JP3659696B2 - Transfer device for four-wheel drive vehicle - Google Patents

Transfer device for four-wheel drive vehicle Download PDF

Info

Publication number
JP3659696B2
JP3659696B2 JP15621795A JP15621795A JP3659696B2 JP 3659696 B2 JP3659696 B2 JP 3659696B2 JP 15621795 A JP15621795 A JP 15621795A JP 15621795 A JP15621795 A JP 15621795A JP 3659696 B2 JP3659696 B2 JP 3659696B2
Authority
JP
Japan
Prior art keywords
hydraulic
clutch
side output
hydraulic pressure
wheel side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15621795A
Other languages
Japanese (ja)
Other versions
JPH092089A (en
Inventor
嘉大 生島
薫 澤瀬
貴久 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP15621795A priority Critical patent/JP3659696B2/en
Publication of JPH092089A publication Critical patent/JPH092089A/en
Application granted granted Critical
Publication of JP3659696B2 publication Critical patent/JP3659696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Transmission Device (AREA)

Description

【0001】
【産業上の利用分野】
本発明はトランスファ構造、特に、トランスファの変速用エレメントと、同エレメントを操作する油圧アクチュエータに油圧源からの作動油を供給する連通路とから成る作動油系を備えたトランスファ構造に関する。
【0002】
【従来の技術】
従来、車両の回転伝達系は変速機やトランスファーを備え、これら変速機やトランスファーには遊星歯車列が装備されることが多く、この遊星歯車列によって2輪駆動、4輪駆動の切換えや高速、低速モードの切換えが成されている。
例えば、トランスファーの場合、図示しない自動変速機A/Tからの出力回転を高低切換え機構と2輪駆動及び4輪駆動の切換え機構を経て変速及び分岐された出力回転を第1出力軸(後輪側)及び第2出力軸(前輪側)に伝達する。
【0003】
ここで、高低切換え機構は高速モードにおいて、変速用エレメントを切換え、遊星歯車列を直結状態に切換え出力軸に回転を伝達でき、低速モードにおいて、遊星歯車列を減速状態に切換え出力軸に回転伝達できる。
【0004】
一方、2輪駆動及び4輪駆動の切換え機構は変速用エレメントを切換え、2輪駆動時には後輪側にのみ回転を伝達し、4輪駆動時には前後4輪に回転を伝達するという切り換えを行う。
【0005】
【発明が解決しようとする課題】
ところが、この種のトランスファーは、各変速用エレメントに加わる油圧レベルが正確に高、低切り換わると共に、油圧によって切換えが確実に成される必要があるが、経時劣化等によって誤作動する場合がある。このように各変速用エレメントが誤作動すると駆動力が伝達されないか、あるいは変速比が互いに異なる各ギアが同時に噛み合い作動してしまうといった駆動系インターロック状態に陥る可能性もあり、問題と成っている。
本発明の目的は、変速用エレメントに連結される油圧回路の誤作動による駆動力伝達異常や、駆動系インターロック状態を回避できるトランスファ構造を提供することにある。
【0006】
【課題を解決するための手段】
上述の目的を達成するために、請求項1の発明は、駆動力源からの駆動力を前輪側出力部と後輪側出力部とに分配し、上記前輪側出力部と後輪側出力部との差動を許容するセンタデフを有する4輪駆動車のトランスファ装置において、上記センターデフは、上記駆動源に連結されて上記駆動力を入力する第1要素、上記前輪側出力部に上記駆動力を伝える第2要素、上記後輪側出力部に上記駆動力を伝える第3要素、及び固定部材に固定可能な第4要素とを含み、上記トランスファー装置は、さらに上記前輪側出力部と上記第2要素とを係合/解放可能とする油圧式第1クラッチと、上記前輪側出力部と上記第3要素とを係合/解放可能とする油圧式第2クラッチと、上記第4要素を上記固定部材に対して係合/解放可能とする油圧式ブレーキと、油圧が供給されないとき上記油圧式第1クラッチを係合状態とする付勢手段と、を備え、上記油圧式第2クラッチは、油圧が供給されたとき上記前輪側出力部と上記第3要素とを係合状態とし、上記油圧式ブレーキは、油圧が供給されたとき上記第4要素を固定状態とし、上記油圧式第1クラッチは、油圧が供給されないとき上記付勢手段により上記前輪側出力部と上記第2要素とを係合状態とすることを特徴とする。
【0007】
請求項2の発明は、駆動力源からの駆動力を入力する第1要素と、上記駆動力を前輪側出力部に伝える第2要素と、上記駆動力を後輪側出力部に伝える第3要素とを有し、上記駆動力を上記前輪側出力部と上記後輪側出力部とに分配するセンターデフと、同センターデフの上記要素と上記前輪側出力部との間に配設され、油圧を受けたとき上記第要素と上記前輪側出力部とを断状態に保持する油圧式クラッチと、供給される油圧に応じて上記センタデフから出力される回転力を高速段と低速段との間で切断可能とするとともに、供給される油圧が上記油圧クラッチと同じ油圧供給パターンを有する油圧式ブレーキと、上記油圧式クラッチへの第1油圧供給油路と、上記油圧式ブレーキへの第3油圧供給油路と、両油路共通して配設された弁装置と、を備え、上記弁装置は上記油圧式クラッチへの供給油圧と上記油圧式ブレーキへの供給油圧の偏差が所定値を上回る場合にのみ、上記油圧式クラッチ及び上記油圧式ブレーキへの油圧供給を遮断することを特徴とした。
【0008】
請求項3の発明は、請求項2記載の4輪駆動車のトランスファ装置において、上記弁装置は、上記油圧式クラッチへの供給油圧と上記油圧式ブレーキへの供給油圧の偏差が所定値以内で上記弁装置の切換え作動を規制できる中立バネを装着したことを特徴とする。
【0009】
請求項4の発明は、請求項2記載の4輪駆動車のトランスファ装置において、上記油圧式クラッチは第1の変速用エレメントをバネ力で接合させ、第1油圧アクチュエータが油圧を受けた際に上記バネ力を解除させてクラッチ断状態を保持することを特徴とする。
【0010】
【作用】
第1の発明は、センタデフによって駆動力源からの駆動力を前輪側出力部と後輪側出力部とに分配し、油圧源からの油圧によって、前輪側出力部に介装された油圧式第1クラッチ及び前輪側出力部と後輪側との間に介装された油圧式第2クラッチとを選択的に係合でき、特に油圧が作用しない時に油圧式第1クラッチを係合方向に付勢する付勢手段を設けたので、少なくとも、油圧式第1クラッチによる前輪側出力部と第2要素とを付勢手段の付勢力で接合させ、油圧式第1クラッチが油圧を受けた際に付勢力を解除させてクラッチ断状態を保持するので確実に油圧切換え時に切換え作動を行うことができる。
【0011】
第2の発明は、駆動力源からの駆動力を前輪側出力部と後輪側出力部とに分配するセンターデフと、同センターデフの第要素と上記前輪側出力部との間に配設され、油圧を受けたとき上記第要素と上記前輪側出力部とを断状態に保持する油圧式クラッチと、同油圧式クラッチと同じ油圧供給パターンを有する油圧式ブレーキと、上記油圧式クラッチへの第1油圧供給油路と、上記油圧式ブレーキへの第3油圧供給油路と、両油路共通して配設された弁装置と、を備え、上記弁装置は、上記油圧式クラッチへの供給油路と上記油圧式ブレーキへの供給油圧の偏差が所定値を上回る場合にのみ、両摩擦要素への油圧供給を遮断するので、第1及び第3油圧供給油路の油圧の偏差が所定値を下回る不感帯にある場合のみ油圧式クラッチ及び油圧式ブレーキを通常作動させて、変速作動を行わせ、偏差が大きな場合第1油圧供給油路及び第3油圧供給油路を共に遮断して油圧式クラッチ及び油圧式ブレーキを非作動とし誤作動と成る切換えを阻止する。
【0012】
請求項3の発明は、請求項2記載の4輪駆動車のトランスファ装置において、特に、弁装置が上記油圧式クラッチへの供給油圧と上記油圧式ブレーキへの供給油圧の偏差が所定値以内で弁装置の切換え作動を規制できる中立バネを装着したので、不感帯を容易に設定できる。
【0013】
請求項4の発明は、請求項2記載の4輪駆動車のトランスファ装置において、特に、油圧式クラッチは第1の変速用エレメントをバネ力で接合させ、第1油圧アクチュエータが油圧を受けた際にバネ力を解除させてクラッチ断状態を保持するので確実に油圧切換え時に変速作動を行うことができる。
【0014】
【実施例】
図1の4輪駆動車のトランスファ装置は4輪駆動車の動力伝達系内のトランスファー11に装着されている。
この動力伝達系は駆動源であるエンジン12と、その後に順次直列接続される自動変速機A/T及びトランスファー11と、トランスファー11の第1出力軸13に図示しないペラシャフトやリヤデフを介し接続される後輪とで構成される。
ここで自動変速機A/Tはトルクコンバータ(以後単にトルコン)14及び変速機15を備える。トルコン14はポンプ羽根車16によりクランク軸17の回転を油の運動エネルギに変換し、この油の運動エネルギをタービン羽根車18がタービン回転軸19の回転に再度変換するという処理を行い、両羽根車間のステータ20がその際の変換効率を調整するという周知の構成を採る。変速機15はタービン回転軸19の入力回転を遊星歯車列21及び図示しない油圧式アクチュエータを備えた変速用エレメントを用い複数段に変速し、出力軸22に直結されるトランスファー11の第1回転部材26に変速済の回転を出力する。
なお、符号24はギアポンプを示し、同ポンプ24はトルコン14内のポンプ羽根車16を介しクランク軸17に一体的に連結され、ポンプ作動時に自動変速機A/T及びトランスファー11の油圧回路の油圧源として働く。
【0015】
トランスファー11は、高低切換え機構(センターデフ機能を示す)111とセンタデフロック機構(以後単にロック機構と記す)112を経て変速及び分岐された出力回転を第1出力軸13及びベルトVを介し第2出力軸25に伝達する。
図1、図6に示すように、トランスファー11は出力軸22と一体の第1回転部材26と、後輪27に連結される第1出力軸13と、第1出力軸13の前部に外嵌される中間出力軸28と、第1出力軸13の後部に外嵌される第2回転部材29と、第1出力軸13の前部に一体結合された前キャリア30と、第1出力軸13の後部に一体結合された第3回転部材31とを備える。
【0016】
更に、中間出力軸28の後端には第4回転部材32が外嵌され、中間出力軸28の前部には筒状軸33が外嵌される。
筒状軸33はその前端に第2サンギア34を備え、且つ、後端が第1ブレーキB1を介しケーシング35に接離可能に支持される。中間出力軸28はその前端に第1サンギア36を備え、且つ、後端が第4回転部材32及び第1クラッチC1を介し第2回転部材29に接離可能に支持される。
高低切換え機構111の要部を成す第1ブレーキB1は、油圧アクチュエータの要部を成す油圧室45が油圧高レベル時(油圧オン時)に摺接エレメントを接合してブレーキ作動に入り、第2サンギア34を固定する。逆に、油圧室45が油圧低レベル時(油圧オフ時)に摺接エレメントの接合を解除してブレーキ非作動に入り、第2サンギア34を遊転させる。
【0017】
前キャリア30には内周歯37が形成され、内周歯37には第1回転部材26に枢支される第1ピニオンギア38が噛合う。この第1ピニオンギア38はその内側で第1サンギア36と噛合すると共に、第2ピニオンギア39を介し第2サンギア34にも噛み合う。
後輪27に連結される第1出力軸13はその軸内部に第1、第2中央油路40,41を並設される。第1中央油路40は図1の一方端側に連通する図示しない給油路より油圧を受け、複数の放出口401より油を分散排出し、各摺動部材の潤滑に供される。
【0018】
第2中央油路41は後述の第2クラッチC2をオン作動させる制御油圧を、ケーシング35の一部に形成された第1油路411と、環状路412と、中間出力軸28の流入路413及び流入口414を介して供給され、この制御油圧を第2中央油路41の一端に連通された第2回転部材29の連通口415を介し第2クラッチC2の油圧アクチュエータを成す油圧室42に供給するという構成を採る。
【0019】
第2回転部材29はその前部に高低切換え機構111の要部を成す第1クラッチC1とロック機構112の要部を成す第2クラッチC2を並設し、その後端にはベルトVに連結される前輪側出力ギア431が一体的に結合する。
ここで第1クラッチC1は常時オンクラッチである。即ち、摺接エレメント列の端部に皿状の押圧バネ43を備え、油圧アクチュエータの要部を成す油圧室44が油圧低レベル時(油圧オフ時)にバネ43の弾性力で摺接エレメントを接合させ、第1サンギア36を第2回転部材29に直結する。逆に、油圧室44が油圧オン時(油圧供給時)には、押圧バネ43の弾性力を摺接エレメントより解除させ、第1サンギア36を遊転させるように構成される。
【0020】
一方、第2クラッチC2はセンタデフロッククラッチであり、油圧室42が油圧オン時(油圧供給時)には摺接エレメントを接合し、第1出力軸13と第2回転部材29を結合しセンタデフロックモードとし、油圧室42が油圧低レベル時(油圧オフ時)に摺接エレメントの接合を解除し、第1出力軸13と第2回転部材29を分離し、センタデフフリーモードとする。
ここで第1ブレーキB1、第1クラッチC1及び第2クラッチC2は、図3に示す油圧回路に接続される。
図3に示すように、トランスファー11の主油路46はB1、C1、C2の各エレメントの油圧室45,44,42に関連して設けられた電磁弁47,48,49及び調量弁50,51,52に連通される。
各電磁弁47,48,49はオフ時に供給ポートaとドレーンポートbを連通させ、オン時に供給ポートaと流入ポートcを連通させる。電磁弁47,48,49の供給ポートaは調量弁50,51,52のパイロットポートdに連通される。第1電磁弁としての電磁弁47は調圧弁50にパイロット圧を供給する。第2電磁弁としての電磁弁48は調圧弁51にパイロット圧を供給する。電磁弁49は調圧弁52にパイロット圧を供給する。ここで電磁弁47,48,49の各パイロット圧により調量弁50,51,52の第1及び第3油圧を増減操作するように構成される。
【0021】
調量弁50,51,52はパイロットポートdと、ライン圧を受ける流入ポートeと、供給ポートfと、複数のドレーンポートgとを備える。調量弁50,51,52はバネ53の弾性力とパイロットポートdの油圧とのバランスによりスプール弁54を摺動させ、流入ポートeより供給ポートfに向かう油量及び供給ポートfよりドレーンポートgに向かう油量を調整する。
調量弁50,51の各供給ポートfはフェールセーフバルブ55を介し、第1クラッチC1、第1ブレーキB1に連通する。
フェールセーフバルブ55は調量弁50,51の各供給ポートfに連通する流入ポートh1、h2及びこれらと対向すると共に第1ブレーキB1及び第1クラッチC1に連通する供給ポートi1、i2を備え、更に、複数のドレーンポートjを備える。
【0022】
ここで第1調圧弁としての調量弁50は供給ポートf、流入ポートh1、供給ポートi1、第1ブレーキB1の油圧室45と順次続く第1油路R1に連通し、第1油路R1には調量弁50より第1油圧が供給される。同じく第2調圧弁としての調量弁51は供給ポートf、流入ポートh2、供給ポートi2、第1クラッチC1の油圧室44と順次続く第2油路R2に連通し、第2油路R2には調量弁51より第2油圧が供給される。同じく第3調圧弁としての調量弁52は供給ポートf、第2クラッチC2の油圧室42と続く第3油路R3に連通し、第3油路R3には調量弁52より第3油圧が供給される。
【0023】
なお、図3中の符号60はアキュムレータを示す。
フェールセーフバルブ55はスプール56を備え、スプール56には第1及び第2油路R1,R2と対向する受圧部561,562(同一受圧面積Afを備える)が形成され、第1及び第2油路を同時に連通し、断続できるように形成され、特に、スプール56の一端には中立バネ57が装着される。
【0024】
スプール56の一端には延出部563が形成され、延出部563には所定間隔を保って一対の突起564が形成され、一対の突起564間に一対のバネ受け565を介し中立バネ57が装着される。この中立バネ57はセット荷重Foをスプール56に付与するもので、スプール56がセット荷重Foを上回る油圧力を受けた際に、中立バネ57が圧縮変位し左右何れかの方向に摺動変位する。
【0025】
ここで、スプール56は左右受圧部561,562によって第1及び第2油路R1,R2の第1油圧p1と第2油圧p2を互いに対向する方向で受けるように構成される。ここでスプール56は左右受圧部561,562が受ける第1油圧p1と第2油圧p2の偏差Δpに受圧面積Afを乗算した荷重により一方に押圧され、同値がセット荷重Foを越える(Δp×Af>Fo)と中立バネ57を弾性変位させて第1油路R1及び第2油路R2を同時に遮断すことができ、セット荷重Foを越えない不感帯域では第1油路R1及び第2油路R2を開放する。
【0026】
このように、中立バネ57の装着により、第1油圧p1と第2油圧p2が相対的に偏差Δp以内でずれたとしても、スプール56は第1及び第2油路を遮断せず、この不感帯を設定することによって、油圧切換え時の第1油圧p1と第2油圧p2の相対的な応答性のずれによる不要な油路の遮断作動を規制できる。
【0027】
このようなトランスファ構造の作動を説明する。
エンジン12と連動してポンプ24が駆動し、ポンプ24のライン圧が主油路46を介し供給される。
ここで、車両の走行時において、駆動力は自動変速機A/Tで適正変速比で変速され、トランスファー11の第1回転部材26に伝達される。
【0028】
高速4輪駆動モードの選択時であると、図4中の(b)に示すように、電磁弁47を非通電とし、調量弁50によって第1油路R1を遮断し、第1ブレーキB1への油圧供給を絶つ。更に、電磁弁48を非通電とすると調量弁51によって第2油路R2が遮断され、第1クラッチC1がバネ43の弾性力で接状態に保持される。この場合、第1サンギア36と第2回転部材29が直結される。更に、第1回転部材26から駆動力が伝達される第1ピニオンギア38の内側には第1サンギア36が外側には内周歯37が噛合していることより、第1回転部材26からの駆動力が第1出力軸13と中間出力軸28とに伝達されることとなり 高速4輪駆動モードとなる。
【0029】
高速モード時にセンターデフフリー状態の選択時であると、電磁弁49は非通電に保持され、この時調量弁52によって第3油路R3を遮断する。この場合、第2クラッチC2が切れ、第2回転部材29と第1出力軸13が分断され、センターデフフリー状態となる。
高速モード時にセンターデフロック状態であると、電磁弁49は通電され、これに応じ調量弁52が第3油路R3を連通し、高圧油が調量弁52より第1油路411、第1出力軸13内の第2中央油路41から成る第3油路R3をへて第2クラッチC2の油圧室42に供給され、第2回転部材29と第1出力軸13が直結され、センターデフロック状態となる。
【0030】
低速4輪駆動モードの選択時であると、図4中の(a)に示すように、電磁弁47を通電して、第1油路R1を開放し、第1ブレーキB1が接合され第2サンギア34が停止状態に保持される。更に、電磁弁48を通電して、第2油路R2を開放し、第1クラッチC1が油圧オンとなってバネ力を排除し、断状態に切り換わる。この場合、第2サンギア34、第2ピニオンギア39が働き、第1回転部材26側の回転は低変速比で低速側に変速されて、その回転が第1出力軸13より後輪27側に伝わり第2クラッチC2を介し前輪59側にも伝達される。
このような、トランスファ構造の正常作動に対し、図7に示すような異常作動(フェール作動)が考えられる。
【0031】
ここで、図7には図1のトランスファーの変速用エレメントの高低(Hi,Lo)切換えに応じた第1ブレーキB1、第1クラッチC1のオン、オフ状態を示した。ここでは、高低(Hi,Lo)切換え用の第1ブレーキB1と第1クラッチC1は共に油圧オフの低レベル時、あるいは、共に油圧オンの高レベル時において所定の切換えモードが正常に達成されていると見做せ、高低レベルの異なる場合は、誤作動と見做せる。
このような特性のトランスファ構造の駆動時において、電磁弁47,48や、調量弁50,51等に切換え異常が発生し、第1及び第2油路R1,R2の第1油圧p1と第2油圧p2がその油圧レベルを高低相対的に変化させたとする。
【0032】
この場合、図5中の(a),(b)に示すように、フェールセーフバルブ55内のスプール56の左右受圧部561,562は高低異なる第1油圧p1と第2油圧p2の偏差Δpに受圧面積Afを乗算した荷重により一方に押圧され、同値がセット荷重Foを越える(Δp×Af>Fo)と中立バネ57を弾性変位させて第1油路R1及び第2油路R2を同時に遮断する。
【0033】
このような油路開閉制御によって、第1及び第2油路R1,R2に高低異なる第1油圧p1と第2油圧p2が働く、即ち、第1油圧p1と第2油圧p2の相対的な偏差Δp相当の押圧力(Δp×Af)が所定値であるセット荷重Foを上回ると、誤作動時と見做し、切換え制御は成されない。逆に、第1油圧p1と第2油圧p2が共に同油圧レベルである、即ち、第1油圧p1と第2油圧p2の相対的な偏差Δp相当の押圧力(Δp×Af)が所定値であるセット荷重Fo以内であると、正常作動時と見做し、切換え制御が行なわれる。
【0034】
この結果、セット荷重Foを越える領域では第1油路R1及び第2油路R2を遮断し、第1ブレーキB1及び第1クラッチC1が誤作動することを防止でき、トランスファー11の切換え時の誤作動を確実に防止でる。
【0035】
特に、第1油圧p1と第2油圧p2の偏差Δp相当の油圧力が、不感帯設定値であるセット荷重Foを越えない不感帯域では通常どおり油圧切換え制御作動できる。この不感帯域の設定により、油路切換え時に第1油路R1と第2油路R2の第1油圧p1と第2油圧p2の相対的な応答差が生じても、このような応答差により生じた偏差Δpによって両油路R1,R2の遮断作動を行うと行った不要な切換えを防止できる。
【0036】
更に、フェールセーフバルブ55が中立バネ57を装着したので、不感帯を容易に設定できる。更に、第1クラッチC1は変速用エレメントをバネ力で接合させ、油圧室44が油圧を受けた際にバネ力を解除させてクラッチ断状態を保持するというクラッチ断接作動を確実に行うことができる。
【0037】
【発明の効果】
第1の発明は、センタデフによって駆動力源からの駆動力を前輪側出力部と後輪側出力部とに分配し、油圧源からの油圧によって、前輪側出力部に介装された油圧式第1クラッチ及び前輪側出力部と後輪側との間に介装された油圧式第2クラッチとを選択的に係合でき、特に油圧が作用しない時に油圧式第1クラッチを係合方向に付勢する付勢手段を設けたので、少なくとも、油圧式第1クラッチによる前輪側出力部の係合を付勢手段の付勢力で接合させ、油圧式第1クラッチが油圧を受けた際に付勢力を解除させてクラッチ断状態を保持するので確実に油圧切換え時に切換え作動を行うことができ、切換え作動の信頼性が高まる。
【0038】
第2の発明は、上記弁装置が第1及び第3油圧供給油路の油圧偏差が所定値を下回る不感帯にある場合のみ油圧式クラッチ及び油圧式ブレーキを通常作動させて、第1油圧供給油路および第3油圧供給油路の油圧偏差が大きな場合、両油路を共に遮断して油圧式クラッチ及び油圧式ブレーキを非作動とし誤作動と成る切換えを確実に阻止できる。このため、油圧回路の誤作動による駆動力伝達異常や、駆動系インターロック状態を回避でき、装置の耐久性を向上させることができる。
【0039】
請求項3の発明は、請求項2記載の4輪駆動車のトランスファ装置において、特に、弁装置が上記油圧式クラッチへの供給油圧と上記油圧式ブレーキへの供給油圧の偏差が所定値以内で弁装置の切換え作動を規制できる中立バネを装着したので、不感帯を容易に設定でき、信頼性のある装置を提供できる。
【0040】
請求項4の発明は、請求項2記載の4輪駆動車のトランスファ装置において、油圧式クラッチは第1の変速用エレメントをバネ力で接合させ、第1油圧アクチュエータが油圧を受けた際にバネ力を解除させてクラッチ断状態を保持するので確実に油圧切換え時に変速作動を行うことができ、信頼性のある装置を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例としてのトランスファ構造を装備するトランスファーの概略構成を示すスケルトン図である。
【図2】図1のトランスファーの断面である。
【図3】図1のトランスファーの油圧回路図である。
【図4】図1のトランスファ構造に装備されるフェールセーフバルブの通常時の機能を説明する図であり、(a)は油圧オン状態時、(b)は油圧オフ状態時を示す。
【図5】図1のトランスファ構造に装備されるフェールセーフバルブのフェール時と見做す第1クラッチと第1ブレーキの油圧レベルが高低異なる場合の機能を説明する図であり、(a)と(b)は油圧オン、オフ状態が互いに逆の場合をそれぞれ示す。
【図6】図1のトランスファ構造のスケルトン図である。
【図7】図1のトランスファ構造の油圧回路の切換え作動モード及び誤作動相当の各変速用エレメントのオン、オフ説明図である。
【符号の説明】
11 トランスファー
111 高低切換え機構
112 2駆4駆切換え機構
13 第1出力軸
22 自動変速機の出力軸
26 第1回転部材
27 前輪
28 中間出力軸
29 第2回転部材
32 第3回転部材
33 筒状軸
34 第2サンギア
35 ケーシング
36 第1サンギア
37 内周歯
38 第1ピニオンギア
39 第2ピニオンギア
47 電磁弁
48 電磁弁
49 電磁弁
55 フェールセーフバルブ
57 中立バネ
59 後輪
B1 第1ブレーキ
C1 第1クラッチ
C2 第2クラッチ
A/T 自動変速機
p1 第1油圧
p2 第2油圧
R1 第1油路
R2 第2油路
Δp 偏差
Fo セット荷重
[0001]
[Industrial application fields]
The present invention relates to a transfer structure, and more particularly to a transfer structure provided with a hydraulic fluid system including a transfer speed change element and a communication passage that supplies hydraulic fluid from a hydraulic power source to a hydraulic actuator that operates the element.
[0002]
[Prior art]
Conventionally, vehicle rotation transmission systems have been equipped with transmissions and transfers, and these transmissions and transfers are often equipped with planetary gear trains. The low speed mode is switched.
For example, in the case of transfer, the output rotation from the automatic transmission A / T (not shown) is changed to the first output shaft (rear wheel) by changing the output rotation that is shifted and branched through the high / low switching mechanism and the switching mechanism of two-wheel drive and four-wheel drive. Side) and the second output shaft (front wheel side).
[0003]
Here, the high / low switching mechanism can switch the shifting element in the high speed mode, switch the planetary gear train to the direct connection state and transmit the rotation to the output shaft, and switch the planetary gear train to the deceleration state and transmit the rotation to the output shaft in the low speed mode. it can.
[0004]
On the other hand, the switching mechanism between the two-wheel drive and the four-wheel drive switches the shift element, and transmits the rotation only to the rear wheel side during the two-wheel drive, and transmits the rotation to the front and rear four wheels during the four-wheel drive.
[0005]
[Problems to be solved by the invention]
However, this type of transfer requires that the oil pressure level applied to each shifting element is accurately switched between high and low, and switching must be made reliably by the oil pressure, but may malfunction due to deterioration over time. . In this way, if each shifting element malfunctions, there is a possibility that the driving force is not transmitted, or that the gears having different gear ratios engage and operate at the same time. Yes.
An object of the present invention is to provide a transfer structure capable of avoiding a driving force transmission abnormality due to a malfunction of a hydraulic circuit connected to a speed change element and a driving system interlock state.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 distributes the driving force from the driving force source to the front wheel side output unit and the rear wheel side output unit, and the front wheel side output unit and the rear wheel side output unit. Differential withAllowIn a transfer device for a four-wheel drive vehicle having a center differential, the center differential is connected to the drive source.And input the above driving forceA first element, a second element that transmits the driving force to the front wheel side output unit, a third element that transmits the driving force to the rear wheel side output unit, and a fourth element that can be fixed to a fixing member, The transfer device further includes a hydraulic first that enables engagement / release of the front wheel output unit and the second element.clutchAnd a hydraulic second that enables engagement / release of the front wheel side output portion and the third element.clutchAnd a hydraulic type capable of engaging / releasing the fourth element with respect to the fixing memberbrakeWhen the hydraulic pressure is not supplied, the hydraulic firstclutchBiasing means for engaging the hydraulic secondclutchWhen the hydraulic pressure is supplied, the front wheel side output portion and the third element are engaged, and when the hydraulic pressure is supplied, the hydraulic brake sets the fourth element to a fixed state, and the hydraulic second 1clutchIs characterized in that when the hydraulic pressure is not supplied, the urging means brings the front wheel side output portion and the second element into an engaged state.
[0007]
In the invention of claim 2, the driving force from the driving force source is obtained.A first element for input; a second element for transmitting the driving force to the front wheel side output unit; and a third element for transmitting the driving force to the rear wheel side output unit.Front wheel side output sectionthe aboveA center differential that distributes to the rear wheel side output section, and the center differentialthe aboveFirst2Disposed between the element and the front wheel side output section,2Hydraulic type that keeps the element and the front wheel side output section disconnectedclutchWhen,The rotational force output from the center differential can be cut between the high speed stage and the low speed stage according to the supplied hydraulic pressure, and the supplied hydraulic pressure ishydraulicclutchHas the same hydraulic supply pattern asHydraulic brakeAnd the above hydraulic typeclutchFirst hydraulic supply oil passage to the above-mentioned hydraulic typebrake3rd hydraulic supply oil passage to the two oil passagesInA valve device arranged in common, the valve device is the hydraulic typeclutchSupply hydraulic pressure and hydraulic type abovebrakeOnly when the deviation of the hydraulic pressure supplied to theThe hydraulic clutch and the hydraulic brakeIt was characterized by shutting off the hydraulic pressure supply to.
[0008]
The invention of claim 3 is the transfer device for a four-wheel drive vehicle according to claim 2, wherein the valve device isDeviation between the hydraulic pressure supplied to the hydraulic clutch and the hydraulic pressure supplied to the hydraulic brake isA neutral spring capable of restricting the switching operation of the valve device within a predetermined value is mounted.
[0009]
According to a fourth aspect of the present invention, in the transfer device for a four-wheel drive vehicle according to the second aspect, the hydraulic typeclutchThe first shifting element is joined by a spring force, and when the first hydraulic actuator receives the hydraulic pressure, the spring force is released and the clutch disengaged state is maintained.
[0010]
[Action]
The first invention distributes the driving force from the driving force source to the front wheel side output unit and the rear wheel side output unit by the center differential, and is a hydraulic type that is interposed in the front wheel side output unit by the hydraulic pressure from the hydraulic source. 1clutchAnd a hydraulic second interposed between the front wheel side output section and the rear wheel side.clutchCan be selectively engaged, especially when hydraulic pressure is not applied.clutchIs provided in the engaging direction, so that at least the hydraulic firstclutchThe front wheel side output portion and the second element are joined by the urging force of the urging means, and the hydraulic firstclutchWhen the hydraulic pressure is received, the urging force is released and the clutch disengaged state is maintained, so that the switching operation can be performed reliably when the hydraulic pressure is switched.
[0011]
According to a second aspect of the present invention, there is provided a center differential for distributing the driving force from the driving force source to the front wheel side output unit and the rear wheel side output unit,2Disposed between the element and the front wheel side output section,2Hydraulic type that keeps the element and the front wheel side output section disconnectedclutchAnd the same hydraulicclutchWith the same hydraulic supply pattern asbrakeAnd the above hydraulic typeclutchFirst hydraulic supply oil passage to the above-mentioned hydraulic typebrakeA third hydraulic pressure supply oil passage and a valve device arranged in common to both the oil passages, and the valve device is the hydraulic typeclutchSupply oil path to the above hydraulic typebrakeSince the hydraulic pressure supply to both friction elements is cut off only when the deviation of the supplied hydraulic pressure exceeds the predetermined value, only when the deviation of the hydraulic pressure of the first and third hydraulic supply oil paths is below the predetermined value. HydraulicclutchAnd hydraulicbrakeIs operated normally, and the shift operation is performed. When the deviation is large, both the first hydraulic supply oil passage and the third hydraulic supply oil passage are shut off and hydraulically operated.clutchAnd hydraulicbrakeIs switched off to prevent a malfunction.
[0012]
According to a third aspect of the present invention, there is provided the transfer device for a four-wheel drive vehicle according to the second aspect, wherein the valve device is in particular.Deviation between the hydraulic pressure supplied to the hydraulic clutch and the hydraulic pressure supplied to the hydraulic brakeSince the neutral spring that can regulate the switching operation of the valve device within the predetermined value is mounted, the dead zone can be set easily.
[0013]
According to a fourth aspect of the present invention, there is provided a transfer device for a four-wheel drive vehicle according to the second aspect of the present invention.clutchThe first shifting element is joined by a spring force, and when the first hydraulic actuator receives the hydraulic pressure, the spring force is released and the clutch disengaged state is maintained, so that the gear shifting operation can be reliably performed when the hydraulic pressure is switched. .
[0014]
【Example】
Of FIG.The transfer device for a four-wheel drive vehicleIt is mounted on a transfer 11 in a power transmission system of a four-wheel drive vehicle.
This power transmission system is connected to an engine 12 as a drive source, an automatic transmission A / T and a transfer 11 sequentially connected in series thereafter, and a first output shaft 13 of the transfer 11 via a not-shown peller shaft or a rear differential. And rear wheels.
Here, the automatic transmission A / T includes a torque converter (hereinafter simply “torque converter”) 14 and a transmission 15. The torque converter 14 converts the rotation of the crankshaft 17 into oil kinetic energy by the pump impeller 16 and performs a process in which the turbine impeller 18 converts the oil kinetic energy into rotation of the turbine rotation shaft 19 again. A well-known configuration is adopted in which the stator 20 between the vehicles adjusts the conversion efficiency at that time. The transmission 15 shifts the input rotation of the turbine rotation shaft 19 to a plurality of stages using a planetary gear train 21 and a shift element including a hydraulic actuator (not shown), and the first rotation member of the transfer 11 directly connected to the output shaft 22.26The speed-changed rotation is output.
Reference numeral 24 denotes a gear pump. The pump 24 is integrally connected to the crankshaft 17 via a pump impeller 16 in the torque converter 14, and the hydraulic pressure of the hydraulic circuit of the automatic transmission A / T and the transfer 11 when the pump is operated. Work as a source.
[0015]
The transfer 11 has a high / low switching mechanism (indicating a center differential function) 111 andCenter differential lock mechanism (hereinafter simply referred to as the lock mechanism)The output rotation shifted and branched via 112 is transmitted to the second output shaft 25 via the first output shaft 13 and the belt V.
As shown in FIGS. 1 and 6, the transfer 11 has a first rotating member 26 integral with the output shaft 22, a first output shaft 13 connected to the rear wheel 27, and a front portion of the first output shaft 13. The intermediate output shaft 28 to be fitted, the second rotating member 29 to be fitted to the rear portion of the first output shaft 13, the front carrier 30 integrally coupled to the front portion of the first output shaft 13, and the first output shaft 13 and a third rotating member 31 integrally coupled to the rear portion.
[0016]
Further, a fourth rotating member 32 is fitted on the rear end of the intermediate output shaft 28, and a cylindrical shaft 33 is fitted on the front portion of the intermediate output shaft 28.
The cylindrical shaft 33 includes a second sun gear 34 at a front end thereof, and a rear end thereof is supported by the casing 35 via the first brake B1 so as to be able to contact and separate. The intermediate output shaft 28 includes a first sun gear 36 at the front end thereof, and the rear end thereof is supported by the second rotation member 29 via the fourth rotation member 32 and the first clutch C1 so as to be able to contact and separate.
The first brake B1, which constitutes the main part of the high / low switching mechanism 111, enters the brake operation by joining the sliding contact element when the hydraulic chamber 45, which forms the main part of the hydraulic actuator, is at a high hydraulic pressure level (when the hydraulic pressure is on). The sun gear 34 is fixed. On the contrary, when the hydraulic chamber 45 is at a low hydraulic pressure level (when the hydraulic pressure is off), the slidable contact element is released and the brake is inactivated, causing the second sun gear 34 to idle.
[0017]
Inner peripheral teeth 37 are formed on the front carrier 30, and a first pinion gear 38 pivotally supported by the first rotating member 26 meshes with the inner peripheral teeth 37. The first pinion gear 38 meshes with the first sun gear 36 inside thereof, and also meshes with the second sun gear 34 via the second pinion gear 39.
The first output shaft 13 connected to the rear wheel 27 is provided with first and second central oil passages 40 and 41 in parallel. The first central oil passage 40 receives hydraulic pressure from an oil supply passage (not shown) communicating with one end side in FIG. 1, and oil is dispersed and discharged from a plurality of discharge ports 401 to be used for lubricating each sliding member.
[0018]
The second central oil passage 41 has a control oil pressure for turning on a second clutch C2 described later, a first oil passage 411 formed in a part of the casing 35, an annular passage 412, and an inflow passage 413 of the intermediate output shaft 28. And the control hydraulic pressure supplied to the hydraulic chamber 42 forming the hydraulic actuator of the second clutch C2 via the communication port 415 of the second rotating member 29 communicated with one end of the second central oil passage 41. The structure of supplying is adopted.
[0019]
The second rotating member 29 has a first clutch C1 that forms a main part of the high / low switching mechanism 111 at a front portion thereof.LockA second clutch C2 that constitutes a main part of the mechanism 112 is provided in parallel, and a front wheel side output gear 431 connected to the belt V is integrally coupled to the rear end thereof.
Here, the first clutch C1 is always an on-clutch. That is, a plate-like pressing spring 43 is provided at the end of the sliding contact element row, and the sliding contact element is moved by the elastic force of the spring 43 when the hydraulic chamber 44, which is a main part of the hydraulic actuator, is at a low hydraulic pressure level (when the hydraulic pressure is off). The first sun gear 36 is directly connected to the second rotating member 29. On the contrary, when the hydraulic chamber 44 is turned on (when hydraulic pressure is supplied), the elastic force of the pressing spring 43 is released from the sliding contact element, and the first sun gear 36 is rotated freely.
[0020]
On the other hand, the second clutch C2 isCenter differential lockThis is a clutch, and when the hydraulic chamber 42 is turned on (when hydraulic pressure is supplied), the sliding contact element is joined, and the first output shaft 13 and the second rotating member 29 are joined.Center differential lockMode, and when the hydraulic chamber 42 is at a low hydraulic pressure level (when the hydraulic pressure is off), the joining of the sliding contact element is released, and the first output shaft 13 and the second rotating member 29 are separated,Center differential freeMode.
Here, the first brake B1, the first clutch C1, and the second clutch C2 are connected to the hydraulic circuit shown in FIG.
As shown in FIG. 3, the main oil passage 46 of the transfer 11 includes electromagnetic valves 47, 48, 49 and a metering valve 50 provided in association with the hydraulic chambers 45, 44, 42 of the respective elements B1, C1, C2. , 51, 52.
Each solenoid valve 47, 48, 49 communicates the supply port a and the drain port b when off, and communicates the supply port a and the inflow port c when on. The supply port a of the solenoid valves 47, 48 and 49 is communicated with the pilot port d of the metering valves 50, 51 and 52. The electromagnetic valve 47 as the first electromagnetic valve supplies pilot pressure to the pressure regulating valve 50. A solenoid valve 48 as a second solenoid valve supplies pilot pressure to the pressure regulating valve 51. The electromagnetic valve 49 supplies pilot pressure to the pressure regulating valve 52. Here, the first and third hydraulic pressures of the metering valves 50, 51, 52 are increased / decreased by the pilot pressures of the electromagnetic valves 47, 48, 49.
[0021]
The metering valves 50, 51, and 52 include a pilot port d, an inflow port e that receives a line pressure, a supply port f, and a plurality of drain ports g. The metering valves 50, 51, 52 slide the spool valve 54 by the balance between the elastic force of the spring 53 and the hydraulic pressure of the pilot port d, and the amount of oil from the inflow port e toward the supply port f and the drain port from the supply port f. Adjust the amount of oil going to g.
The supply ports f of the metering valves 50 and 51 communicate with the first clutch C1 and the first brake B1 via the fail safe valve 55.
The fail-safe valve 55 includes inflow ports h1 and h2 that communicate with the supply ports f of the metering valves 50 and 51, and supply ports i1 and i2 that face the first and second brakes B1 and C1, respectively. Further, a plurality of drain ports j are provided.
[0022]
Here, the metering valve 50 as the first pressure regulating valve communicates with the supply port f, the inflow port h1, the supply port i1, the hydraulic chamber 45 of the first brake B1, and the first oil passage R1 that sequentially follows the first oil passage R1. The first hydraulic pressure is supplied from the metering valve 50. Similarly, the metering valve 51 as the second pressure regulating valve communicates with the second oil path R2 that continues to the supply port f, the inflow port h2, the supply port i2, the hydraulic chamber 44 of the first clutch C1, and the second oil path R2. The second hydraulic pressure is supplied from the metering valve 51. Similarly, the metering valve 52 as the third pressure regulating valve communicates with the supply port f, the hydraulic chamber 42 of the second clutch C2 and the third oil passage R3, and the third oil passage R3 has a third hydraulic pressure from the metering valve 52. Is supplied.
[0023]
In addition, the code | symbol 60 in FIG. 3 shows an accumulator.
The fail safe valve 55 includes a spool 56, and pressure receiving portions 561 and 562 (having the same pressure receiving area Af) facing the first and second oil passages R1 and R2 are formed in the spool 56, and the first and second oils are formed. The paths are formed so that they can be connected and disconnected at the same time. In particular, a neutral spring 57 is attached to one end of the spool 56.
[0024]
An extension portion 563 is formed at one end of the spool 56, a pair of projections 564 are formed at a predetermined interval on the extension portion 563, and a neutral spring 57 is interposed between the pair of projections 564 via a pair of spring receivers 565. Installed. The neutral spring 57 applies a set load Fo to the spool 56, and when the spool 56 receives an oil pressure exceeding the set load Fo, the neutral spring 57 is compressed and displaced in either the left or right direction. .
[0025]
Here, the spool 56 is configured to receive the first hydraulic pressure p1 and the second hydraulic pressure p2 of the first and second oil passages R1 and R2 by the left and right pressure receiving portions 561 and 562 in a direction opposite to each other. Here, the spool 56 is pressed to one side by the load obtained by multiplying the deviation Δp between the first hydraulic pressure p1 and the second hydraulic pressure p2 received by the left and right pressure receiving portions 561 and 562 by the pressure receiving area Af, and the same value exceeds the set load Fo (Δp × Af > Fo) and the neutral spring 57 can be elastically displaced to simultaneously block the first oil path R1 and the second oil path R2, and in the dead zone that does not exceed the set load Fo, the first oil path R1 and the second oil path R2 is opened.
[0026]
Thus, even if the first hydraulic pressure p1 and the second hydraulic pressure p2 are relatively shifted within the deviation Δp due to the attachment of the neutral spring 57, the spool 56 does not block the first and second oil passages, and this dead zone. By setting this, it is possible to restrict unnecessary oil passage blocking operation due to a relative responsiveness difference between the first hydraulic pressure p1 and the second hydraulic pressure p2 when the hydraulic pressure is switched.
[0027]
The operation of such a transfer structure will be described.
The pump 24 is driven in conjunction with the engine 12, and the line pressure of the pump 24 is supplied through the main oil passage 46.
Here, when the vehicle is traveling, the driving force is shifted at an appropriate gear ratio by the automatic transmission A / T and transmitted to the first rotating member 26 of the transfer 11.
[0028]
high speed4 wheel driveWhen the mode is selected, as shown in FIG. 4B, the solenoid valve 47 is deenergized, the first oil passage R1 is shut off by the metering valve 50, and the hydraulic pressure is supplied to the first brake B1. Break. Further, when the solenoid valve 48 is deenergized, the second oil passage R2 is shut off by the metering valve 51, and the first clutch C1 is held in contact with the elastic force of the spring 43. In this case, the first sun gear 36 and the second rotating member 29 are directly connected. Further, from the first rotating member 26Driving force is transmittedThe first sun gear 36 is engaged with the inner side of the first pinion gear 38, and the inner peripheral teeth 37 are engaged with the outer side of the first pinion gear 38.Driving force fromFirst output shaft 13 and intermediate output shaft 28Will be communicated to , High speed 4 wheel driveIt becomes a mode.
[0029]
If the center differential free state is selected during the high speed mode, the solenoid valve 49 is kept in a non-energized state, and at this time, the metering valve 52 blocks the third oil passage R3. In this case, the second clutch C2 is disengaged, the second rotating member 29 and the first output shaft 13 are divided, and a center differential free state is established.
If the center differential lock state is in the high speed mode, the solenoid valve 49 is energized, and the metering valve 52 communicates with the third oil passage R3 in response to this, and the high pressure oil is sent from the metering valve 52 to the first oil passage 411, first The oil is supplied to the hydraulic chamber 42 of the second clutch C2 through the third oil passage R3 including the second central oil passage 41 in the output shaft 13, and the second rotating member 29 and the first output shaft 13 are directly connected to each other, so that the center differential lock is provided. It becomes a state.
[0030]
Low speed4 wheel driveWhen the mode is selected, as shown in FIG. 4A, the solenoid valve 47 is energized to open the first oil passage R1, the first brake B1 is joined, and the second sun gear 34 is stopped. Kept in a state. Further, the solenoid valve 48 is energized to open the second oil passage R2, and the first clutch C1 is turned on to eliminate the spring force and switch to the disconnected state. In this case, the second sun gear 34 and the second pinion gear 39 work, the rotation on the first rotating member 26 side is shifted to the low speed side with a low gear ratio, and the rotation is shifted to the rear wheel 27 side from the first output shaft 13. It is transmitted to the front wheel 59 side via the second clutch C2.
For such a normal operation of the transfer structure, an abnormal operation (fail operation) as shown in FIG. 7 can be considered.
[0031]
Here, FIG. 7 shows the on / off states of the first brake B1 and the first clutch C1 according to the switching of the height (Hi, Lo) of the transfer speed change element of FIG. Here, the first switching B1 and the first clutch C1 for switching between high and low (Hi, Lo) are normally achieved in a predetermined switching mode when the hydraulic pressure is low or when both hydraulic pressure is high. If the level is different, it can be considered a malfunction.
When the transfer structure having such characteristics is driven, a switching abnormality occurs in the electromagnetic valves 47 and 48, the metering valves 50 and 51, etc., and the first hydraulic pressure p1 and the first hydraulic pressure p1 in the first and second oil passages R1 and R2 are increased. It is assumed that the 2 oil pressure p2 changes its oil pressure level relatively high and low.
[0032]
In this case, as shown in FIGS. 5A and 5B, the left and right pressure receiving portions 561 and 562 of the spool 56 in the fail safe valve 55 have a difference Δp between the first hydraulic pressure p1 and the second hydraulic pressure p2 that are different in level. When it is pressed to one side by the load multiplied by the pressure receiving area Af and the same value exceeds the set load Fo (Δp × Af> Fo), the neutral spring 57 is elastically displaced to simultaneously shut off the first oil path R1 and the second oil path R2. To do.
[0033]
By such oil path opening / closing control, the first hydraulic pressure p1 and the second hydraulic pressure p2 that are different in level are applied to the first and second oil paths R1, R2, that is, the relative deviation between the first hydraulic pressure p1 and the second hydraulic pressure p2. If the pressing force equivalent to Δp (Δp × Af) exceeds the set load Fo, which is a predetermined value, it is considered that a malfunction has occurred and switching control is not performed. Conversely, the first hydraulic pressure p1 and the second hydraulic pressure p2 are both at the same hydraulic pressure level, that is, the pressing force (Δp × Af) corresponding to the relative deviation Δp between the first hydraulic pressure p1 and the second hydraulic pressure p2 is a predetermined value. If it is within a certain set load Fo, it is considered that the operation is normal, and switching control is performed.
[0034]
As a result, in the region where the set load Fo is exceeded, the first oil passage R1 and the second oil passage R2 are shut off, so that the first brake B1 and the first clutch C1 can be prevented from malfunctioning. Operation can be reliably prevented.
[0035]
In particular, in the dead zone where the hydraulic pressure corresponding to the deviation Δp between the first hydraulic pressure p1 and the second hydraulic pressure p2 does not exceed the set load Fo which is the dead zone set value, the hydraulic pressure switching control operation can be performed as usual. Even if a relative response difference between the first oil pressure R1 and the second oil pressure p2 of the first oil path R1 and the second oil path R2 occurs due to the setting of the dead zone, such a response difference occurs. If the oil path R1 and R2 are shut off by the deviation Δp, unnecessary switching can be prevented.
[0036]
Furthermore, since the fail-safe valve 55 is equipped with the neutral spring 57, the dead zone can be easily set. Further, the first clutch C1 can reliably perform the clutch connecting / disconnecting operation in which the speed change element is joined by a spring force, and when the hydraulic chamber 44 receives the oil pressure, the spring force is released and the clutch disengaged state is maintained. it can.
[0037]
【The invention's effect】
The first invention distributes the driving force from the driving force source to the front wheel side output unit and the rear wheel side output unit by the center differential, and is a hydraulic type that is interposed in the front wheel side output unit by the hydraulic pressure from the hydraulic source. 1clutchAnd a hydraulic second interposed between the front wheel side output section and the rear wheel side.clutchCan be selectively engaged, especially when hydraulic pressure is not applied.clutchIs provided in the engaging direction, so that at least the hydraulic firstclutchThe engagement of the front wheel side output portion by the urging force of the urging means is joined, and the hydraulic firstclutchWhen the hydraulic pressure is received, the urging force is released and the clutch disengaged state is maintained, so that the switching operation can be surely performed when the hydraulic pressure is switched, and the reliability of the switching operation is increased.
[0038]
According to a second aspect of the present invention, the valve device is hydraulic only when the hydraulic pressure deviation of the first and third hydraulic supply oil passages is in a dead zone below a predetermined value.clutchAnd hydraulicbrakeWhen the hydraulic pressure deviation of the first hydraulic supply oil passage and the third hydraulic supply oil passage is large, both oil passages are shut off and hydraulicclutchAnd hydraulicbrakeIt is possible to reliably prevent the switching that becomes inactive and malfunctions. For this reason, abnormal driving force transmission due to malfunction of the hydraulic circuit and the drive system interlock state can be avoided, and the durability of the apparatus can be improved.
[0039]
According to a third aspect of the present invention, there is provided the transfer device for a four-wheel drive vehicle according to the second aspect, wherein the valve device is in particular.Deviation between the hydraulic pressure supplied to the hydraulic clutch and the hydraulic pressure supplied to the hydraulic brakeSince a neutral spring that can regulate the switching operation of the valve device within a predetermined value is mounted, the dead zone can be easily set and a reliable device can be provided.
[0040]
According to a fourth aspect of the present invention, there is provided a transfer device for a four-wheel drive vehicle according to the second aspect of the present invention.clutchThe first shifting element is joined by a spring force, and when the first hydraulic actuator receives the hydraulic pressure, the spring force is released and the clutch disengaged state is maintained. Can provide a reliable device.
[Brief description of the drawings]
FIG. 1 is a skeleton diagram showing a schematic configuration of a transfer equipped with a transfer structure as one embodiment of the present invention.
FIG. 2 is a cross section of the transfer of FIG.
FIG. 3 is a hydraulic circuit diagram of the transfer of FIG. 1;
FIGS. 4A and 4B are diagrams for explaining a normal function of the fail-safe valve provided in the transfer structure of FIG. 1, in which FIG. 4A shows a hydraulic pressure on state and FIG. 4B shows a hydraulic pressure off state;
FIG. 5 is a diagram illustrating a function when the hydraulic pressure levels of the first clutch and the first brake are different from each other when the fail-safe valve equipped in the transfer structure of FIG. 1 fails, and (a) (B) shows the case where the hydraulic pressure on and off states are opposite to each other.
6 is a skeleton diagram of the transfer structure of FIG. 1. FIG.
7 is an explanatory diagram showing ON / OFF of each shifting element corresponding to a switching operation mode and a malfunction in the hydraulic circuit having the transfer structure shown in FIG. 1;
[Explanation of symbols]
11 Transfer
111 High / Low switching mechanism
112 2WD 4WD switching mechanism
13 First output shaft
22 Output shaft of automatic transmission
26 First rotating member
27 Front wheel
28 Intermediate output shaft
29 Second rotating member
32 Third rotating member
33 cylindrical shaft
34 Second Sun Gear
35 casing
36 1st Sun Gear
37 internal teeth
38 1st pinion gear
39 Second pinion gear
47 Solenoid valve
48 Solenoid valve
49 Solenoid valve
55 Fail-safe valve
57 Neutral spring
59 Rear wheel
B1 First brake
C1 1st clutch
C2 Second clutch
A / T automatic transmission
p1 1st hydraulic pressure
p2 Second hydraulic pressure
R1 1st oil passage
R2 Second oil passage
Δp deviation
Fo set load

Claims (4)

駆動力源からの駆動力を前輪側出力部と後輪側出力部とに分配し、上記前輪側出力部と後輪側出力部との差動を許容するセンタデフを有する4輪駆動車のトランスファ装置において、
上記センターデフは、
上記駆動源に連結されて上記駆動力を入力する第1要素、上記前輪側出力部に上記駆動力を伝える第2要素、上記後輪側出力部に上記駆動力を伝える第3要素、及び固定部材に固定可能な第4要素とを含み、
上記トランスファー装置は、さらに
上記前輪側出力部と上記第2要素とを係合/解放可能とする油圧式第1クラッチと、
上記前輪側出力部と上記第3要素とを係合/解放可能とする油圧式第2クラッチと、
上記第4要素を上記固定部材に対して係合/解放可能とする油圧式ブレーキと、油圧が供給されないとき上記油圧式第1クラッチを係合状態とする付勢手段と、を備え、
上記油圧式第2クラッチは、油圧が供給されたとき上記前輪側出力部と上記第3要素とを係合状態とし、
上記油圧式ブレーキは、油圧が供給されたとき上記第4要素を固定状態とし、
上記油圧式第1クラッチは、油圧が供給されないとき上記付勢手段により上記前輪側出力部と上記第2要素とを係合状態とする
ことを特徴とする4輪駆動車のトランスファ装置。
A transfer for a four-wheel drive vehicle having a center differential that distributes a driving force from a driving force source to a front wheel side output unit and a rear wheel side output unit and allows differential between the front wheel side output unit and the rear wheel side output unit. In the device
The center differential is
A first element coupled to the driving source for inputting the driving force; a second element for transmitting the driving force to the front wheel side output section; a third element for transmitting the driving force to the rear wheel side output section; A fourth element fixable to the member,
The transfer device further includes a hydraulic first clutch capable of engaging / disengaging the front wheel side output portion and the second element;
A hydraulic second clutch capable of engaging / disengaging the front wheel side output section and the third element;
A hydraulic brake that allows the fourth element to be engaged / released with respect to the fixed member, and an urging means that engages the hydraulic first clutch when hydraulic pressure is not supplied,
The hydraulic second clutch engages the front wheel side output section and the third element when hydraulic pressure is supplied,
The hydraulic brake fixes the fourth element when hydraulic pressure is supplied,
The transfer device for a four-wheel drive vehicle, wherein the hydraulic first clutch engages the front wheel side output portion and the second element by the biasing means when hydraulic pressure is not supplied.
駆動力源からの駆動力を入力する第1要素と、上記駆動力を前輪側出力部に伝える第2要素と、上記駆動力を後輪側出力部に伝える第3要素とを有し、上記駆動力を上記前輪側出力部と上記後輪側出力部とに分配するセンターデフと、
同センターデフの上記要素と上記前輪側出力部との間に配設され、油圧を受けたとき上記第要素と上記前輪側出力部とを断状態に保持する油圧式クラッ と、
供給される油圧に応じて上記センタデフから出力される回転力を高速段と低速段との間で切断可能とするとともに、供給される油圧が上記油圧式クラッチと同じ油圧供給パターンを有する油圧式ブレーキと、
上記油圧式クラッチへの第1油圧供給油路と、
上記油圧式ブレーキへの第3油圧供給油路と、
両油路共通して配設された弁装置と、
を備え、
上記弁装置は
上記油圧式クラッチへの供給油圧と上記油圧式ブレーキへの供給油圧の偏差が所定値を上回る場合にのみ、上記油圧式クラッチ及び上記油圧式ブレーキへの油圧供給を遮断する
ことを特徴とした、4輪駆動車のトランスファ装置。
A first element that inputs a driving force from a driving force source; a second element that transmits the driving force to a front wheel side output unit; and a third element that transmits the driving force to a rear wheel side output unit, the driving force and the center differential to be distributed to the above front wheel side output section and the rear wheel side output section,
A hydraulic clutch that is arranged to hold the said second element and the front-wheel-side output section when receiving a hydraulic pressure to the disconnection state between said second element and the front-wheel-side output section of the center differential,
With a cleavable between the high-speed stage and the low speed stage of the rotational force output from the center differential according to oil pressure supplied, hydraulic brake hydraulic pressure to be supplied with the same hydraulic supply pattern and the hydraulic clutch When,
A first hydraulic supply oil passage to the hydraulic clutch ;
A third hydraulic supply oil passage to the hydraulic brake ;
A valve device disposed in common Ryoaburaro,
With
The valve device deviation of the oil pressure supplied to the oil pressure supplied and the hydraulic brake to said hydraulic clutch only when exceeding a predetermined value, a blocking supply of hydraulic pressure to the hydraulic clutch and the hydraulic brake A transfer device for a four-wheel drive vehicle, which is a feature.
請求項2記載の4輪駆動車のトランスファ装置において、
上記弁装置は、上記油圧式クラッチへの供給油圧と上記油圧式ブレーキへの供給油圧の偏差が所定値以内で上記弁装置の切換え作動を規制できる中立バネを装着したことを特徴とする4輪駆動車のトランスファ装置。
The transfer device for a four-wheel drive vehicle according to claim 2,
The four-wheel wheel, wherein the valve device is equipped with a neutral spring capable of regulating a switching operation of the valve device when a deviation between a hydraulic pressure supplied to the hydraulic clutch and a hydraulic pressure supplied to the hydraulic brake is within a predetermined value. Drive car transfer device.
請求項2記載の4輪駆動車のトランスファ装置において、
上記油圧式クラッチは第1の変速用エレメントをバネ力で接合させ、第1油圧アクチュエータが油圧を受けた際に上記バネ力を解除させてクラッチ断状態を保持することを特徴とする4輪駆動車のトランスファ装置。
The transfer device for a four-wheel drive vehicle according to claim 2,
The four-wheel drive is characterized in that the hydraulic clutch has a first shifting element joined by a spring force, and when the first hydraulic actuator receives a hydraulic pressure, the spring force is released and the clutch disengaged state is maintained. Car transfer device.
JP15621795A 1995-06-22 1995-06-22 Transfer device for four-wheel drive vehicle Expired - Fee Related JP3659696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15621795A JP3659696B2 (en) 1995-06-22 1995-06-22 Transfer device for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15621795A JP3659696B2 (en) 1995-06-22 1995-06-22 Transfer device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPH092089A JPH092089A (en) 1997-01-07
JP3659696B2 true JP3659696B2 (en) 2005-06-15

Family

ID=15622924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15621795A Expired - Fee Related JP3659696B2 (en) 1995-06-22 1995-06-22 Transfer device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JP3659696B2 (en)

Also Published As

Publication number Publication date
JPH092089A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
US6299560B1 (en) Control device for vehicle automatic transmission
US4369671A (en) Torque transfer mechanism with hydraulic control system for a four wheel drive vehicle
US20070167283A1 (en) Hydraulic control apparatus for an automatic transmission
JPH09280349A (en) Hydraulic control device for composite clutch type automatic transmission
EP0926403B1 (en) Hydraulic control apparatus for an automatic transmission
CA2784384C (en) System and method for multiplexing gear engagement control and providing fault protection in a toroidal traction drive automatic transmission
JPH0794865B2 (en) Hydraulic control device for automatic transmission
US6865965B2 (en) Hydraulic control system of automated manual transmission
JPH09280367A (en) Hydraulic control device for complex clutch type automatic transmission
KR100387471B1 (en) Hydraulic control system in a automatic transmission for vehicles
JP4700179B2 (en) Hydraulic control system for automatic transmission for vehicles
JP2000104811A (en) Control device for vehicular automatic transmission
JP3852978B2 (en) Shift control device for automatic transmission
JP3659696B2 (en) Transfer device for four-wheel drive vehicle
JPH0517987B2 (en)
US5487708A (en) Automatic transmission control system for automobiles
KR100354036B1 (en) Fail-safe hydraulic system for automatic transmission
JP3165259B2 (en) Control device for automatic transmission
JPH05209683A (en) Oil pressure control device for shift-by-wire automatic transmission
JP3135992B2 (en) Hydraulic control device for automatic transmission
JPH09112679A (en) Hydraulic control device for automatic transmission
JP3630253B2 (en) Hydraulic control circuit for automatic transmission
KR100320530B1 (en) Hydraulic control system of automatic transmission for vehicle
JP4461579B2 (en) Hydraulic control device for automatic transmission
KR960004365B1 (en) Oil pressure control device of automatic transmission

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

LAPS Cancellation because of no payment of annual fees