くかかっていた。またNCマシンといえども穴開工具(回転穴開工具14)はステップ状に動くため、加工面に穴開工具のチャタリングマーク(多面体状の加工痕)が出来て、最終的に手仕上げで平滑にしていた。このためコストがかさみ仕上げ者により品質、加工時間にばらつきがでていた。なお、流量係数を確定し、応力集中を少なくするためには、開口の全周を一様なR取りとする必要はなく、Rの分布が滑らかであればよいことが、解析やテストの結果分かってきた。しかし、同一製品をある程度多数生産する場合が多いので、同一開口はRの形状の分布が同一となる必要がある。
【0006】
本発明は、上述の問題点に鑑みてなされたもので、加工方法を機械的に単純化し手作業を排し同一開口はRの形状の分布が同一となるようにする曲面上に設けた空気口のエッジ加工方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明では、所定精度の空気の通過流量を必要とする曲面上に設けた空気口の前面エッジ部を、前記空気口と同一軸上に回転軸を設定した回転穴開工具により滑らかに加工し、エッジ加工範囲をほぼ楕円状とする。
【0008】
空気口の軸と同一軸上に回転穴開工具を設定し、所定の送り代とし、曲面形状、空気口の大きさ、回転穴開工具の形状を同じくすれば、前面エッジ部のRの分布形状は同じくなる。回転穴開工具による加工は軸方向への送りだけでよいので、作業が単純であり加工時間も少なくてよい。また加工は手仕上げを行わないので均一となる。
【0009】
請求項2の発明は、前記回転穴開工具は前記空気口より大きな直径の円筒体で加工側先端は前記空気口より小さな直径であり、この先端と本体との接続形状は円弧、または円弧とその少なくても一端にその円弧への接線が接続した形状となっている。
【0010】
回転穴開工具の先端部をRが大きければRのみとし、やや小さければRの一端にはRの接線を接続し、さらに小さければRの両端にRの接線を接続する。これにより指定されたRの形状を成形でき、切削性の良い回転穴開工具とすることができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。図1はジエットエンジンの低圧タービン動翼を支持するコーンシャフトの構成を示す縦断面である。回転軸1の後端は軸心Cを中心軸とする軸後端円錐1aとなっており、この軸後端円錐1aに接続して第1円錐2と第2円錐3が軸心Cを中心軸とし、互いに逆向きに設けられている。第1円錐2の後端には低圧タービン動翼4が結合され、この回転力を回転軸1に伝達する。
【0012】
第1円錐2には第1空気口5、第2円錐3には第2空気口6が設けられ空気を所定精度の流量で流して冷却等に使用している。またこれらの空気口5,6周囲には大きな応力が発生する。所定の流量係数を得るためと応力集中を緩和し疲労強度を高め寿命を長くするため、空気の流入する面の開口エッジには大きなRを取り、出口側の後面開口エッジには小さなRが取られる。小さなRは手作業で容易に取ることができるので、以下空気流入側の面のエッジのR取りについて説明する。
【0013】
図2は本実施の形態の空気口のエッジ加工方法を示す図である。曲面板10は円筒面や円錐面のように一方向の曲がりを有する曲面が多いが、二方向の曲がりを有する二重曲面もあり、いずれの曲面に対しても本加工法を適用する。開口11は直径dを有する。前面エッジ部12は空気流入側のエッジ部で本発明の加工方法によりR取りが行われるところである。13は前面のR取りした範囲を表すR止まりを示す。回転穴開工具14は円筒体で本体部14aの直径D1は開口直径dより大きく、先端14bの直径D2はdより小さい。D1とD2との間は円弧または円弧と円弧への接線で結ばれている。この形状の回転穴開工具14で加工される前面エッジ部12の形状はRで示す円弧状または円弧状とFLATで示す平面状となる。
【0014】
図3は回転穴開工具の先端部の形状を示す図である。本体部14aと先端14bとの接続形状を示し、(a)は大きな半径のRで結んだ形状を示し、(b)はやや小さな半径RとこのRの接線Sを一端に接続した形状を示し、(c)はさらに小さな半径RとこのRの接線Sを両端に接続した形状を示す。これらのいずれを用いるかは前面エッジ部12に設けるRの形状により決められる。回転穴開工具としては回転カッターや回転砥石を用いる。
【0015】
前面エッジ部12のR取りは開口11の軸心と回転穴開工具14の回転軸を一致させ、回転穴開工具14を回転させ所定の送り代だけ送れればよい。加工されるRの形状は図3に示した穴開工具先端部の形状と送り代によって決まる。これらは曲面板10の形状、開口11の大きさに基づき予め計算によって求めることができる。このように加工方法が簡単であるため、同一形状の曲面板10に同一直径の開口11が設けられていれば、同一形状となるR取りを行うことは容易にできる。
【0016】
前面エッジ部12のRの形状とその分布を決めるに当たっては、流量係数が所定の値となるように、また応力集中による疲労強度が所定の値となるよう解析が行われる。解析の結果、従来のように全周を同一のRとしなくても流量係数の大きな低下や疲労強度の大きな低下は生じないことが判明している。
【0017】
図4は図1に示す第1空気口5を示し、(a)は図1のA−A矢視図、(b)は(a)のD−D断面図、(c)は(a)のE−E断面図である。円錐の場合稜線は直線となるが、第1空気口5の場合(b)に示すように曲線となっており、第1空気口5の周囲曲面は二重曲面となっている。中心軸Cに対する円錐面の曲率は、稜線に沿って変化するため、開口外周よりR止まり13までを示す距離は下側でt1、上側でt2と異なっている。D−D断面に対して左右は同一の曲面となっているので開口外周よりR止まり13まではともにt3となっている。このためR止まりの形状は左右対称であるが上下は異なり変形楕円となっている。この場合長さt1で示す位置を中心にその周囲のR取りした形状はRと直線を結んだ形状となっている。なおd1は第1空気口5の直径を示す。
【0018】
図5は図1に示す第2空気口6を示し、(a)は図1のB−B矢視図、(b)は(a)のF−F断面図、(c)は(a)のG−G断面図である。第2空気口6の周囲曲面は単純円錐なので、F−F断面は直線となる。またG−G断面はF−F断面に対して対称となっている。単純円錐であっても中心軸Cに対する円錐面の曲率は、稜線に沿って変化するため、開口外周よりR止まり13までを示す距離は下側と上側で異なりR止まり13は変形楕円となるが、第2空気口6の直径を示す開口d2の大きさが小さい場合、開口外周よりR止まり13までを示す距離は下側と上側とで製作許容値を考慮すれば同一としてよい。本実施の形態の場合、第2空気口6は第1空気口5に対して小さい。このため(a)に示すようにR止まり13は楕円としており、開口外周よりR止まり13までを示す距離はF−F断面で上下ともt4、G−G断面で左右ともt5である。
【0019】
【発明の効果】
以上の説明より明らかなように、本発明は、曲面に設けられた空気口のエッジを回転穴開工具の軸を空気口の軸と同一に設定し所定の送りをすることにより、所定の流量係数と疲労強度を有するR取りをすることができる。この工法は単純であり手仕上げを必要としないので、同一の仕上げ形状のものを量産でき、機械加工時間も少なくてよい。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す低圧タービンコーンシャフトの縦断面図である。
【図2】 本実施の形態の加工方法を示す図である。
【図3】回転穴開工具の先端部形状を示す図である。
【図4】 図1のA−A矢視図である。
【図5】図1のB−B矢視図である。
【図6】 曲面に設けられた空気口の従来の加工方法を説明する図である。
【符号の説明】
1 回転軸
1a 軸後端円錐
2 第1円錐
3 第2円錐
4 低圧タービン動翼
5 第1空気口
6 第2空気口
10 曲面板
11 開口
12 前面エッジ部
13 R止まり
14 回転穴開工具
14a 本体部
14b 先端
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an edge processing method for an air port that is provided on a curved surface and requires a predetermined flow rate of air.
[0002]
[Prior art]
In an aeronautical gas turbine engine or the like, an opening is formed in a curved plate and air for cooling or the like is taken in to cool a high temperature portion. FIG. 1 is a longitudinal section showing a configuration of a cone shaft that supports a low-pressure turbine blade of a jet engine. The rear end of the rotary shaft 1 is a shaft rear end cone 1a with the axis C as the central axis. The first cone 2 and the second cone 3 are connected to the shaft rear end cone 1a and the axis C is the center. The shafts are provided in opposite directions. A low-pressure turbine blade 4 is coupled to the rear end of the first cone 2, and this rotational force is transmitted to the rotary shaft 1.
[0003]
The first cone 2 is provided with a first air port 5, and the second cone 3 is provided with a second air port 6, which is used for cooling by flowing air at a predetermined flow rate. In order to accurately estimate the flow rate of air flowing through the air ports 5 and 6, it is necessary to determine the flow coefficient of each air port 5 and 6. Further, stress concentration tends to occur around such an opening, and the fatigue strength is reduced and the life is shortened. Therefore, the shape of the stress must be reduced. For this reason, conventionally, the edge of the front surface of the opening is made to be a circular arc uniformly around the entire circumference (referred to as R). When the opening is provided in a flat plate, it is easy to take R uniformly around the entire circumference, but in the case of an opening provided in a curved plate, it is difficult to take R, so R-taking is performed by a multi-axis NC machine. It was.
[0004]
FIGS. 6A and 6B are diagrams showing R-removal by a multi-axis NC machine. FIG. 6A is a cross-sectional view, and FIG. The curved plate 10 is provided with an opening 11 having a diameter d, and the front edge portion 12 on the air inflow side is rounded by a rotary hole drilling tool 14 controlled by multi-axis NC control. The position of the R stop 13 is a concentric circle separated by t from the outer periphery of the opening. Note that R at the rear edge may be small, and the flow coefficient is not significantly affected, so that it can be easily performed manually.
[0005]
[Problems to be solved by the invention]
In this way, in order to perform R rounding uniformly on the entire circumference, a multi-axis, for example, 5-axis NC machine is required, the processing machines are limited, and the machine occupation time is long. In addition, even NC machines, the drilling tool (rotary drilling tool 14) moves stepwise, so that chattering marks (polyhedral machining traces) of the drilling tool are created on the machined surface, and finally smoothed by hand finishing. I was doing. For this reason, the cost was high, and quality and processing time varied depending on the finisher. In order to determine the flow coefficient and reduce stress concentration, it is not necessary to make the entire circumference of the opening uniform R, and it is only necessary that the distribution of R be smooth. I understand. However, since many of the same products are often produced to some extent, the same opening needs to have the same distribution of R shapes.
[0006]
The present invention has been made in view of the above-described problems, and is an air provided on a curved surface that mechanically simplifies the processing method and eliminates manual work so that the same opening has the same distribution of R shapes. An object of the present invention is to provide a mouth edge processing method.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the front edge portion of the air port provided on the curved surface requiring a predetermined flow rate of air is set on the same axis as the air port. The rotating hole drilling tool is smoothly processed to make the edge processing range almost elliptical.
[0008]
If the rotary hole drilling tool is set on the same axis as the axis of the air port, the feed margin is set, the curved surface shape, the size of the air port, and the shape of the rotary hole drilling tool are the same, the distribution of R at the front edge portion The shape is the same. Since the machining with the rotary hole drilling tool only needs to be fed in the axial direction, the work is simple and the machining time can be reduced. Further, the processing is uniform because no hand finishing is performed.
[0009]
According to a second aspect of the present invention, the rotary hole drilling tool has a cylindrical body having a diameter larger than that of the air port, and a machining side tip has a diameter smaller than that of the air port. At least one end has a shape in which a tangent to the arc is connected.
[0010]
If the tip of the rotary hole drilling tool has a large R, only R is used. If it is slightly smaller, the R tangent is connected to one end of R, and if it is smaller, the R tangent is connected to both ends of R. Thereby, the shape of the designated R can be formed, and a rotary hole drilling tool with good cutting performance can be obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal section showing a configuration of a cone shaft that supports a low-pressure turbine blade of a jet engine. The rear end of the rotary shaft 1 is a shaft rear end cone 1a with the axis C as the central axis. The first cone 2 and the second cone 3 are connected to the shaft rear end cone 1a and the axis C is the center. The shafts are provided in opposite directions. A low-pressure turbine blade 4 is coupled to the rear end of the first cone 2, and this rotational force is transmitted to the rotary shaft 1.
[0012]
The first cone 2 is provided with a first air port 5, and the second cone 3 is provided with a second air port 6, which is used for cooling by flowing air at a predetermined flow rate. Further, a large stress is generated around these air ports 5 and 6. In order to obtain a predetermined flow coefficient and to relieve stress concentration, to increase fatigue strength and to prolong the service life, a large R is taken at the opening edge of the air inflow surface and a small R is taken at the rear opening edge of the outlet side. It is done. Since a small R can be easily removed by hand, the following description will be made on the R of the edge of the air inflow side.
[0013]
FIG. 2 is a diagram showing an air port edge processing method according to the present embodiment. The curved plate 10 has many curved surfaces having a unidirectional curve, such as a cylindrical surface or a conical surface, but there is also a double curved surface having a bi-directional curve, and this processing method is applied to any curved surface. The opening 11 has a diameter d. The front edge portion 12 is an edge portion on the air inflow side and is where the R removal is performed by the processing method of the present invention. Reference numeral 13 denotes an R stop that represents a range where the front surface is rounded. The rotating hole drilling tool 14 is a cylindrical body, and the diameter D1 of the main body 14a is larger than the opening diameter d, and the diameter D2 of the tip 14b is smaller than d. D1 and D2 are connected by an arc or a tangent to the arc. The shape of the front edge portion 12 processed by the rotary hole drilling tool 14 having this shape is an arc shape indicated by R, or an arc shape indicated by R, and a planar shape indicated by FLAT.
[0014]
FIG. 3 is a diagram showing the shape of the tip of the rotary hole drilling tool. A connection shape between the main body 14a and the tip 14b is shown, (a) shows a shape connected by a large radius R, and (b) shows a shape where a slightly smaller radius R and a tangent S of this R are connected to one end. (C) shows a shape in which a smaller radius R and a tangent S of R are connected to both ends. Which of these is used is determined by the shape of R provided on the front edge portion 12. A rotary cutter or rotary grindstone is used as the rotary hole drilling tool.
[0015]
The R edge of the front edge portion 12 may be sent by a predetermined feed allowance by aligning the axis of the opening 11 with the rotation axis of the rotary hole drilling tool 14 and rotating the rotary hole drilling tool 14. The shape of R to be machined is determined by the shape and feed allowance of the tip of the drilling tool shown in FIG. These can be calculated in advance based on the shape of the curved plate 10 and the size of the opening 11. Since the processing method is simple as described above, if the curved plates 10 having the same shape are provided with the openings 11 having the same diameter, it is possible to easily perform R-removal having the same shape.
[0016]
In determining the shape and distribution of R of the front edge portion 12, an analysis is performed so that the flow coefficient becomes a predetermined value and the fatigue strength due to stress concentration becomes a predetermined value. As a result of the analysis, it has been found that a large decrease in the flow coefficient and a large decrease in fatigue strength do not occur even if the entire circumference is not set to the same R as in the prior art.
[0017]
4 shows the first air port 5 shown in FIG. 1, (a) is a view taken along the line AA in FIG. 1, (b) is a sectional view taken along the line DD in (a), and (c) is (a). It is EE sectional drawing of. In the case of a cone, the ridge line is a straight line, but in the case of the first air port 5, it is a curved line as shown in (b), and the surrounding curved surface of the first air port 5 is a double curved surface. Since the curvature of the conical surface with respect to the central axis C changes along the ridgeline, the distance from the outer periphery of the opening to the R stop 13 is different from t1 on the lower side and t2 on the upper side. Since the left and right sides of the DD cross section are the same curved surface, the distance from the outer periphery of the opening to the R stop 13 is t3. For this reason, the shape of the R stop is symmetrical, but the top and bottom are different and are deformed ellipses. In this case, the rounded shape around the position indicated by the length t1 is a shape connecting R and a straight line. D1 indicates the diameter of the first air port 5.
[0018]
FIG. 5 shows the second air port 6 shown in FIG. 1, (a) is a view taken along arrow BB in FIG. 1, (b) is a sectional view taken along line FF in (a), and (c) is (a). It is GG sectional drawing of. Since the surrounding curved surface of the second air port 6 is a simple cone, the FF cross section is a straight line. Further, the GG section is symmetric with respect to the FF section. Even if it is a simple cone, the curvature of the conical surface with respect to the central axis C changes along the ridgeline. Therefore, the distance from the outer periphery of the opening to the R stop 13 differs between the lower side and the upper side, but the R stop 13 becomes a deformed ellipse. When the size of the opening d2 indicating the diameter of the second air port 6 is small, the distance from the outer periphery of the opening to the R stop 13 may be the same if the manufacturing allowance value is considered on the lower side and the upper side. In the case of the present embodiment, the second air port 6 is smaller than the first air port 5. For this reason, as shown in (a), the R stop 13 is an ellipse, and the distance from the outer periphery of the opening to the R stop 13 is t4 in the top and bottom in the FF section and t5 in both the left and right in the GG section.
[0019]
【The invention's effect】
As is clear from the above description, the present invention provides a predetermined flow rate by setting the edge of the air port provided on the curved surface to the same axis as the axis of the air hole, and feeding a predetermined flow rate. R-removal having a coefficient and fatigue strength can be performed. Since this method is simple and does not require hand finishing, it can be mass-produced with the same finished shape and requires less machining time.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a low-pressure turbine cone shaft showing an embodiment of the present invention.
FIG. 2 is a diagram showing a processing method of the present embodiment.
FIG. 3 is a diagram showing the shape of the tip of a rotary hole drilling tool.
4 is an AA arrow view of FIG. 1;
FIG. 5 is a view taken along arrow BB in FIG. 1;
FIG. 6 is a diagram for explaining a conventional processing method of an air port provided on a curved surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating shaft 1a Shaft rear end cone 2 1st cone 3 2nd cone 4 Low pressure turbine rotor blade 5 1st air port 6 2nd air port 10 Curved plate 11 Opening 12 Front edge part 13 R stop 14 Rotating hole opening tool 14a Main body Tip of part 14b

Claims (2)

所定精度の空気の通過流量を必要とする曲面上に設けた空気口の前面エッジ部を、前記空気口と同一軸上に回転軸を設定した回転穴開工具により滑らかに加工し、エッジ加工範囲をほぼ楕円状とすることを特徴とする曲面上に設けた空気口のエッジ加工方法。The front edge part of the air port provided on the curved surface that requires a predetermined flow rate of air is smoothly machined by a rotary hole drilling tool with the rotation axis set on the same axis as the air port, and the edge machining range An edge processing method for an air port provided on a curved surface, wherein 前記回転穴開工具は前記空気口より大きな直径の円筒体で加工側先端は前記空気口より小さな直径であり、この先端と本体との接続形状は円弧、または円弧とその少なくても一端にその円弧への接線が接続した形状となっていることを特徴とする請求項1記載の曲面上に設けた空気口のエッジ加工方法。The rotary hole drilling tool has a cylindrical body having a diameter larger than that of the air port, and a tip on the processing side has a diameter smaller than that of the air port. The connection shape between the tip and the main body is an arc or an arc and at least one end thereof. 2. A method for processing an edge of an air port provided on a curved surface according to claim 1, wherein a tangent to the arc is connected.
JP17323396A 1996-07-03 1996-07-03 Edge processing method for air port on curved surface Expired - Fee Related JP3661897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17323396A JP3661897B2 (en) 1996-07-03 1996-07-03 Edge processing method for air port on curved surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17323396A JP3661897B2 (en) 1996-07-03 1996-07-03 Edge processing method for air port on curved surface

Publications (2)

Publication Number Publication Date
JPH1015719A JPH1015719A (en) 1998-01-20
JP3661897B2 true JP3661897B2 (en) 2005-06-22

Family

ID=15956624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17323396A Expired - Fee Related JP3661897B2 (en) 1996-07-03 1996-07-03 Edge processing method for air port on curved surface

Country Status (1)

Country Link
JP (1) JP3661897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949704B (en) * 2014-03-26 2016-04-27 西安西航集团莱特航空制造技术有限公司 The method for milling of rounding inside and outside the aperture of a kind of conical shell profiled holes on the surface

Also Published As

Publication number Publication date
JPH1015719A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
CN103038010B (en) Cut elbow and manufacture method thereof
US6158927A (en) Milling cutter
JP5269677B2 (en) Aerodynamically forming the leading edge of a blisk blade
US20030039547A1 (en) Method of manufacturing an integral rotor blade disk and corresponding disk
JP2009255288A5 (en)
JP4428044B2 (en) Impeller manufacturing method and impeller
EP3025812B1 (en) Method for forming by metal cutting a circular groove
JPH01199702A (en) Cutting insert
US11890687B2 (en) Milling tool and workpiece machining method
US11167360B2 (en) Method for manufacturing processed article, tool path calculation method, processed article, and impeller
JP2581959B2 (en) Spool for spool valve and method of manufacturing the same
CN106312158A (en) Chute machining method for inner wall face of case of aero-engine
US20100104386A1 (en) Grooving work method and grooving work apparatus
WO2019044791A1 (en) Tapered reamer
JP3661897B2 (en) Edge processing method for air port on curved surface
US6419561B1 (en) Method and apparatus for making a cutting tool having a plurality of margins
WO2021038848A1 (en) Integrally bladed rotor manufacturing method, blade cutting program for same, and integrally bladed rotor
US6431962B1 (en) Method and apparatus for making a cutting tool having a flute
CN207004917U (en) A kind of milling semi-open type 3 d impeller
JP4183058B2 (en) Blade cutting method
JPH106119A (en) Machining method for radial flow impeller
CN110703695B (en) Turning control method and device with variable feed speed and machining lathe
US20030061918A1 (en) Method for making insert for rotary cutter
JP2845888B2 (en) Rounding method of bending part in bending hole
JPH07195221A (en) Roughing ball end mill

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees