JP3659710B2 - Method for controlling parison deviation in hollow molding machine - Google Patents

Method for controlling parison deviation in hollow molding machine Download PDF

Info

Publication number
JP3659710B2
JP3659710B2 JP25968095A JP25968095A JP3659710B2 JP 3659710 B2 JP3659710 B2 JP 3659710B2 JP 25968095 A JP25968095 A JP 25968095A JP 25968095 A JP25968095 A JP 25968095A JP 3659710 B2 JP3659710 B2 JP 3659710B2
Authority
JP
Japan
Prior art keywords
parison
die
molding machine
camera
hollow molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25968095A
Other languages
Japanese (ja)
Other versions
JPH0999481A (en
Inventor
幹夫 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tahara Machinery Ltd
Original Assignee
Tahara Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tahara Machinery Ltd filed Critical Tahara Machinery Ltd
Priority to JP25968095A priority Critical patent/JP3659710B2/en
Publication of JPH0999481A publication Critical patent/JPH0999481A/en
Application granted granted Critical
Publication of JP3659710B2 publication Critical patent/JP3659710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • B29C49/0411Means for defining the wall or layer thickness
    • B29C49/04114Means for defining the wall or layer thickness for keeping constant thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C2049/787Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C2049/787Thickness
    • B29C2049/7871Thickness of the extruded preform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は中空成形機においてダイヘッドから吐出するパリソンの曲がりによる偏肉を防止するため、パリソン位置をカメラで検出してパリソンの曲がりが生じた場合に、曲がりの量を演算させてその結果に応じた値をアクチュエータに入力しダイを動かして調節することにより、偏肉のない品質の安定した整形品が得られるようにする中空成形機のパリソン偏肉調整制御方法に関する。
【0002】
【従来の技術】
中空成形機のダイヘッドから吐出されるパリソンは、押出機から略90度方向変換された樹脂が環状に均等に分流されて均厚で垂下することが望ましいのであるが、樹脂は押出機からダイヘッドに移り流れの方向が変えられ、かつ環状に分配されるため自ら入口側と反入口側とでは樹脂圧が異なり、流れが不均一となることは避けられない。
【0003】
これを解決せんとして、樹脂流路の断面積或いは勾配を適宜選択して樹脂が円周方向に均一に分配されるような考慮が払われて来たが、満足すべき均一度が得られないのが実情であった。そのため、意識的に円周方向のパリソン肉厚を変えて均一肉厚の製品を得ることが不可欠とされて来た。
【0004】
そこで、ダイヘッドの内外周にヒーターを設け、ヒーター温度を制御することにより偏肉調整を行い(実開昭55−96720号公報参照)、若しくは、中空成形機のオペレーターが、長年の経験と熟練に基づく勘により、ダイを操作することにより手作業にて偏肉を調整して来た。
【0005】
【発明が解決しようとする課題】
しかしながら、偏肉調整のために、ヒーターを設けることは、熱による制御であるから応答性が悪い欠点がある。また、ヒーターにて樹脂に与える熱量はダイヘッドを通過する樹脂量と通過時間により左右されるから、押出量が多くなると効果が薄いと云う欠点がある。
【0006】
そして、オペレーターの勘による手作業は、個人差が大きいばかりでなく、中空成形機の稼働を一時停止して行わねばならないために、生産効率が低下するほか、ダイヘッドは溶融樹脂で加熱されているため火傷をし易くて安全性に欠ける、等の不都合がある。
【0007】
そこで、この発明は、上記問題点に鑑み、パリソン位置をカメラで検出し画像が設定領域からはみ出した量を演算し、その結果に応じてアクチュエータによりダイを動かすことにより、常に肉厚が均一の製品を得ることができる中空成形機の偏肉調整制御方法を提供する。
【0008】
【課題を解決するための手段】
この発明にかかる中空成形機のパリソン偏肉調整方法は、請求項1によれば、ダイヘッドから吐出するパリソンの下方にカメラを設置し、該カメラで取り込んだパリソン端面の画像がモニタに設定したパリソンの基準外周円に対してX,Y方向のパリソンの曲がりによるはみ出し量を検出し、このX,Y方向の差に応じてダイを動かすことによりパリソンの偏肉を調整することを特徴とする。
【0009】
基準外周円は偏肉のない成形品を得るための外周円であるため、必ずしも真円の設定でなくてもよく、パリソンの端面の画像が基準外周面内に収まる限りにおいて、パリソンの偏肉が生じていないものとみなす。
【0010】
請求項によれば、ダイヘッドから吐出するパリソンの少なくとも直交する2側方にカメラをそれぞれ設置し、該カメラで取り込んだパリソン側面の画像からパリソンの両側端の基準検出領域にかかる左右の面積差で曲がり量を検出し、この差に応じてダイを動かすことによりパリソンの偏肉を調整することを特徴とする。
【0011】
【発明の実施の形態】
以下にこの発明に実施の形態を図を参照して説明する。パリソンの曲がりを検出するための第1例として、図1に示すように、ダイヘッド1から吐出して垂下するパリソン2の真下にカメラ3を所定間隔を有して固定し、カメラ3が捕えたパリソン2の端面の画像4を制御解析装置7を介しモニタ5に表示させる。カメラ3はインターレースカメラ、シャッタカメラ又はファイバースコープ等が用いられる。
【0012】
カメラ3の取り込んだ画像を表示させるモニタ5の画面には、偏肉のない最適な製品を得るために対応する基準外周円6を設定する。この基準外周円6内にパリソン2の下端面の画像4が位置しているか否かを検出する。したがって、基準外周円は偏肉のない製品を得るための外周円であるため、必ずしも真円の設定でなくともよい。画像4が基準外周円6内に収まる限りにおいて、パリソン2の偏肉が生じていないものとする。
【0013】
そこで、画像4が基準外周円6からX又はYの軸方向へ平行にはみ出した場合に、はみ出した部位に相当する180度反対位置のダイの側部を中心方向へ動かす。また、X軸とY軸の中間方向へはみ出した場合には、ダイをX軸方向及びY軸方向へ共に所定量動かし、画像4が基準外周円6内に収まるように調整するのである。この調整には、ダイがサーボモーターや油圧サーボシリンダ等のアクチュエータでX軸及びY軸方向へ移動できるダイヘッドの構造を採用する。
【0014】
ダイをX,Y方向に移動させる構造についての一例を説明すると、図4に示すように、中空成形機におけるダイヘッド1のコア21を中心として所定の間隙を有して環状に取り巻くダイ22にフランジ部23を形成し、このフランジ部23を載置する底面を有するカラー24をダイヘッド1に固定し、その底面の中心孔25にダイ22を遊嵌して全方向へ移動可能にする。
【0015】
そして、カラー24の外周面にX,Y方向の90度間隔でアクチュエータとして4つの油圧サーボシリンダ26,26aを配置固定し、油圧サーボシリンダ26,26aはピストン27を内蔵し、このピストン27に一端部を結合したピストンロッド28がダイ22の側面に当接又は結合し、X,Y方向で対としてダイ22の側面を押す。
【0016】
したがって、ダイ22はX,Y方向へそれぞれ往復移動でき、これにより所望部位のダイ22とコア21間の間隙29を縮小拡大できる。また、X,Y方向へ共に移動させながら、それらの移動量を互いに変更すればX,Yで囲まれた範囲へも自在に移動させることができる。ここで、アクチュエータはX,Y各1個で押し引きできるものでもよい。また、サーボシリンダ26,26aはサーボモーターに代えてもよい。
【0017】
そして、パリソンの曲がりを検出するための第2例として、図2に示すように、ダイヘッド1から吐出し垂下するパリソン2の周囲に、正面側と側面側との直交する2側方にそれぞれカメラ3,3aを固定し、それらのカメラ3,3aが捕えた画像4,4aを制御解析装置7を介しモニタ5に表示させる。
【0018】
モニタ5の画面には、パリソン2の曲がりを検出するため左右の検出領域8を設定し、右端の検出領域8,8aにかかるパリソン面積部ARと左端の検出領域8,8aにかかるパリソン面積部ALがカメラ3によるX方向、及び、カメラ3aによるY方向の画面にそれぞれ検出させる。制御解析装置7は前記ダイヘッド1のダイ22をX,Y方向に移動させるための前記サーボアクチュエータ26,26aに、X又はY方向移動量の信号を送付する。
【0019】
そこで、第1及び第2例の偏肉調整制御を第2例について説明すると、X,Y方向共にそれぞれ、図3に示すように、第1ステップ10としてパリソンが基準長さに達したか否かを判断させ、基準長さに達した場合、第2ステップ11として画像をモニタ5に取り込む。
【0020】
そして、第3ステップ12として、モニタ5に取り込まれた画像におけるパリソンの左端及び右端の検出領域8,8aにかかるパリソン面積部AR,ALの面積を計算させ、第4ステップ13としてAR/AL=1±X(Xは不感帯)を外れた場合、第5ステップ14として制御上のハンテングを防ぐため、N回連続して外れたか判断させる。
【0021】
第6ステップ15においてAR/ALが、1.0以下であれば第7ステップ16として、左側のダイ及びコアのスリットが小さくなる方向に移動させ(a△xmm)、1.0以上であれば第8ステップ17として、右側のダイ及びコアのスリットが小さくなる方向に移動させる(a△xmm)。
【0022】
そして第9ステップ18としてパリソンが安定するまでn回計測を無視し、第10ステップ19として移動指示量(△x)と面積差の減少量(△A)を計算し、第11ステップ20として△x∝a△Aの関係式を求める。
【0023】
ここで、補正定数aはダイコアの形状や原料の変更等により成形品により異なるため、当初に固定値を入力しておけば、偏肉調整を行う毎にaの値が修正され、繰り返し行うことにより、学習的に集約され、最適値が求まる。
【0024】
【発明の効果】
以上説明したこの発明によれば、自動的にパリソンの偏肉を修正できるので、オペレーターの勘に頼ることがないから偏肉調整の個人差が出ることもなく、良質で安定した中空成形製品を得ることができる。したがって、オペレーターが火傷を負うこともなく、稼働を一時停止して肉厚調整をすることもなく、また、ヒーターの制御によるものでないから応答性が良好で効果的な偏肉調整制御ができる。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す斜視図
【図2】この発明の第2の実施の形態を示す斜視図
【図3】この発明の偏肉調整制御フロー図
【図4】ダイスの可動構造を示す断面正面図(A)及び断面平面図(B)
【符号の説明】
1…ダイヘッド
2…パリソン
3,3a…カメラ
4…画像
5…モニタ
6…基準外周円
7…制御解析装置
8,8a…検出領域
21…コア
22…ダイ
AR,AL…検出領域にかかるパリソン面積部
[0001]
BACKGROUND OF THE INVENTION
In order to prevent unevenness due to the bending of the parison discharged from the die head in the hollow molding machine, when the parison position is detected by the camera and the parison is bent, the amount of the bending is calculated and the result is The present invention relates to a parison thickness adjustment control method for a hollow molding machine in which a stable shaped product with no thickness deviation is obtained by inputting the measured value into an actuator and adjusting the die by moving the die.
[0002]
[Prior art]
In the parison discharged from the die head of the hollow molding machine, it is desirable that the resin whose direction is changed by about 90 degrees from the extruder is evenly divided into a ring and droops with a uniform thickness. However, the resin is dropped from the extruder to the die head. Since the direction of the moving flow is changed and distributed in an annular shape, it is inevitable that the resin pressure is different between the inlet side and the counter-inlet side, and the flow is not uniform.
[0003]
As a solution to this problem, consideration has been given to appropriately selecting the cross-sectional area or gradient of the resin flow path so that the resin is uniformly distributed in the circumferential direction, but satisfactory uniformity cannot be obtained. It was the actual situation. Therefore, it has been essential to obtain products with uniform wall thickness by consciously changing the parison wall thickness in the circumferential direction.
[0004]
Therefore, heaters are provided on the inner and outer circumferences of the die head, and the thickness is adjusted by controlling the heater temperature (see Japanese Utility Model Publication No. 55-96720), or the operator of the hollow molding machine has many years of experience and skill. Based on the intuition, the thickness has been adjusted manually by operating the die.
[0005]
[Problems to be solved by the invention]
However, the provision of a heater for the adjustment of uneven thickness has a drawback that the response is poor because it is controlled by heat. Further, since the amount of heat given to the resin by the heater depends on the amount of resin passing through the die head and the passage time, there is a disadvantage that the effect is small when the amount of extrusion increases.
[0006]
And the manual work by the operator's intuition is not only large in individual differences, but also has to be done with the operation of the hollow molding machine temporarily stopped, which reduces production efficiency and the die head is heated with molten resin Therefore, there are inconveniences such as easy burns and lack of safety.
[0007]
In view of the above problems, the present invention detects the parison position with the camera, calculates the amount of the image protruding from the set area, and moves the die according to the result, so that the wall thickness is always uniform. Provided is a thickness adjustment control method for a hollow molding machine capable of obtaining a product.
[0008]
[Means for Solving the Problems]
According to claim 1, the parison thickness adjustment method for a hollow molding machine according to the present invention is a parison in which a camera is installed below the parison discharged from the die head , and an image of the parison end face captured by the camera is set on the monitor. The amount of protrusion due to the bending of the parison in the X and Y directions with respect to the reference outer circumferential circle is detected, and the uneven thickness of the parison is adjusted by moving the die according to the difference between the X and Y directions .
[0009]
Since the reference outer circle is an outer circle for obtaining a molded product with no uneven thickness, it is not always necessary to set a perfect circle. As long as the image of the end surface of the parison is within the reference outer periphery, the uneven thickness of the parison Is considered to have not occurred.
[0010]
According to claim 2 , a camera is installed on each of at least two orthogonal sides of the parison ejected from the die head, and the difference between the left and right areas on the reference detection areas at both ends of the parison from the image of the parison side captured by the camera The bending amount of the parison is adjusted by detecting the amount of bending and moving the die according to this difference.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. As a first example for detecting the bending of the parison, as shown in FIG. 1, the camera 3 is fixed at a predetermined interval just below the parison 2 that is discharged from the die head 1 and hangs down. The image 4 of the end surface of the parison 2 is displayed on the monitor 5 via the control analysis device 7. As the camera 3, an interlace camera, a shutter camera, a fiber scope, or the like is used.
[0012]
On the screen of the monitor 5 on which the image captured by the camera 3 is displayed, a corresponding reference outer circumference circle 6 is set in order to obtain an optimal product without uneven thickness. It is detected whether or not the image 4 on the lower end surface of the parison 2 is located in the reference outer circumference circle 6. Accordingly, since the reference outer circle is an outer circle for obtaining a product with no uneven thickness, it is not always necessary to set a perfect circle. As long as the image 4 is within the reference outer circumference circle 6, it is assumed that the uneven thickness of the parison 2 has not occurred.
[0013]
Therefore, when the image 4 protrudes in parallel with the X or Y axial direction from the reference outer circumference circle 6, the side portion of the die opposite to the position corresponding to the protruding portion is moved toward the center. Further, when it protrudes in the intermediate direction between the X axis and the Y axis, the die is moved by a predetermined amount in both the X axis direction and the Y axis direction so that the image 4 is adjusted to be within the reference outer circumference circle 6. This adjustment employs a die head structure in which the die can be moved in the X-axis and Y-axis directions by an actuator such as a servo motor or a hydraulic servo cylinder.
[0014]
An example of a structure for moving the die in the X and Y directions will be described. As shown in FIG. 4, a flange is formed on the die 22 that surrounds the ring 22 with a predetermined gap around the core 21 of the die head 1 in the hollow molding machine. A collar 24 having a bottom surface on which the flange portion 23 is placed is fixed to the die head 1, and the die 22 is loosely fitted in the center hole 25 on the bottom surface so as to be movable in all directions.
[0015]
Then, four hydraulic servo cylinders 26 and 26a are arranged and fixed as actuators at an interval of 90 degrees in the X and Y directions on the outer peripheral surface of the collar 24. The hydraulic servo cylinders 26 and 26a have a piston 27 built therein. Piston rods 28, which are coupled to each other, abut or are coupled to the side surface of die 22, and push the side surface of die 22 in pairs in the X and Y directions.
[0016]
Therefore, the die 22 can reciprocate in the X and Y directions, respectively, and the gap 29 between the die 22 and the core 21 at a desired site can be reduced or enlarged. In addition, if they are moved in the X and Y directions and their movement amounts are changed with each other, they can be freely moved to a range surrounded by X and Y. Here, the actuator may be one that can be pushed and pulled by one each of X and Y. The servo cylinders 26 and 26a may be replaced with servo motors.
[0017]
Then, as a second example for detecting the bending of the parison, as shown in FIG. 2, a camera is disposed around the parison 2 that is discharged from the die head 1 and hangs down, on two sides perpendicular to the front side and the side. 3 and 3 a are fixed, and images 4 and 4 a captured by the cameras 3 and 3 a are displayed on the monitor 5 via the control analysis device 7.
[0018]
On the screen of the monitor 5, left and right detection areas 8 are set in order to detect the bending of the parison 2, and the parison area area AR covering the right end detection areas 8 and 8 a and the parison area section covering the left end detection areas 8 and 8 a. The AL is detected on the screen in the X direction by the camera 3 and the screen in the Y direction by the camera 3a. The control analysis device 7 sends a signal indicating the amount of movement in the X or Y direction to the servo actuators 26 and 26a for moving the die 22 of the die head 1 in the X and Y directions.
[0019]
Therefore, the thickness adjustment control of the first and second examples will be described with respect to the second example. As shown in FIG. 3 in both the X and Y directions, whether the parison has reached the reference length as the first step 10 or not. If the reference length is reached, the second step 11 captures an image into the monitor 5.
[0020]
Then, as the third step 12, the areas of the parison area portions AR and AL applied to the detection areas 8 and 8 a at the left end and the right end of the parison in the image captured by the monitor 5 are calculated, and AR / AL = When 1 ± X (X is a dead zone) is deviated, as a fifth step 14, in order to prevent control hunting, it is determined whether it deviates N times consecutively.
[0021]
In the sixth step 15, if AR / AL is 1.0 or less, as the seventh step 16, the left die and the core slit are moved in the direction of decreasing (aΔxmm). In step 17, the right die and the core slit are moved in the direction of decreasing (aΔxmm).
[0022]
Then, the ninth step 18 ignores the measurement n times until the parison is stabilized, the tenth step 19 calculates the movement instruction amount (Δx) and the area difference reduction amount (ΔA), and the eleventh step 20 Δ The relational expression of x∝aΔA is obtained.
[0023]
Here, since the correction constant a varies depending on the molded product due to changes in the shape of the die core, raw materials, etc., if a fixed value is input at the beginning, the value of a is corrected and repeated each time the thickness adjustment is performed. Thus, learning is aggregated and the optimum value is obtained.
[0024]
【The invention's effect】
According to the present invention described above, since the uneven thickness of the parison can be automatically corrected, there is no individual difference in uneven thickness adjustment without relying on the operator's intuition, and a high quality and stable hollow molded product can be obtained. Can be obtained. Therefore, the operator is not burned, the operation is not temporarily stopped and the wall thickness is not adjusted, and since it is not based on the control of the heater, the responsiveness is good and the effective wall thickness adjustment control can be performed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of the present invention. FIG. 2 is a perspective view showing a second embodiment of the present invention. Cross sectional front view (A) and sectional plan view (B) showing movable structure of die
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Die head 2 ... Parison 3, 3a ... Camera 4 ... Image 5 ... Monitor 6 ... Reference | standard outer periphery circle | round | yen 7 ... Control analysis apparatus 8, 8a ... Detection area 21 ... Core 22 ... Die AR, AL ... Parison area part concerning detection area

Claims (2)

ダイヘッドから吐出するパリソンの下方にカメラを設置し、該カメラで取り込んだパリソン端面の画像がモニタに設定したパリソンの基準外周円に対してX,Y方向のパリソンの曲がりによるはみ出し量を検出し、このX,Y方向の差に応じてダイを動かすことによりパリソンの偏肉を調整することを特徴とする中空成形機のパリソン偏肉調整制御方法。  A camera is installed below the parison ejected from the die head, and the image of the parison end face captured by the camera detects the amount of protrusion due to the bending of the parison in the X and Y directions with respect to the reference outer circumference circle of the parison set on the monitor, A parison thickness adjustment control method for a hollow molding machine, characterized in that the thickness deviation of a parison is adjusted by moving a die according to the difference between the X and Y directions. ダイヘッドから吐出するパリソンの少なくとも直交する2側方にカメラをそれぞれ設置し、該カメラで取り込んだパリソン側面の画像からパリソンの両側端の基準検出領域にかかる左右の面積差で曲がり量を検出し、この差に応じてダイを動かすことによりパリソンの偏肉を調整することを特徴とする中空成形機のパリソン偏肉調整制御方法。Cameras are installed on at least two orthogonal sides of the parison discharged from the die head, and the amount of bending is detected from the left and right area difference between the reference detection areas on both ends of the parison from the images of the parison side captured by the camera. A parison thickness adjustment control method for a hollow molding machine, wherein the thickness deviation of the parison is adjusted by moving a die according to the difference.
JP25968095A 1995-10-06 1995-10-06 Method for controlling parison deviation in hollow molding machine Expired - Fee Related JP3659710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25968095A JP3659710B2 (en) 1995-10-06 1995-10-06 Method for controlling parison deviation in hollow molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25968095A JP3659710B2 (en) 1995-10-06 1995-10-06 Method for controlling parison deviation in hollow molding machine

Publications (2)

Publication Number Publication Date
JPH0999481A JPH0999481A (en) 1997-04-15
JP3659710B2 true JP3659710B2 (en) 2005-06-15

Family

ID=17337424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25968095A Expired - Fee Related JP3659710B2 (en) 1995-10-06 1995-10-06 Method for controlling parison deviation in hollow molding machine

Country Status (1)

Country Link
JP (1) JP3659710B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262468A (en) * 2008-04-28 2009-11-12 Japan Steel Works Ltd:The Setting stroke profile displaying method in radial wall-thickness adjustment of blow molding machine and device
CN102285092B (en) * 2011-06-01 2013-06-19 山东科技大学 Greenhouse film production line die head positioning, arranging and measuring system based on machine vision and operation method thereof
JP2016078400A (en) * 2014-10-22 2016-05-16 株式会社タハラ Press blow molding apparatus
IT201600099416A1 (en) * 2016-10-04 2018-04-04 Soffiaggio Tecnica Srl EXTRUSION AND BLOWING MACHINE WITH CONTROL DEVICE

Also Published As

Publication number Publication date
JPH0999481A (en) 1997-04-15

Similar Documents

Publication Publication Date Title
DE69432249T2 (en) CONTROL OF COOLING AND THICKNESS OF EXTRUDED ITEMS
CN112118948B (en) Method for automatically adjusting the gap size of a nozzle mechanism and control and/or adjustment system
EP0509216B1 (en) Device for the manufacturing of plastic tubes
US8262966B2 (en) Process for cooling flat plastic products
EP0751861B1 (en) Method and device for manufacturing biaxially oriented tubing from thermoplastic material
EP1733862B1 (en) Method of adjusting effective length of tie bars in a mold clamping apparatus of an injection molding machine
US10946551B2 (en) Methods of in-line extrudate inspection and feedback control for honeycomb body manufacture
JP3659710B2 (en) Method for controlling parison deviation in hollow molding machine
US6739855B2 (en) External thickness control and method
IT9021636A1 (en) PROCEDURE FOR OPERATING A BLOWN FILM EXTRUSION SYSTEM AND BLOWN FILM EXTRUSION SYSTEM EQUIPPED FOR SUCH PROCEDURE
EP0390696A2 (en) Apparatus for controlling thickness of film formed by melt extrusion
EP0180571A3 (en) Extrusion die arrangement and automatic centering extrusion method
CN112384354A (en) Method for automatically adjusting the gap size of a nozzle arrangement and control and/or adjustment system
DE19640928A1 (en) Device for the production of plastic composite pipes
DE1504740C3 (en) Device for regulating the distance between a casting roll and a casting container
EP1284180A1 (en) Motorised air ring
US5237844A (en) Device to control the temperature of extruded metallic sections during the extrusion step
US5141681A (en) Process and apparatus for the production of a packing sheet on a calender
JPH05116201A (en) Extruding equipment for synthetic resin pipe
JP2008238727A (en) Parison uneven thickness control method and apparatus in hollow molding machine
CN111745939A (en) Blown film forming device
JP4097324B2 (en) Parison wall thickness control method in hollow molding machine
JP3994742B2 (en) Sheet manufacturing method
EP0594018A1 (en) Extrusion appparatus for plastic profiles
JPH0516205A (en) Regulation mechanism of wall thickness in extruder for synthetic resin pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees