JP3659308B2 - Hydrostatic fluid bearing - Google Patents

Hydrostatic fluid bearing Download PDF

Info

Publication number
JP3659308B2
JP3659308B2 JP17898199A JP17898199A JP3659308B2 JP 3659308 B2 JP3659308 B2 JP 3659308B2 JP 17898199 A JP17898199 A JP 17898199A JP 17898199 A JP17898199 A JP 17898199A JP 3659308 B2 JP3659308 B2 JP 3659308B2
Authority
JP
Japan
Prior art keywords
guide surface
exhaust
exhaust groove
fluid
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17898199A
Other languages
Japanese (ja)
Other versions
JP2001012469A (en
Inventor
健一 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP17898199A priority Critical patent/JP3659308B2/en
Publication of JP2001012469A publication Critical patent/JP2001012469A/en
Application granted granted Critical
Publication of JP3659308B2 publication Critical patent/JP3659308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • F16C33/741Sealings of sliding-contact bearings by means of a fluid
    • F16C33/748Sealings of sliding-contact bearings by means of a fluid flowing to or from the sealing gap, e.g. vacuum seals with differential exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2つの部材間に圧縮流体を噴出して静圧流体層を形成するとともに、2つの部材間に供給された圧縮流体を回収し、外部へ漏洩させることなく駆動させることが可能な回転運動や直線運動に用いる静圧流体軸受に関するものであり、特に真空中、その中でも1×10-5Torr以上の超高真空中でも使用可能な真空対応型の静圧流体軸受として好適なものである。
【0002】
【従来の技術】
従来、滑らかな回転運動や直線運動をさせる手段として静圧流体軸受が用いられている。静圧流体軸受は、固定部材と可動部材との微少隙間に圧縮流体を噴出して静圧流体層を形成することにより、可動部材を固定部材上に静圧支持するようになっており、2つの部材同士が直接接触しないことから摩擦抵抗が極めて小さく、可動部材を滑らかに回転運動や直線運動させることができるようになっている。
【0003】
ところで、可動部材を固定部材上に静圧支持するには、2つの部材間に供給された圧縮流体を外部へ漏洩させる必要があるが、真空雰囲気下ではそのまま使用することができず、本件出願人は例えば図9(a)(b)に示すような静圧流体軸受を先に提案している(特公平8−1215号公報参照)。
【0004】
この静圧流体軸受は、両端が支持板23,24により固定された柱状体であって、その外壁を第1ガイド面22とする第1部材21と、該第1部材21を囲繞する筒状体であって、その内壁を第2ガイド面32とする第2部材31とから成り、第2ガイド面32には、ポケット33と該ポケット33と連通し、第1ガイド面22に向けて空気等の圧縮流体を噴出する給気孔34を有し、該給気孔34から圧縮気体を噴出させ、ポケット33によって拡散させることで、第1ガイド面22との微少な隙間Sに静圧流体層を形成し、第2部材31を第1部材21上に静圧支持するようになっていた。また、第2部材31と各支持板23,24との間には、第1部材21の外周を覆うように収縮性を持った、例えばネオプレンゴム等の如き外囲体25,26を気密に取着してあり、第1部材21と第2部材31との隙間Sより漏洩する流体を各支持板23,24に穿孔した排気孔23a,24aより真空雰囲気外へ放出することで真空環境を維持するようになっていた。
【0005】
そして、第2部材31を移動させるには、第1部材21と平行に設置されたネジ軸42に螺合するナット43を第2部材31と連結させ、モータ44によってネジ軸42を回転させてナット43を軸方向に移動させることで、第2部材31を第1部材21に沿って移動させるようになっていた。
【0006】
なお、第2部材31を移動させる手段としては、ボールネジ41を介してのモータ44駆動以外に、ベルトを介してのモータ駆動や第2部材31をエアシリンダやリニアモータによって直接駆動させることも行われていた。
【0007】
【発明が解決しようとする課題】
ところが、図9(a)(b)に示す静圧流体軸受を真空雰囲気下で使用できるのは、真空度が10-3Torr程度までであり、これ以上の真空環境では、外囲体25,26の内部圧力と外部圧力との圧力差が大きくなりすぎて外囲体25,26が急激に膨張し、延いては破損に至るため、1×10-3Torrを越える真空環境下では用いることができなかった。
【0008】
また、1×10-3Torr以下の真空環境下であっても、第2部材31の移動に伴って収縮する外囲体25,26の動きが抵抗となって第2部材31の移動が阻害されるため、第2部材31の持つ滑らかな運動性能が損なわれるといった課題もあった。
【0009】
そこで、第2部材31の滑らかな運動性能を阻害する外囲体25,26を用いることなく、真空環境下で使用可能な静圧流体軸受として、図10(a)(b)に示すものが提案されている(特開昭63−192864号公報参照)。
【0010】
この静圧流体軸受は、円柱状体であって、その外壁を第1ガイド面52とする第1部材51と、該第1部材51を囲繞する円筒体であって、その内壁を第2ガイド面62とする第2部材61とから成り、第2ガイド面62には、その中央で周方向に沿って形成されたポケット63と、該ポケット63に連通し、第1ガイド面52へ向けて圧縮流体を噴出する給気孔64と、前記ポケット63を挟んで両側に周方向に沿ってそれぞれ形成された三重の排気溝65,66,67と、各排気溝65,66,67とそれぞれ連通し、第1ガイド面52と第2ガイド面62との微少な隙間Rより漏洩する気体を強制的に排気する吸引孔68,69,70を備えたものがあった。そして、各排気溝65,66,67の内壁は、第2ガイド面62に対してそれぞれ垂直に形成されていた。
【0011】
なお、各吸引孔68,69,70は、ホース71,72,73を介して不図示の吸引ポンプにより真空吸引されるようになっており、また、給気孔64は、ホース74を介して不図示の圧縮ポンプから圧縮流体が供給されるようになっていた。
【0012】
そして、この静圧流体軸受を作動させるには、第2部材61の給気孔64より圧縮気体を噴出させ、ポケット63で拡散させることにより、第1ガイド面52との微少な隙間Rに静圧流体層を形成し、第2部材61を第1部材51上に静圧支持するとともに、第1ガイド面52と第2ガイド面62との微少な隙間Rより漏洩する流体を第1の排気溝65、第2の排気溝66、第3の排気溝67によって順次強制的に排気することで、外部(真空中)へ流体が漏洩することを防ぎ、真空環境を維持するようになっていた。
【0013】
ところが、図10(a)(b)に示す静圧流体軸受でも真空度を低下させることなく作動させることができるのは、せいぜい10-4Torr台〜10-5Torr台までであり、近年、半導体製造工程等で要求されている1×10-5Torrを越える10-6Torr台、あるいはそれ以上の超高真空環境下では使用することができなかった。
【0014】
また、図10(a)(b)に示す静圧流体軸受は、その軸受剛性を維持するために必要な静圧領域を確保したうえで、第1ガイド面52と第2ガイド面62の微少な隙間Rから気体が漏洩することを防ぎ、作動可能な前記真空環境を維持するためには、第2ガイド面62の両端に少なくとも低真空用、中真空用、高真空用の3つの排気溝65,66,67を必要とし、軸受剛性を維持したまま第2部材61を小型化することが難しく、また、排気溝65,66,67の数に合わせて3つの吸引ポンプ71,72,73が必要となることから、部品点数が多く構造が複雑となり、さらには各吸引ポンプ71,72,73と接続するホース74,75,76の数が多くなるため、第2部材61が第1部材51上を直線運動するような場合、移動に伴うホース74,75,76の屈曲が抵抗となって第2部材61の滑らかな直線運動が阻害される恐れもあった。
【0015】
【課題を解決するための手段】
そこで、本発明者は前記課題に鑑み、排気溝を減らし、二重の排気溝でも1×10-5Torr以上の超高真空環境下で作動させることが可能な静圧流体軸受について鋭意研究を重ねたところ、少なくとも給気孔に近い排気溝の内壁を、開口部から外側へ広がるように、ある角度をもって傾斜させることにより、排気溝からの排気効率を格段に向上させることができ、もって二重の排気溝でも1×10-5Torr以上の超高真空環境下でも十分に作動し得ることを見出し、本発明に至った。
【0016】
即ち、本発明の静圧流体軸受は、第1ガイド面を有する第1部材と、前記第1ガイド面に対し隙間を設けて対向する第2ガイド面を有する第2部材とから成り、前記第1ガイド面又は第2ガイド面には、前記隙間に圧縮流体を噴出して静圧流体層を形成する給気孔と、該給気孔の周囲に刻設され、前記圧縮流体を回収する二重の排気溝を備えるとともに、少なくとも内側に位置する排気溝の内壁を、前記第1ガイド面又は第2ガイド面に対して40度〜65度の範囲で外側に傾斜させたことを特徴とする。
【0017】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0018】
図1は本発明の静圧流体軸受の一例を示す斜視図、図2は図1のX−X線における主要部のみを示す断面図、図3は図1の第2部材のみを示す一部を破断した斜視図である。
【0019】
この静圧流体軸受は、両端が支持板13,14により固定された柱状体であって、その外壁を第1ガイド面2とする第1部材1と、該第1部材1を囲繞する筒状体であって、その内壁を第2ガイド面4とする第2部材3とから成り、第2ガイド面4には、ポケット5と該ポケット5と連通し、第1ガイド面2に向けて空気などの圧縮流体を噴出する給気孔6を有し、該給気孔6から圧縮流体を噴出させ、ポケット5によって拡散させることで、第1ガイド面2との微少な隙間Tに静圧流体層を形成し、第2部材3を第1部材1上に静圧支持するようになっている。
【0020】
また、第2ガイド面4には、前記ポケット5(あるいは給気孔6)の周囲に刻設され、第1ガイド面2との隙間Tに噴出された圧縮流体を回収する二重の排気溝7,8を備え、内側に位置する排気孔7、即ち給気孔6に近い排気溝7の内壁を、第2ガイド面4に対して40度〜65度の角度αで開口部から外側へ広がるように傾斜させるとともに、外側に位置する排気孔8、即ち給気孔6より遠い排気溝8の内壁を、第2ガイド面4に対して垂直に形成してある。
【0021】
なお、第2部材3の内部には、各第2ガイド面4に形成された給気孔6と連通する給気通路21、及び各第2ガイド面4に形成された排気溝7,8と連通する吸引通路22,23を設けてあり、給気通路21はホース24を介して圧縮ポンプ10と、各吸引通路22,23はホース25,26を介して吸引ポンプ11,12とそれぞれ接続してある。
【0022】
また、この静圧流体軸受には、第1部材1と平行にボールネジ16のネジ軸17を設置してあり、該ネジ軸17に螺合するナット18を連結部材19を介して第2部材3と連結するとともに、ネジ軸17の一端にはモータ20を連結してある。
【0023】
なお、図1では第2部材3を移動させる手段として、ボールネジ16を介したモータ20による駆動手段を示したが、ベルトを介してのモータ駆動や第2部材3をエアシリンダやリニアモータによって直接駆動させるようにしても良い。
【0024】
そして、この静圧流体軸受を用いて第2部材3を移動させるには、まず、給気孔6より空気などの圧縮流体を第1ガイド面2に向けて噴出する。この時、ポケット5によって圧縮流体は拡散され、第1ガイド面2との隙間Tに静圧流体層を形成して第2部材3を第1部材1上に静圧支持する。そして、モータ20によってネジ軸17を回転させながらナット18を軸方向に移動させることにより、第2部材3は第1部材1と非接触であることから、この間での摺動抵抗は皆無であり、第2部材3を第1部材1に沿って滑らかに移動させることができる。
【0025】
また、第1ガイド面2と第2ガイド面4との隙間Tに供給された圧縮流体は、給気孔6の周囲に形成された二重の排気溝7,8より吸引ポンプ14,15によって回収し、第1ガイド面2と第2ガイド面4との隙間Tより流体が漏れることを防止するのであるが、本発明によれば、少なくとも内側に位置する排気溝7の内壁を、第2ガイド面4に対して40度〜65度の角度αで傾斜させてあるから、排気溝7により大部分の流体を回収し、残存する流体を外側の排気溝8によって回収することにより、第1ガイド面2と第2ガイド面4との隙間Tより漏洩する流体量を極めて少なくすることができるため、1×10-5Torrを越える超高真空環境下でもその真空度を低下させることなく作動させることができる。
【0026】
しかも、第1ガイド面2と第2ガイド面4との隙間Tに噴出された流体の回収は、二重の排気溝7,8によって達成することがきるため、三重の排気溝を有する従来の静圧流体軸受と比較して、第2部材3を小型化することができるとともに、第2部材3の重量を小さくできるため、第2部材3を静圧支持するために給気孔6より噴出させる圧縮流体量を少なくでき、経済的である。
【0027】
その上、二重の排気溝7,8としたことにより、吸引ポンプ11,12も2つで済むため、構造を簡略化できるとともに、各排気溝7,8と連通する吸引通路22,23と吸引ポンプ11,12とをそれぞれ接続するホース25,26の数を2本にできるため、第2部材3の移動に伴うホース25,26の屈曲による抵抗を低減することができ、滑らかな第2部材3の移動が阻害されるのを抑制することができる。
【0028】
ところで、このような効果を奏するためには、前述したように、二重の排気溝7,8のうち、少なくとも内側に位置する排気孔7の内壁を、第2ガイド面4に対して40〜65度の角度αで開口部から外側へ広がるように傾斜させることが重要である。
【0029】
即ち、第1ガイド面2と第2ガイド面4との隙間Tに噴出された圧縮流体を効率良く回収するためには、排気溝7の内壁をできるだけ傾斜させた方が良いのであるが、第2ガイド面4に対する角度αが40度未満では、これ以上傾斜させても流体の回収効率を高めることができず、しかも、三重の排気溝を有する従来の静圧流体軸受と比較して第2部材3を小型化することができないからであり、逆に、第2ガイド面4に対する角度αが65度を越えると、流体の回収効率が悪く、二重の排気溝7,8では隙間Tから漏洩する流体量が多くなりすぎるために、1×10-5Torrを越える超高真空環境下ではその真空度を低下させることなく動作させることができないからである。なお、好ましくは第2ガイド面4に対して40〜45度の角度αで開口部から外側へ広がるように傾斜させることが良い。
【0030】
また、排気溝7,8による流体の回収効率を高めるためには、内側に位置する排気溝7の溝幅Lを、外側に位置する排気溝8の溝幅Nの2倍以上とするとともに、排気溝7と排気溝8との間隔Mを、外側に位置する排気溝8の溝幅Nと同等あるいはそれ以上長くすることが好ましい。これは、内側に位置する排気溝7の溝幅Lが、外側に位置する排気溝8の溝幅Nの2倍未満では、溝幅Lが狭いために排気溝7にて回収できる流体量をそれほど多くすることができないからであり、また、排気溝7と排気溝8との間隔Mが、外側に位置する排気溝8の溝幅N未満であると、両者間の間隔Mが短すぎるため、この間を通過する流体の流量が大きく、排気溝8に流れ込む流体量が増大し、二重の排気溝7,8による流体の回収効率が低下するからである。
【0031】
なお、図2では、給気孔6に近い排気溝7の内壁のみを傾斜させた例を示したが、外側の排気溝8の内壁も排気溝7と同様の条件で傾斜させても良く、より効率的に流体を回収することができる。
【0032】
また、本実施形態では、第1部材1が第2部材3によって囲繞され、第2部材3が第1部材1上に静圧支持された状態で直線運動する構造の静圧流体軸受について示したが、必ずしも第1部材1が第2部材3によって囲繞されている必要性はなく、平板状の第1部材と平板状の第2部材との隙間に圧縮流体を噴出して静圧支持するようにした静圧流体軸受についても本発明を適用できることは言うまでもない。
【0033】
さらに、本発明は直線運動する静圧流体軸受だけに限定されるものではなく、第1部材が第2部材によって囲繞され、第1部材が第2部材内で回転運動する構造の静圧流体軸受にも適用することができ、同様の効果を奏することができることは言うまでもない。
【0034】
【実施例】
(実施例1)
ここで、本発明の静圧流体軸受と従来の静圧流体軸受による流体の回収効率を確認するため、本発明として、図4(a)に示すように、平板40と対設したガイド面42に二重の排気溝44,45を備えた部材41を5μmの間隔を設けて設置したものと、従来として、図4(b)に示すように、平板40と対設したガイド面47に三重の排気溝49,50,51を有する部材46を5μmの間隔を設けて設置したものとをそれぞれ用意し、図5に示す実験装置の真空容器52内で、平板40と各部材41,46との隙間に圧縮空気を噴出させた時の図4(a)に示す二重の排気溝44,45と図4(b)に示す三重の排気溝49,50,51による空気の回収効率を、真空容器52内における真空度の低下具合を調べることにより確認した。
【0035】
なお、図4(a)(b)において、43,48は平板40に対して圧縮空気を噴出する各部材41,46に設けた給気孔である。また、図5は図4(a)の平板40と部材41を真空容器52内に設置した状態を示したもので、平板40と部材41との隙間のうち3辺は封止部材53,54,85にて閉じ、残る一辺のみを開放してある。ただし、56は真空容器52内を真空にするための排気ポンプ、57は真空容器52内の圧力変動を測定するための真空ゲージ、58は部材41の給気孔43へ圧縮空気を供給するためのホース、59,60は各部材41の排気溝44,45より回収した空気を不図示の吸引ポンプへ送るためのホースである。
【0036】
また、図4(a)では、給気孔43に近い排気溝44の溝幅を20mm、外側の排気溝45の溝幅を10mm、排気溝44,45の間隔を10mmとし、かつ排気溝44の内壁を、ガイド面42に対して45度の角度βで開口部から外側へ向けて傾斜させるとともに、排気溝45の内壁を、ガイド面42と垂直に形成し、図4(b)では、給気孔48に近い排気溝49の溝幅を10mm、次の排気溝50の溝幅を10mm、外側の排気溝51の溝幅を10mm、排気溝49,50,51の間隔を10mmとし、かつ各排気溝49,50,51の内壁をいずれもガイド面47と垂直に形成した。
【0037】
そして、この実験装置により空気の回収効率を確認するには、真空容器52内の空気を排気ポンプ56により排気して5×10-6Torrの真空度としたあと、各部材41(46)の給気孔43(48)より平面40に対して2リットル/minの圧縮空気を噴出させた状態で排気溝44,45(49,50,51)により空気を回収し、その時の真空ゲージ57の真空度を確認した。
【0038】
この結果、図4(b)は、排気溝49,50,85の内壁がいずれもガイド面47に対して垂直に形成されているために空気の回収効率が悪く、平板40と部材46と隙間からの空気の漏れ量が多いため、真空容器52内の真空度は10-5Torr台まで低下した。
【0039】
これに対し、図4(a)は、排気溝44の内壁をガイド面42に対して45度の角度βで開口部から外側へ向けて傾斜させてあることから、二重の排気溝44,45であるものの、空気の回収性に優れ、平板40と部材41との隙間からの空気の漏れ量が極めて少ないために、真空容器52内の真空度が1×10-5Torrを下回ることがなく、超高真空下でも使用可能であった。
【0040】
そこで、図4(a)の構造において、排気溝44の内壁をガイド面42に対して30度、45度、65度、75度の角度βで傾斜させる以外は同様の条件にて空気の回収効率について測定した。
【0041】
結果は図6に示す通りである。
【0042】
この結果、角度βが45度を越えると真空容器52内の真空度が徐々に低下し、65度を越えると1×10-5Torrを下回り、10-6Torr台を維持することができなくなった。ただし、角度βが40度より小さいと、部材41が大型化して好ましくなかった。
【0043】
よって、二重の排気溝44、45のうち、給気孔43に近い排気溝44の内壁は、ガイド面42に対して40度〜65度の角度βで開口部から外側へ広がるように傾斜させることにより、二重の排気溝44,45でも高い空気の回収効率が得られ、1×10-5Torr以上の真空度を維持できることが判る。
【0044】
(実施例2)
次に、図4(a)の構造において、給気孔43に近い排気溝44の溝幅を異ならせた時の空気の回収効率について、実施例1と同様の条件にて測定を行った。なお、実験にあたり、排気溝44の内壁の傾斜角度βは45度、排気溝44,45間の間隔は10mm、排気溝45の溝幅は10mmとした。
【0045】
結果は図7に示す通りである。
【0046】
この結果、供気孔43に近い排気溝44の溝幅を、もう一方の排気溝45の溝幅の2倍以上とすることにより、空気の回収効率を高め、真空容器52内の真空度を1×10-5Torr以上とすることができた。
【0047】
この結果、給気孔43に近い排気溝44の溝幅は、もう一方の排気溝45の溝幅の2倍以上とすれば良いことが判る。
【0048】
(実施例3)
さらに、図4(a)の構造において、排気溝44,45の間隔を異ならせた時の空気の回収効率について、実施例1と同様の条件にて測定を行った。
【0049】
なお、実験にあたり、排気溝44の内壁の傾斜角度βは45度、排気溝44の溝幅は20mm、排気溝45の溝幅は10mmとした。
【0050】
結果は図8に示す通りである。
【0051】
この結果、排気溝44,45の間隔は、外側の排気溝45の溝幅と同等以上の長さとすることにより、真空容器52内の真空度を1×10-5Torr以上とすることができた。
【0052】
この結果、排気溝74,45の間隔は、外側の排気溝45の溝幅と同等以上とすれば良いことが判る。
【0053】
【発明の効果】
以上のように、本発明の静圧流体軸受によれば、第1ガイド面を有する第1部材と、前記第1ガイド面に対し隙間を設けて対向する第2ガイド面を有する第2部材とから成り、前記第1ガイド面又は第2ガイド面には、前記隙間に圧縮流体を噴出して静圧流体層を形成する給気孔と、該給気孔の周囲に刻設され、前記圧縮流体を回収する二重の排気溝を備えるとともに、少なくとも内側に位置する排気溝の内壁を、前記第1ガイド面又は第2ガイド面に対して40度〜65度の範囲で排気溝の開口部から外側に傾斜させたことにより、二重の排気溝でも第1ガイド面と第2ガイド面との隙間に噴出された流体の大部分を回収し、第1ガイド面と第2ガイド面との隙間より外部へ漏洩する流体量を極めて少なくすることができるため、1×10-5Torr以上という超高真空環境下でもその真空度を低下させることなく作動させることができる。
【0054】
また、二重の排気溝によって流体の回収を行うことができるため、三重の排気溝を有する従来の静圧流体軸受と比較して、給気孔を有する部材を小型化することができるとともに、重量を小さくできるため、給気孔より噴出させる圧縮流体量を少なくでき、経済的である。
【0055】
さらに、気体を回収するための吸引ポンプも2つで済むため構造を簡略化できるとともに、各排気溝と連通する吸引孔と吸引ポンプとをそれぞれ接続するホースの数も2本で済むため、排気溝を備えた部材が移動する場合、ホースの屈曲による抵抗を低減することができ、静圧流体軸受の滑らかな移動を維持することができる。
【図面の簡単な説明】
【図1】本発明に係る静圧流体軸受の一例を示す斜視図である。
【図2】図1のX−X線における主要部のみを示す断面図である。
【図3】図1における第2部材のみを示す一部を破断した斜視図である。
【図4】(a)は実験における二重の排気溝を備えた部材を示す断面図、(b)は実験における三種の排気溝を備えた部材を示す断面図である。
【図5】実験装置を示す概略図である。
【図6】給気孔に近い排気溝の内壁の傾斜角度と真空容器内の真空度との関係を示すグラフである。
【図7】給気孔に近い排気溝の溝幅と真空容器内の真空度との関係を示すグラフである。
【図8】二重の排気溝の間隔と真空容器内の真空度との関係を示すグラフである。
【図9】(a)は従来の静圧流体軸受の一例を示す斜視図、(b)は(a)のY−Y線断面図である。
【図10】(a)は従来の静圧流体軸受の他の例を示す斜視図、(b)は(a)のZ−Z線断面図である。
【符号の説明】
1:第1部材 2:第1ガイド面 3:第2部材 4:第2ガイド面 5:ポケット
6:給気孔 7,8:排気溝 10:圧縮ポンプ 11,12:吸引ポンプ
13,14:支持部材 16:ボールネジ 17:ネジ軸 18:ナット
19:連結部材 20:モータ
L,N:排気溝の溝幅 T:第1部材と第2部材との隙間
M:二重の排気溝間の間隔 α:ガイド面に垂直な平面に対する排気溝内壁の傾斜角度
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a compressed fluid is ejected between two members to form a static pressure fluid layer, and the compressed fluid supplied between the two members can be recovered and driven without leaking to the outside. The present invention relates to a hydrostatic fluid bearing used for rotational motion and linear motion, and is particularly suitable as a vacuum-compatible hydrostatic fluid bearing that can be used in a vacuum, especially in an ultrahigh vacuum of 1 × 10 −5 Torr or more. is there.
[0002]
[Prior art]
Conventionally, hydrostatic fluid bearings are used as means for smooth rotation and linear motion. The hydrostatic bearing is configured to statically support the movable member on the stationary member by ejecting a compressed fluid into a minute gap between the stationary member and the movable member to form a hydrostatic fluid layer. Since the two members are not in direct contact with each other, the frictional resistance is extremely small, and the movable member can be smoothly rotated or linearly moved.
[0003]
By the way, in order to statically support the movable member on the fixed member, it is necessary to leak the compressed fluid supplied between the two members to the outside, but it cannot be used as it is in a vacuum atmosphere. For example, a person has previously proposed a hydrostatic bearing as shown in FIGS. 9A and 9B (see Japanese Patent Publication No. 8-1215).
[0004]
The hydrostatic bearing is a columnar body having both ends fixed by support plates 23 and 24, a first member 21 having an outer wall as a first guide surface 22, and a cylindrical shape surrounding the first member 21. A second member 31 having an inner wall as a second guide surface 32, the pocket 33 and the pocket 33 communicating with the second guide surface 32, and air toward the first guide surface 22. And the like, and the compressed gas is ejected from the air supply holes 34 and diffused by the pockets 33 so that the hydrostatic fluid layer is formed in the minute gap S with the first guide surface 22. Thus, the second member 31 is supported on the first member 21 by static pressure. Further, between the second member 31 and each of the support plates 23 and 24, airtight enclosures 25 and 26 such as neoprene rubber having a contractibility so as to cover the outer periphery of the first member 21 are airtight. The vacuum environment is released by discharging the fluid leaking from the gap S between the first member 21 and the second member 31 to the outside of the vacuum atmosphere from the exhaust holes 23a, 24a drilled in the support plates 23, 24. It was supposed to be maintained.
[0005]
In order to move the second member 31, a nut 43 that is screwed into a screw shaft 42 installed in parallel with the first member 21 is connected to the second member 31, and the screw shaft 42 is rotated by a motor 44. The second member 31 is moved along the first member 21 by moving the nut 43 in the axial direction.
[0006]
As means for moving the second member 31, in addition to driving the motor 44 via the ball screw 41, motor driving via a belt and direct driving of the second member 31 by an air cylinder or linear motor are also performed. It was broken.
[0007]
[Problems to be solved by the invention]
However, the hydrostatic bearing shown in FIGS. 9 (a) and 9 (b) can be used in a vacuum atmosphere only when the degree of vacuum is up to about 10 −3 Torr. Because the pressure difference between the internal pressure and the external pressure of 26 is too large and the envelopes 25 and 26 expand rapidly and eventually break, use in a vacuum environment exceeding 1 × 10 −3 Torr. I could not.
[0008]
In addition, even in a vacuum environment of 1 × 10 −3 Torr or less, the movement of the enclosures 25 and 26 that contract with the movement of the second member 31 becomes a resistance, and the movement of the second member 31 is obstructed. Therefore, there is a problem that the smooth motion performance of the second member 31 is impaired.
[0009]
Therefore, as a hydrostatic fluid bearing that can be used in a vacuum environment without using the enclosures 25 and 26 that hinder the smooth motion performance of the second member 31, the one shown in FIGS. It has been proposed (see Japanese Patent Laid-Open No. 63-192864).
[0010]
The hydrostatic bearing is a cylindrical body, and includes a first member 51 having an outer wall as a first guide surface 52 and a cylindrical body surrounding the first member 51, and an inner wall of the first member 51 as a second guide. The second member 61 is a surface 62, and the second guide surface 62 has a pocket 63 formed in the center along the circumferential direction, and communicates with the pocket 63 toward the first guide surface 52. An air supply hole 64 for ejecting a compressed fluid, a triple exhaust groove 65, 66, 67 formed on both sides of the pocket 63 along the circumferential direction, and the exhaust grooves 65, 66, 67 communicate with each other. In some cases, there are suction holes 68, 69, 70 for forcibly exhausting the gas leaking from the minute gap R between the first guide surface 52 and the second guide surface 62. The inner walls of the exhaust grooves 65, 66, 67 are formed perpendicular to the second guide surface 62.
[0011]
Each suction hole 68, 69, 70 is vacuum-sucked by a suction pump (not shown) via hoses 71, 72, 73, and the air supply hole 64 is not connected via hose 74. The compressed fluid was supplied from the illustrated compression pump.
[0012]
In order to operate this hydrostatic fluid bearing, the compressed gas is ejected from the air supply hole 64 of the second member 61 and diffused in the pocket 63, so that the static pressure is applied to the minute gap R with the first guide surface 52. A fluid layer is formed, and the second member 61 is statically supported on the first member 51, and fluid leaking from a minute gap R between the first guide surface 52 and the second guide surface 62 is discharged to the first exhaust groove. 65, the second exhaust groove 66, and the third exhaust groove 67 are sequentially forcibly exhausted to prevent the fluid from leaking to the outside (in the vacuum) and maintain the vacuum environment.
[0013]
However, the hydrostatic bearings shown in FIGS. 10 (a) and 10 (b) can be operated without lowering the degree of vacuum up to 10 −4 Torr level to 10 −5 Torr level. It could not be used in an ultra-high vacuum environment of 10 −6 Torr exceeding 1 × 10 −5 Torr required in the semiconductor manufacturing process or the like.
[0014]
The hydrostatic bearing shown in FIGS. 10 (a) and 10 (b) has a very small area between the first guide surface 52 and the second guide surface 62 after securing a static pressure region necessary for maintaining the bearing rigidity. In order to prevent gas from leaking from the gap R and maintain the operable vacuum environment, at least three exhaust grooves for low vacuum, medium vacuum, and high vacuum at both ends of the second guide surface 62 65, 66, and 67 are required, and it is difficult to reduce the size of the second member 61 while maintaining the bearing rigidity, and three suction pumps 71, 72, and 73 are arranged in accordance with the number of exhaust grooves 65, 66, and 67. Since the number of parts is large and the structure is complicated, and the number of hoses 74, 75, and 76 connected to the suction pumps 71, 72, and 73 is increased, the second member 61 is the first member. When moving straight on 51, move Bending Urn hose 74, 75, 76 smooth linear motion of the second member 61 there is also a possibility which is inhibited by a resistor.
[0015]
[Means for Solving the Problems]
In view of the above problems, the present inventor has intensively researched a hydrostatic bearing capable of operating in an ultra-high vacuum environment of 1 × 10 −5 Torr or more even with a double exhaust groove by reducing the exhaust groove. As a result, it is possible to remarkably improve the exhaust efficiency from the exhaust groove by tilting the inner wall of the exhaust groove close to the air supply hole at an angle so as to spread outward from the opening. The present inventors have found that the exhaust groove can be sufficiently operated even in an ultrahigh vacuum environment of 1 × 10 −5 Torr or more, and the present invention has been achieved.
[0016]
That is, the hydrostatic bearing of the present invention comprises a first member having a first guide surface and a second member having a second guide surface facing the first guide surface with a gap provided therebetween. The first guide surface or the second guide surface is provided with air supply holes for ejecting a compressed fluid into the gap to form a static pressure fluid layer, and a double hole that is engraved around the air supply holes and collects the compressed fluid. An exhaust groove is provided, and at least an inner wall of the exhaust groove located on the inner side is inclined outward in a range of 40 to 65 degrees with respect to the first guide surface or the second guide surface.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0018]
1 is a perspective view showing an example of a hydrostatic bearing of the present invention, FIG. 2 is a cross-sectional view showing only a main part of FIG. 1 along line XX, and FIG. 3 is a part showing only a second member of FIG. It is the perspective view which fractured | ruptured.
[0019]
This hydrostatic bearing is a columnar body having both ends fixed by support plates 13, 14, a first member 1 whose outer wall is a first guide surface 2, and a cylindrical shape surrounding the first member 1. A second member 3 having an inner wall as a second guide surface 4. The second guide surface 4 communicates with the pocket 5 and the pocket 5, and air is directed toward the first guide surface 2. And the like, and a hydrostatic fluid layer is formed in the minute gap T with the first guide surface 2 by ejecting the compressed fluid from the air supply holes 6 and diffusing the compressed fluid through the pockets 5. The second member 3 is statically supported on the first member 1 by being formed.
[0020]
The second guide surface 4 is engraved around the pocket 5 (or the air supply hole 6) and has a double exhaust groove 7 for recovering the compressed fluid ejected into the gap T with the first guide surface 2. , 8 so that the inner wall of the exhaust hole 7 located inside, that is, the exhaust groove 7 near the air supply hole 6, extends outward from the opening at an angle α of 40 degrees to 65 degrees with respect to the second guide surface 4. The exhaust hole 8 located outside, that is, the inner wall of the exhaust groove 8 far from the air supply hole 6 is formed perpendicular to the second guide surface 4.
[0021]
In addition, in the inside of the 2nd member 3, it connects with the air supply passage 21 connected with the air supply hole 6 formed in each 2nd guide surface 4, and the exhaust grooves 7 and 8 formed in each 2nd guide surface 4. Suction passages 22 and 23 are provided, the air supply passage 21 is connected to the compression pump 10 via a hose 24, and the suction passages 22 and 23 are connected to the suction pumps 11 and 12 via hoses 25 and 26, respectively. is there.
[0022]
The hydrostatic bearing is provided with a screw shaft 17 of a ball screw 16 parallel to the first member 1, and a nut 18 screwed into the screw shaft 17 is connected to the second member 3 via a connecting member 19. The motor 20 is connected to one end of the screw shaft 17.
[0023]
In FIG. 1, as the means for moving the second member 3, the driving means by the motor 20 via the ball screw 16 is shown. However, the motor driving via the belt and the second member 3 directly by the air cylinder or linear motor are shown. You may make it drive.
[0024]
In order to move the second member 3 using this hydrostatic fluid bearing, first, a compressed fluid such as air is ejected from the air supply hole 6 toward the first guide surface 2. At this time, the compressed fluid is diffused by the pocket 5, and a static pressure fluid layer is formed in the gap T between the first guide surface 2 and the second member 3 is statically supported on the first member 1. The second member 3 is not in contact with the first member 1 by moving the nut 18 in the axial direction while rotating the screw shaft 17 by the motor 20, so that there is no sliding resistance during this period. The second member 3 can be smoothly moved along the first member 1.
[0025]
The compressed fluid supplied to the gap T between the first guide surface 2 and the second guide surface 4 is recovered by the suction pumps 14 and 15 from the double exhaust grooves 7 and 8 formed around the air supply holes 6. However, according to the present invention, at least the inner wall of the exhaust groove 7 located on the inner side of the second guide surface 2 is prevented from leaking through the gap T between the first guide surface 2 and the second guide surface 4. Since the surface 4 is inclined at an angle α of 40 to 65 degrees, the first guide is obtained by recovering most of the fluid by the exhaust groove 7 and recovering the remaining fluid by the outer exhaust groove 8. Since the amount of fluid leaking from the gap T between the surface 2 and the second guide surface 4 can be extremely reduced, it can be operated without reducing the degree of vacuum even in an ultrahigh vacuum environment exceeding 1 × 10 −5 Torr. be able to.
[0026]
Moreover, since the recovery of the fluid ejected into the gap T between the first guide surface 2 and the second guide surface 4 can be achieved by the double exhaust grooves 7 and 8, a conventional exhaust gas having triple exhaust grooves is provided. Compared with a hydrostatic bearing, the second member 3 can be reduced in size and the weight of the second member 3 can be reduced, so that the second member 3 is ejected from the air supply holes 6 to support the static pressure. The amount of compressed fluid can be reduced, which is economical.
[0027]
In addition, since the double exhaust grooves 7 and 8 are used, only two suction pumps 11 and 12 are required, so that the structure can be simplified and the suction passages 22 and 23 communicating with the exhaust grooves 7 and 8 are provided. Since the number of hoses 25 and 26 for connecting the suction pumps 11 and 12 can be two, resistance due to bending of the hoses 25 and 26 accompanying the movement of the second member 3 can be reduced, and the second smooth It can suppress that the movement of the member 3 is inhibited.
[0028]
By the way, in order to exert such an effect, as described above, at least the inner wall of the exhaust hole 7 located on the inner side of the double exhaust grooves 7, 8 is 40 to the second guide surface 4. It is important to incline so as to spread outward from the opening at an angle α of 65 degrees.
[0029]
That is, in order to efficiently recover the compressed fluid ejected into the gap T between the first guide surface 2 and the second guide surface 4, it is better to incline the inner wall of the exhaust groove 7 as much as possible. If the angle α with respect to the two guide surfaces 4 is less than 40 degrees, the fluid recovery efficiency cannot be improved even if the angle α is further inclined, and the second is compared with the conventional hydrostatic fluid bearing having triple exhaust grooves. This is because the member 3 cannot be reduced in size, and conversely, if the angle α with respect to the second guide surface 4 exceeds 65 degrees, the fluid recovery efficiency is poor, and the double exhaust grooves 7 and 8 have a gap T. This is because the amount of fluid that leaks becomes too large and cannot be operated without lowering the degree of vacuum in an ultra-high vacuum environment exceeding 1 × 10 −5 Torr. Preferably, the second guide surface 4 is inclined so as to spread outward from the opening at an angle α of 40 to 45 degrees.
[0030]
Further, in order to increase the fluid recovery efficiency by the exhaust grooves 7 and 8, the groove width L of the exhaust groove 7 located on the inner side is set to be twice or more the groove width N of the exhaust groove 8 located on the outer side, It is preferable that the interval M between the exhaust groove 7 and the exhaust groove 8 is equal to or longer than the groove width N of the exhaust groove 8 located outside. This is because if the groove width L of the exhaust groove 7 located on the inner side is less than twice the groove width N of the exhaust groove 8 located on the outer side, the groove width L is so narrow that the amount of fluid that can be collected in the exhaust groove 7 is reduced. This is because the distance M between the exhaust groove 7 and the exhaust groove 8 is less than the groove width N of the exhaust groove 8 located outside, because the distance M between the two is too short. This is because the flow rate of the fluid passing between them is large, the amount of fluid flowing into the exhaust groove 8 increases, and the fluid recovery efficiency by the double exhaust grooves 7 and 8 decreases.
[0031]
2 shows an example in which only the inner wall of the exhaust groove 7 near the air supply hole 6 is inclined, the inner wall of the outer exhaust groove 8 may be inclined under the same conditions as the exhaust groove 7. The fluid can be recovered efficiently.
[0032]
In the present embodiment, a hydrostatic bearing having a structure in which the first member 1 is surrounded by the second member 3 and linearly moves while the second member 3 is statically supported on the first member 1 is shown. However, the first member 1 does not necessarily need to be surrounded by the second member 3, so that the compressed fluid is ejected into the gap between the flat plate-like first member and the flat plate-like second member to support static pressure. Needless to say, the present invention can be applied to the hydrostatic fluid bearing.
[0033]
Furthermore, the present invention is not limited to a hydrostatic bearing that moves linearly, but a hydrostatic bearing having a structure in which a first member is surrounded by a second member and the first member rotates in the second member. It goes without saying that the same effect can be obtained.
[0034]
【Example】
(Example 1)
Here, in order to confirm the fluid recovery efficiency by the hydrostatic bearing of the present invention and the conventional hydrostatic fluid bearing, as shown in FIG. A member 41 having double exhaust grooves 44 and 45 is provided with a space of 5 μm, and conventionally, a guide surface 47 facing the flat plate 40 is triple-folded as shown in FIG. Members 46 having exhaust grooves 49, 50, 51 are provided at intervals of 5 μm, and the flat plate 40 and the members 41, 46 are arranged in the vacuum vessel 52 of the experimental apparatus shown in FIG. The recovery efficiency of air by the double exhaust grooves 44 and 45 shown in FIG. 4A and the triple exhaust grooves 49, 50 and 51 shown in FIG. This was confirmed by examining the degree of vacuum reduction in the vacuum vessel 52.
[0035]
In FIGS. 4A and 4B, reference numerals 43 and 48 denote air supply holes provided in the members 41 and 46 for ejecting compressed air to the flat plate 40, respectively. FIG. 5 shows a state in which the flat plate 40 and the member 41 of FIG. 4A are installed in the vacuum vessel 52, and three sides of the gap between the flat plate 40 and the member 41 are sealing members 53 and 54. , 85, and only the remaining side is open. However, 56 is an exhaust pump for evacuating the inside of the vacuum vessel 52, 57 is a vacuum gauge for measuring pressure fluctuations in the vacuum vessel 52, and 58 is for supplying compressed air to the air supply holes 43 of the member 41. The hoses 59 and 60 are hoses for sending air collected from the exhaust grooves 44 and 45 of each member 41 to a suction pump (not shown).
[0036]
In FIG. 4A, the groove width of the exhaust groove 44 close to the air supply hole 43 is 20 mm, the groove width of the outer exhaust groove 45 is 10 mm, the interval between the exhaust grooves 44 and 45 is 10 mm, and the exhaust groove 44 The inner wall is inclined outward from the opening at an angle β of 45 degrees with respect to the guide surface 42, and the inner wall of the exhaust groove 45 is formed perpendicular to the guide surface 42. In FIG. The groove width of the exhaust groove 49 close to the air holes 48 is 10 mm, the groove width of the next exhaust groove 50 is 10 mm, the groove width of the outer exhaust groove 51 is 10 mm, the interval between the exhaust grooves 49, 50, 51 is 10 mm, and The inner walls of the exhaust grooves 49, 50, 51 are all formed perpendicular to the guide surface 47.
[0037]
In order to confirm the air recovery efficiency using this experimental apparatus, the air in the vacuum vessel 52 is exhausted by the exhaust pump 56 to obtain a vacuum degree of 5 × 10 −6 Torr, and then each member 41 (46) Air is collected by the exhaust grooves 44 and 45 (49, 50, 51) in a state where compressed air of 2 liters / min is ejected from the air supply hole 43 (48) to the flat surface 40, and the vacuum gauge 57 at that time is vacuumed. Confirmed the degree.
[0038]
As a result, FIG. 4B shows that the inner walls of the exhaust grooves 49, 50, 85 are all formed perpendicular to the guide surface 47, so the air recovery efficiency is poor, and the flat plate 40, the member 46, and the gap Because of the large amount of air leaking from the air, the degree of vacuum in the vacuum vessel 52 decreased to the 10 −5 Torr level.
[0039]
On the other hand, in FIG. 4A, since the inner wall of the exhaust groove 44 is inclined outward from the opening at an angle β of 45 degrees with respect to the guide surface 42, the double exhaust groove 44, However, the degree of vacuum in the vacuum vessel 52 may be less than 1 × 10 −5 Torr because the air recovery is excellent and the amount of air leakage from the gap between the flat plate 40 and the member 41 is extremely small. And could be used even under ultra-high vacuum.
[0040]
Therefore, in the structure shown in FIG. 4A, air is collected under the same conditions except that the inner wall of the exhaust groove 44 is inclined with respect to the guide surface 42 at an angle β of 30, 45, 65, and 75 degrees. The efficiency was measured.
[0041]
The results are as shown in FIG.
[0042]
As a result, when the angle β exceeds 45 degrees, the degree of vacuum in the vacuum vessel 52 gradually decreases, and when it exceeds 65 degrees, it is less than 1 × 10 −5 Torr and cannot maintain the 10 −6 Torr level. It was. However, when the angle β is smaller than 40 degrees, the member 41 is undesirably enlarged.
[0043]
Therefore, of the double exhaust grooves 44 and 45, the inner wall of the exhaust groove 44 close to the air supply hole 43 is inclined so as to spread outward from the opening at an angle β of 40 degrees to 65 degrees with respect to the guide surface 42. Thus, it can be seen that even in the double exhaust grooves 44 and 45, high air recovery efficiency can be obtained, and a vacuum degree of 1 × 10 −5 Torr or more can be maintained.
[0044]
(Example 2)
Next, in the structure of FIG. 4A, the air recovery efficiency when the groove width of the exhaust groove 44 close to the air supply hole 43 was varied was measured under the same conditions as in Example 1. In the experiment, the inclination angle β of the inner wall of the exhaust groove 44 was 45 degrees, the distance between the exhaust grooves 44 and 45 was 10 mm, and the groove width of the exhaust groove 45 was 10 mm.
[0045]
The results are as shown in FIG.
[0046]
As a result, the groove width of the exhaust groove 44 close to the air supply hole 43 is set to be twice or more the groove width of the other exhaust groove 45, thereby improving the air recovery efficiency and reducing the degree of vacuum in the vacuum vessel 52 to 1 × 10 −5 Torr or more could be achieved.
[0047]
As a result, it can be seen that the groove width of the exhaust groove 44 near the air supply hole 43 may be at least twice the groove width of the other exhaust groove 45.
[0048]
(Example 3)
Furthermore, in the structure of FIG. 4A, the air recovery efficiency when the intervals between the exhaust grooves 44 and 45 were varied was measured under the same conditions as in Example 1.
[0049]
In the experiment, the inclination angle β of the inner wall of the exhaust groove 44 was 45 degrees, the groove width of the exhaust groove 44 was 20 mm, and the groove width of the exhaust groove 45 was 10 mm.
[0050]
The results are as shown in FIG.
[0051]
As a result, by setting the interval between the exhaust grooves 44 and 45 to be equal to or greater than the width of the outer exhaust groove 45, the degree of vacuum in the vacuum vessel 52 can be set to 1 × 10 −5 Torr or more. It was.
[0052]
As a result, it can be seen that the interval between the exhaust grooves 74 and 45 may be equal to or greater than the groove width of the outer exhaust groove 45.
[0053]
【The invention's effect】
As described above, according to the hydrostatic bearing of the present invention, the first member having the first guide surface, and the second member having the second guide surface facing the first guide surface with a gap provided therebetween. The first guide surface or the second guide surface is provided with air supply holes for ejecting the compressed fluid into the gap to form a static pressure fluid layer, and engraved around the air supply holes. A double exhaust groove to be collected is provided, and at least the inner wall of the exhaust groove located inside is outside the opening of the exhaust groove within a range of 40 degrees to 65 degrees with respect to the first guide surface or the second guide surface. In the double exhaust groove, most of the fluid ejected into the gap between the first guide surface and the second guide surface is recovered, and from the gap between the first guide surface and the second guide surface. Since the amount of fluid leaking to the outside can be extremely reduced, 1 × 10 − Even in an ultra-high vacuum environment of 5 Torr or more, it can be operated without lowering the degree of vacuum.
[0054]
Further, since the fluid can be recovered by the double exhaust groove, the member having the air supply holes can be reduced in size and weight as compared with the conventional hydrostatic fluid bearing having the triple exhaust groove. Therefore, the amount of compressed fluid ejected from the air supply holes can be reduced, which is economical.
[0055]
Further, since only two suction pumps are required to collect the gas, the structure can be simplified, and the number of hoses for connecting the suction holes and the suction pumps to each exhaust groove can be reduced to two. When the member provided with the groove moves, resistance due to bending of the hose can be reduced, and the smooth movement of the hydrostatic fluid bearing can be maintained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a hydrostatic fluid bearing according to the present invention.
FIG. 2 is a cross-sectional view showing only a main part taken along line XX of FIG.
3 is a partially cutaway perspective view showing only a second member in FIG. 1. FIG.
4A is a cross-sectional view showing a member provided with a double exhaust groove in an experiment, and FIG. 4B is a cross-sectional view showing a member provided with three types of exhaust grooves in an experiment.
FIG. 5 is a schematic view showing an experimental apparatus.
FIG. 6 is a graph showing the relationship between the inclination angle of the inner wall of the exhaust groove near the air supply hole and the degree of vacuum in the vacuum vessel.
FIG. 7 is a graph showing the relationship between the width of the exhaust groove near the air supply hole and the degree of vacuum in the vacuum vessel.
FIG. 8 is a graph showing the relationship between the interval between the double exhaust grooves and the degree of vacuum in the vacuum vessel.
9A is a perspective view showing an example of a conventional hydrostatic bearing, and FIG. 9B is a cross-sectional view taken along line YY of FIG. 9A.
10A is a perspective view showing another example of a conventional hydrostatic bearing, and FIG. 10B is a sectional view taken along the line ZZ of FIG. 10A.
[Explanation of symbols]
1: First member 2: First guide surface 3: Second member 4: Second guide surface 5: Pocket 6: Air supply hole 7, 8: Exhaust groove 10: Compression pump 11, 12: Suction pump 13, 14: Support Member 16: Ball screw 17: Screw shaft 18: Nut 19: Connecting member 20: Motor L, N: Groove width of exhaust groove T: Gap between first member and second member M: Spacing between double exhaust grooves α : Inclination angle of the inner wall of the exhaust groove with respect to a plane perpendicular to the guide surface

Claims (1)

第1ガイド面を有する第1部材と、前記第1ガイド面に対し隙間を設けて対向する第2ガイド面を有する第2部材とから成り、前記第1ガイド面又は第2ガイド面は、前記隙間に圧縮流体を噴出して静圧流体層を形成する給気孔と、該給気孔の周囲に形成され、前記圧縮流体を回収する二重の排気溝を備えており、かつ少なくとも内側に位置する排気溝の内壁が、前記第1ガイド面又は第2ガイド面に対し外側に40度〜65度傾斜していることを特徴とする静圧流体軸受。It consists of a first member having a first guide surface and a second member having a second guide surface facing the first guide surface with a gap, wherein the first guide surface or the second guide surface is An air supply hole for ejecting a compressed fluid into the gap to form a static pressure fluid layer, and a double exhaust groove formed around the air supply hole for recovering the compressed fluid, and at least located inside The hydrostatic bearing according to claim 1, wherein an inner wall of the exhaust groove is inclined outward by 40 to 65 degrees with respect to the first guide surface or the second guide surface.
JP17898199A 1999-06-24 1999-06-24 Hydrostatic fluid bearing Expired - Fee Related JP3659308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17898199A JP3659308B2 (en) 1999-06-24 1999-06-24 Hydrostatic fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17898199A JP3659308B2 (en) 1999-06-24 1999-06-24 Hydrostatic fluid bearing

Publications (2)

Publication Number Publication Date
JP2001012469A JP2001012469A (en) 2001-01-16
JP3659308B2 true JP3659308B2 (en) 2005-06-15

Family

ID=16058039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17898199A Expired - Fee Related JP3659308B2 (en) 1999-06-24 1999-06-24 Hydrostatic fluid bearing

Country Status (1)

Country Link
JP (1) JP3659308B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445528B2 (en) * 2007-07-11 2010-04-07 住友重機械工業株式会社 Hydrostatic bearing

Also Published As

Publication number Publication date
JP2001012469A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
JP2587227B2 (en) Gas bearing device
US5377216A (en) Sealing method and arrangement for turbine compressor and laser employing same
JPH06307360A (en) Fluid rotating device
KR890000130B1 (en) Scroll fluid apparatus handling compressible fluid
JP3659308B2 (en) Hydrostatic fluid bearing
JP4150368B2 (en) Rotary kiln seal structure
KR100608663B1 (en) Back pressure sealing apparatus for high-pressure type scroll compressor
JP3427950B2 (en) Molecular drag pump
JP2000213488A (en) Shaft seal mechanism and vacuum pump
JPH0233880B2 (en)
JP2001317638A (en) Seal structure and compressor
JP2000104736A (en) Static pressure air bearing supporting guide roller
JPH09170571A (en) Scroll compressor
JP3552029B2 (en) Rotary axis device
JP4016418B2 (en) Positioning device
JP3404719B2 (en) Vacuum sealing device
JP3996759B2 (en) Vacuum-compatible hydrostatic gas bearing
JPS6137474B2 (en)
JP2005249079A (en) Sealing unit
JPH01147181A (en) Scroll fluid machine
JPS6053689A (en) Scrol type pump
KR0173579B1 (en) Scroll type fluid machinery having a port
JPH0318708Y2 (en)
JP2001012483A (en) Rotating shaft device
JPS59183090A (en) Scroll type compressing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090325

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees