JP3657762B2 - Non-woven fabric for pipe repair material and manufacturing method thereof - Google Patents

Non-woven fabric for pipe repair material and manufacturing method thereof Download PDF

Info

Publication number
JP3657762B2
JP3657762B2 JP1778798A JP1778798A JP3657762B2 JP 3657762 B2 JP3657762 B2 JP 3657762B2 JP 1778798 A JP1778798 A JP 1778798A JP 1778798 A JP1778798 A JP 1778798A JP 3657762 B2 JP3657762 B2 JP 3657762B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
melting point
fiber
repair material
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1778798A
Other languages
Japanese (ja)
Other versions
JPH11200215A (en
Inventor
弘樹 久森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Original Assignee
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwabo Co Ltd, Daiwabo Holdings Co Ltd filed Critical Daiwabo Co Ltd
Priority to JP1778798A priority Critical patent/JP3657762B2/en
Publication of JPH11200215A publication Critical patent/JPH11200215A/en
Application granted granted Critical
Publication of JP3657762B2 publication Critical patent/JP3657762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、老朽化した管路(上下水道管、ガス管等)の内周面にライニングを行い、管路を補修する管路補修工法に主として利用される管路補修材に用いられる基材に関する。
【0002】
【従来の技術】
地中に埋設された上下水道、ガス管等の管路が老朽化した場合、一般には管路を掘り出して交換するが、これでは施工期間中は交通渋滞等の発生や騒音などの環境問題を引き起こしたり、また施工コスト面にも問題があった。そこで現在は管路を掘り出すことなく管内周面にライニングを行う管路補修工法が提案され、実用化されている。管路補修工法は一般に、表面をフィルムなどの不透水層を接合したニードルパンチ不織布などの樹脂吸収支持基材に各種硬化性の樹脂を含浸させた管状の管路補修材を流体圧によって管路内に反転させながら挿入した後、管路補修材を管路の内周面に押圧した状態で所定の硬化方法(例えば、加温、紫外線照射等)により硬化性樹脂を硬化させることにより、管路の内周面にライニングを施す工法である。
【0003】
管路補修工法に主として利用される管路補修材において、例えば特開平6−8325号公報には、液状の合成樹脂を含浸可能な可撓性シート材からなる基材の一側面に200〜800g/m2のポリウレタンからなる不透過層を形成した管路補修材が開示されており、補修材を管路に反転侵入させる際の反転動作の抵抗を抑制させている。これらに用いられる液状の合成樹脂を含浸可能な可撓性シート材は一般的に、汎用性あるいは安価であることから、ポリエステル系繊維やガラス繊維等を用いたニードルパンチ不織布が多用されている。
【0004】
また上記以外の硬化性樹脂を含浸可能な不織布としては、例えば特開平7−205287号公報には、外周面が気密性の高いフィルムで被覆された管状不織布の内周面に、周方向に伸びにくくて幅方向に伸び易いリング状の補強材を長さ方向に適当なピッチで接着した管路補修材が開示されており、管の曲がり部におけるシワの発生を抑制させている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記管路補修材には以下の問題点がある。例えば、特開平6−8325号公報においては、フィルム層としてポリウレタン樹脂を使用しているので、安価であり、硬化性樹脂を含浸可能な不織布へのラミネート性には優れているものの、ポリウレタン樹脂自体の伸度が大きいため、流体圧によって管路内に反転させながら挿入する際に管路補修材が伸びてしまい、変形や皺の発生が起こりやすくなり、管路を流れる流体の抵抗が大きくなるという問題がある。さらにポリウレタン樹脂は、含浸する硬化性樹脂として不飽和ポリエステル硬化性樹脂を使用すると、溶媒として用いられるスチレンモノマーに対する耐薬品性に劣るため、エポキシ樹脂等の高価な硬化性樹脂を使用せざるを得ない。
【0006】
また、特開平7−205287号公報においては、リング状補強材を管状不織布に接着させるため、寸法安定性に優れるが、製造工程が複雑になるばかりでなくコスト高となる。
したがって、安価で寸法安定性に優れた管路補修材に用いられる基材が未だ得られていないのが実情である。本発明はかかる実情を鑑みてなされたものであり、流体圧によって管路内に反転させながら挿入する際に、変形や皺の発生が起こらない寸法安定性に優れ、かつ安価である管路補修材用不織布およびその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の管路補修材用不織布は、フィルム層と硬化性樹脂を含浸可能な不織布を積層した管路補修材に用いられる管路補修材用不織布において、該不織布のフィルム接触面側表面熱カレンダー処理により熱融着され、かつ不織布の平均孔径が30μm以下であることを特徴とする。かかる構成により、安価で寸法安定性に優れ、かつ各種硬化性の樹脂を含浸させたときにフィルム層への浸出が抑制される。
【0008】
本発明の管路補修材用不織布において、不織布の少なくともフィルム接触面が、高融点熱可塑性繊維および該高融点熱可塑性繊維の融点(Tm1)より20℃以上低い融点(Tm2)を有する低融点熱可塑性繊維からなり、かつ該低融点熱可塑性繊維が熱融着されていることが好ましい。
【0009】
本発明の管路補修材用不織布において、低融点熱可塑性繊維は不織布の少なくともフィルム接触面に5〜50重量%含有していることが好ましい。
【0010】
さらに、本発明の管路補修材用不織布において、不織布は高融点熱可塑性繊維および低融点熱可塑性繊維からなる層を第1繊維層とし、高融点熱可塑性繊維からなる層を第2繊維層としたニードルパンチ絡合積層不織布であることが好ましい。
【0011】
本発明の管路補修材用不織布において、5kg/cm2荷重時における管周方向の伸度は10%以下であることが好ましい。
【0012】
そして、本発明の管路補修材用不織布は、管路補修材のフィルム層と積層する熱硬化性樹脂を含浸可能な不織布において、少なくともフィルム接触面が高融点熱可塑性繊維および該高融点熱可塑性繊維の融点(Tm1)より20℃以上低い融点(Tm2)を有する低融点熱可塑性繊維からなる繊維ウェブをニードルパンチ法により絡合させ、フィルム接触面側を該低融点熱可塑性繊維が軟化あるいは溶融する温度で熱カレンダー処理を施すことにより製造される。
以下、本発明の内容を具体的に説明する。
【0013】
【発明の実施の形態】
本発明の管路補修材用不織布において、不織布のフィルム接触面が熱融着され、かつ平均孔径が30μm以下であることを特徴とする。フィルム接触面の平均孔径が30μmを超えると、不織布に含浸させた各種硬化性樹脂のフィルム面に対する接触面積が大きくなり、フィルム層に用いる樹脂と硬化性樹脂に用いられる溶媒に対する薬品性が悪いとフィルム層の樹脂が侵され、不透液層としての機能が著しく低下するからである。より好ましい平均孔径は、10〜20μmである。
【0014】
また、熱融着により繊維同士が固定された不織布は、伸度が抑制されるため、寸法安定性に優れる。本発明において、不織布の少なくともフィルム接触面が、高融点熱可塑性繊維および該高融点熱可塑性繊維の融点(Tm1)より20℃以上低い融点(Tm2)を有する低融点熱可塑性繊維からなり、かつ該低融点熱可塑性繊維が熱融着されていることが好ましい。低融点熱可塑性繊維の融点(Tm2)が、Tm2>Tm1-20であると、後述する熱カレンダー処理を施した際に、低融点熱可塑性繊維が溶融するだけでなく、高融点熱可塑性繊維も軟化するため不織布が硬くなるからである。
【0015】
本発明に用いられる高融点熱可塑性繊維は、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系繊維、ナイロン6、ナイロン6.6等のポリアミド系繊維、あるいはポリプロピレン、ポリメチルペンテン等のポリオレフィン系繊維等から任意に1あるいは2以上選択して使用することができる。特に、汎用性からポリエステル系繊維が好ましい。
【0016】
また、本発明に用いられる低融点熱可塑性繊維についても、融点がTm2≦Tm1-20を満たしていれば、特に限定されない。例えば、共重合ポリエステル、エチレン−プロピレン共重合体、ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸メチル共重合体等からなる単一繊維、あるいはこれら樹脂を鞘成分に用いた鞘芯型複合繊維などが用いられる。高融点熱可塑性繊維としてポリエステル系繊維を用いた場合、親和性の点で共重合ポリエステルからなる繊維を用いるのが好ましい。
【0017】
そして、上記低融点熱可塑性繊維が不織布の少なくともフィルム接触面に5〜50重量%含有していることが好ましい。低融点熱可塑性繊維の含有量が5重量%未満であると、熱融着が不十分で不織布の伸度が大きくなるだけでなく、フィルム接触面の平均孔径が大きくなり、硬化性樹脂を含浸させたときに、フィルム層へ浸出しやすくなる。また、50重量%を超えると、不織布の伸度や平均孔径は小さくなるが、フィルム接触面の風合いが硬くなり、管路補修材の施工時に反転させ難くなったり、硬化性樹脂の含浸を阻害する可能性がある。
【0018】
上記高融点熱可塑性繊維および低融点熱可塑性繊維は、繊維長30〜100mmのステープル繊維とし、単層または2層以上に積層されて、目付300〜1000g/m2のパラレルウェブやクロスウェブ等に調整される。積層させる場合は、単に同じ配合率の繊維ウェブを積層させてもよいし、配合率の異なる繊維ウェブを積層してもよい。例えば、単層であれば、低融点熱可塑性繊維を5〜50重量%、高融点熱可塑性繊維を95〜50重量%混綿して形成させてもよいし、積層体であれば、フィルム接触面に低融点熱可塑性繊維を5〜50重量%配合し、他面に高融点熱可塑性繊維のみで形成させてもよい。また、あらかじめ目付200〜500g/m2に調整した繊維ウェブを後述するニードルパンチ処理を施した後、再度それらを積層してニードルパンチ処理を施して、目的とする目付に調整してもよい。
【0019】
上記繊維ウェブは、ニードルパンチ処理を施し、三次元的に交絡される。ニードルパンチ処理は従来からよく知られている方法で行えばよく、その条件は最終的に得ようとする不織布の伸度などに応じて設定すればよい。特に、本発明の管路補修材用不織布において、不織布は高融点熱可塑性繊維および低融点熱可塑性繊維からなる層を第1繊維層(フィルム接触層)とし、高融点熱可塑性繊維からなる層を第2繊維層としたニードルパンチ絡合積層不織布であることが好ましい。
【0020】
そして得られた不織布は、フィルム接触面側の低融点熱可塑性繊維が軟化あるいは溶融する温度で熱カレンダー処理を施し、表面を平滑化させると共に平均孔径を調整する。熱カレンダー処理はフィルム接触面側片面のみ施すとよい。他面も熱カレンダー処理を施すと、硬化性樹脂が不織布に含浸し難くなるからである。熱カレンダー処理条件は、目的とする平均孔径、不織布の伸度に応じて、温度、圧力、ロール速度等を適宜調整すればよいが、高融点熱可塑性繊維が軟化あるいは溶融しない温度で行うとよい。
【0021】
得られた管路補修材用不織布は、5kg/cm2荷重時における管周方向の伸度が10%以下であることが好ましい。より好ましくは、伸度が8%以下である。伸度が10%を超えると、管路内に反転させながら挿入する際に、伸びが生じ、変形や皺の発生が起こりやすくなるからである。
【0022】
そして管路補修材は、上記の不織布のフィルム接触面にフィルム層がラミネートされる。フィルムの素材は、ナイロン樹脂、ポリプロピレン樹脂、ポリエチレン樹脂等いずれであってもよいが、本発明においては、ポリウレタン樹脂のような弾性が大きく、フィルム層にした時、伸度が大きい樹脂に対して特に有用である。さらに、各種硬化性樹脂を含浸させる場合、フィルム層に用いる樹脂と硬化性樹脂に用いられる溶媒に対する薬品性が悪くても、両者の接触面積が小さいため、フィルム層の樹脂が侵されることを最小限に抑える。
【0023】
【実施例】
以下、本発明の内容を実施例を挙げて具体的に説明する。なお、不織布の平均孔径および伸度はそれぞれ下記の方法で測定した。
【0024】
[平均孔径] ASTM F 316-86(バブルポイント法)に準じ、ポーラス・マテリアルズ社製「パーム・ポロメーター」を用いた。
【0025】
[伸度] JIS L 1096に準じ、幅5cm×長さ15cmの試料をつかみ間隔10cmでつかみ、定速伸長型引張試験機(商品名:テンシロン オリエンテック(株)製)を用いて引張速度20cm/分で伸長し、5kg/cm2荷重時における伸長率を伸度とした。
【0026】
[実施例1]
フィルム接触面層において、高融点熱可塑性繊維として繊度5デニール、繊維長76mm、融点260℃のポリエチレンテレフタレート繊維(東レ(株)製)を使用し、低融点熱可塑性繊維として繊度4デニール、繊維長51mm、融点140℃の共重合ポリエステル繊維(鐘紡(株)製)を用意した。
【0027】
それぞれ高融点熱可塑性繊維を90重量%、低融点熱可塑性繊維を10重量%混綿して繊維ウェブを作製し、パンチ密度300N/cm2 でニードルパンチ処理を施し、目付450g/m2とした。
【0028】
他層において、上記高融点熱可塑性繊維からなる目付450g/m2の繊維ウェブを作製し、上記条件でニードルパンチ処理を施した後、前記ニードルパンチ不織布と積層し、再度ニードルパンチ処理を施して、目付900g/m2の不織布となした。
【0029】
次いで、不織布をフィルム接触面側にロール温度180℃、線圧20kg/cm が加わるようにフラットロールにて熱カレンダー処理を施した。
得られた不織布のフィルム接触面にポリウレタン樹脂をラミネート加工し、管路補修材となした。
【0030】
[実施例2]
フィルム接触面層の高融点熱可塑性繊維を60重量%、低融点熱可塑性繊維を40重量%とした以外は、実施例1と同様にして管路補修材を作製した。
【0031】
[比較例1]
実施例1の高融点熱可塑性繊維からなる目付450g/m2の繊維ウェブを作製し、実施例1の同条件でニードルパンチ処理を施した後、これを2層積層し、再度ニードルパンチ処理を施して、目付900g/m2の不織布となした。
得られた不織布のフィルム接触面にポリウレタン樹脂をラミネート加工し、管路補修材となした。
実施例1、2および比較例1の不織布性能を表1に示す。
【0032】
【表1】

Figure 0003657762
【0033】
実施例1、2の管路補修材に溶媒としてスチレンモノマーを用いた不飽和ポリエステル樹脂を含浸させ、管路に挿入したところ、補修材の反転性もよく、変形や皺が生じることはなかった。また、ポリウレタン樹脂がスチレンモノマーに侵されることはなかった。一方、比較例1は、部分的にスチレンモノマーに侵され、管路挿入時、水圧によりピンホールができ、一部変形を引き起こした。
【0034】
【発明の効果】
本発明の管路補修材用不織布は、不織布のフィルム接触面が熱融着され、かつ平均孔径が30μm以下であるので、たとえフィルム層が不織布に含浸させる硬化性樹脂に用いられる溶媒に対する薬品性が悪くても、フィルム層の樹脂が侵されることを最小限に抑えることが可能である。
また、不織布の少なくともフィルム接触面が、高融点熱可塑性繊維および該高融点熱可塑性繊維の融点(Tm1)より20℃以上低い融点(Tm2)を有する低融点熱可塑性繊維からなり、かつ該低融点熱可塑性繊維が熱融着されているので、不織布の伸度を極力抑えることができ、管路内に反転させながら挿入する際の変形や皺の発生を抑えることが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a base material used for a pipe repair material mainly used in a pipe repair method for lining an inner pipe of an aged pipe (such as a water and sewage pipe, a gas pipe) and repairing the pipe. About.
[0002]
[Prior art]
When pipes such as water and sewage systems and gas pipes buried in the ground become obsolete, they are generally excavated and replaced, but this causes environmental problems such as traffic congestion and noise during the construction period. There was also a problem in terms of construction costs. Therefore, a pipe repair method for lining the pipe inner peripheral surface without digging up the pipe has been proposed and put into practical use. In general, the pipe repair method uses a fluid pressure to apply a tubular pipe repair material in which various curable resins are impregnated into a resin-absorbing support base such as a needle punched nonwoven fabric whose surface is bonded to a water-impermeable layer such as a film. After being inserted into the pipe while being inverted, the pipe repair material is pressed against the inner peripheral surface of the pipe, and the curable resin is cured by a predetermined curing method (for example, heating, ultraviolet irradiation, etc.), thereby This is a method of lining the inner peripheral surface of the road.
[0003]
In a pipe repair material mainly used in a pipe repair method, for example, Japanese Patent Laid-Open No. 6-8325 discloses 200 to 800 g on one side of a base material made of a flexible sheet material that can be impregnated with a liquid synthetic resin. A pipeline repair material in which an impermeable layer made of polyurethane of / m 2 is formed is disclosed, and resistance of reversal operation when the repair material is reversed and entered into the pipeline is suppressed. The flexible sheet material that can be impregnated with the liquid synthetic resin used in these is generally versatile or inexpensive, and therefore, needle punched nonwoven fabrics using polyester fibers or glass fibers are frequently used.
[0004]
Further, as a nonwoven fabric that can be impregnated with a curable resin other than the above, for example, in JP-A-7-205287, the outer peripheral surface extends in the circumferential direction on the inner peripheral surface of a tubular nonwoven fabric covered with a highly airtight film. A pipe repair material is disclosed in which a ring-shaped reinforcing material that is difficult and easily stretched in the width direction is bonded at an appropriate pitch in the length direction, and the generation of wrinkles at the bent portion of the pipe is suppressed.
[0005]
[Problems to be solved by the invention]
However, the pipe repair material has the following problems. For example, in JP-A-6-8325, since a polyurethane resin is used as a film layer, the polyurethane resin itself is inexpensive and excellent in laminating properties to a nonwoven fabric that can be impregnated with a curable resin. Since the elongation of the pipe is large, the pipe repair material stretches when inserted while being reversed in the pipe by fluid pressure, and deformation and wrinkles are likely to occur, and the resistance of the fluid flowing through the pipe increases. There is a problem. Furthermore, when an unsaturated polyester curable resin is used as the impregnating curable resin, the polyurethane resin is inferior in chemical resistance to the styrene monomer used as a solvent, so an expensive curable resin such as an epoxy resin must be used. Absent.
[0006]
In JP-A-7-205287, since the ring-shaped reinforcing material is bonded to the tubular nonwoven fabric, the dimensional stability is excellent, but the manufacturing process is complicated and the cost is increased.
Therefore, the actual situation is that a base material used for a pipe repair material that is inexpensive and excellent in dimensional stability has not yet been obtained. The present invention has been made in view of such a situation, and is excellent in dimensional stability that does not cause deformation or wrinkles and is inexpensive when inserted while being reversed in a pipeline by fluid pressure. It aims at providing the nonwoven fabric for materials, and its manufacturing method.
[0007]
[Means for Solving the Problems]
Conduit repair material for the nonwoven fabric of the present invention, Oite the conduit repair materials for the nonwoven fabric to be used a curable resin and film layers to the conduit repair material obtained by laminating impregnable nonwoven, film contacting surface side surface of the nonwoven fabric Is heat- sealed by thermal calendering , and the nonwoven fabric has an average pore diameter of 30 μm or less. With such a configuration, leaching into the film layer is suppressed when impregnated with various curable resins at low cost and excellent in dimensional stability.
[0008]
In the nonwoven fabric for pipeline repair material of the present invention, at least the film contact surface of the nonwoven fabric has a low melting point (Tm 2 ) that is 20 ° C. or more lower than the high melting point thermoplastic fiber and the melting point (Tm 1 ) of the high melting point thermoplastic fiber. It is preferable that the low-melting-point thermoplastic fiber is made of a melting-point thermoplastic fiber and is heat-sealed.
[0009]
In the nonwoven fabric for pipeline repair material of the present invention, it is preferable that the low melting point thermoplastic fiber is contained in an amount of 5 to 50% by weight on at least the film contact surface of the nonwoven fabric.
[0010]
Further, in the nonwoven fabric for pipe repair material of the present invention, the nonwoven fabric is a layer made of a high melting point thermoplastic fiber and a low melting point thermoplastic fiber as a first fiber layer, and a layer made of the high melting point thermoplastic fiber is a second fiber layer. The needle punch entangled laminated nonwoven fabric is preferable.
[0011]
In the nonwoven fabric for pipe repair material of the present invention, the elongation in the pipe circumferential direction at a load of 5 kg / cm 2 is preferably 10% or less.
[0012]
The nonwoven fabric for pipeline repair material of the present invention is a nonwoven fabric that can be impregnated with a thermosetting resin laminated with a film layer of the pipeline repair material. At least the film contact surface is a high-melting-point thermoplastic fiber and the high-melting-point thermoplastic resin. A fiber web made of a low-melting point thermoplastic fiber having a melting point (Tm 2 ) 20 ° C. lower than the melting point (Tm 1 ) of the fiber is entangled by the needle punch method, and the low-melting point thermoplastic fiber is softened on the film contact surface side. Or it manufactures by giving a heat | fever calendar process at the temperature which fuse | melts.
The contents of the present invention will be specifically described below.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the nonwoven fabric for pipeline repair material of the present invention, the film contact surface of the nonwoven fabric is heat-sealed, and the average pore diameter is 30 μm or less. When the average pore diameter of the film contact surface exceeds 30 μm, the contact area with respect to the film surface of various curable resins impregnated into the nonwoven fabric increases, and the chemical properties with respect to the resin used for the film layer and the solvent used for the curable resin are poor. This is because the resin of the film layer is attacked and the function as the liquid-impermeable layer is remarkably lowered. A more preferable average pore diameter is 10 to 20 μm.
[0014]
In addition, the nonwoven fabric in which the fibers are fixed by heat fusion is excellent in dimensional stability because the elongation is suppressed. In the present invention, at least the film contact surface of the nonwoven fabric is composed of a high-melting point thermoplastic fiber and a low-melting point thermoplastic fiber having a melting point (Tm 2 ) that is 20 ° C. lower than the melting point (Tm 1 ) of the high-melting point thermoplastic fiber, And it is preferable that this low melting-point thermoplastic fiber is heat-seal | fused. When the melting point (Tm 2 ) of the low melting point thermoplastic fiber is Tm 2 > Tm 1 -20, not only the low melting point thermoplastic fiber melts but also the high melting point heat when the heat calender treatment described later is performed. This is because the nonwoven fabric becomes hard because the plastic fibers are also softened.
[0015]
The high melting point thermoplastic fiber used in the present invention is not particularly limited. For example, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, polyamide fibers such as nylon 6 and nylon 6.6, polypropylene, and polymethylpentene. One or two or more can be arbitrarily selected from polyolefin fibers such as In particular, polyester fiber is preferable from the viewpoint of versatility.
[0016]
Further, the low melting point thermoplastic fiber used in the present invention is not particularly limited as long as the melting point satisfies Tm 2 ≦ Tm 1 -20. For example, a single fiber made of copolymer polyester, ethylene-propylene copolymer, polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, or the like, or a sheath core type using these resins as sheath components A composite fiber or the like is used. When a polyester fiber is used as the high melting point thermoplastic fiber, it is preferable to use a fiber made of a copolyester in terms of affinity.
[0017]
And it is preferable that the said low melting point thermoplastic fiber contains 5 to 50weight% at least in the film contact surface of a nonwoven fabric. If the content of the low-melting-point thermoplastic fiber is less than 5% by weight, not only the thermal fusion is insufficient and the elongation of the nonwoven fabric is increased, but the average pore diameter of the film contact surface is increased and the curable resin is impregnated. When it is made to come out, it becomes easy to exude into a film layer. On the other hand, if the amount exceeds 50% by weight, the elongation and average pore diameter of the nonwoven fabric become small, but the texture of the film contact surface becomes hard, making it difficult to reverse when the pipe repair material is applied, and impeding impregnation of the curable resin. there's a possibility that.
[0018]
The high-melting thermoplastic fiber and the low-melting thermoplastic fiber are staple fibers having a fiber length of 30 to 100 mm and are laminated in a single layer or two or more layers to form a parallel web or a cross web having a basis weight of 300 to 1000 g / m 2. Adjusted. When laminating, fiber webs having the same blending ratio may be simply laminated, or fiber webs having different blending ratios may be laminated. For example, if it is a single layer, it may be formed by blending 5 to 50% by weight of low-melting thermoplastic fiber and 95 to 50% by weight of high-melting thermoplastic fiber. The low melting point thermoplastic fiber may be blended in an amount of 5 to 50% by weight, and the other surface may be formed of only the high melting point thermoplastic fiber. Moreover, after performing the needle punch process which mentions later the fiber web adjusted to 200-500 g / m < 2 > of fabric weight beforehand, they may be laminated | stacked again and needle punch process may be performed and it may adjust to the target fabric weight.
[0019]
The fiber web is subjected to needle punching and is entangled three-dimensionally. Needle punching may be performed by a conventionally well-known method, and the conditions may be set according to the elongation of the nonwoven fabric to be finally obtained. In particular, in the nonwoven fabric for duct repair material of the present invention, the nonwoven fabric is a layer made of a high melting point thermoplastic fiber and a low melting point thermoplastic fiber as a first fiber layer (film contact layer), and a layer made of a high melting point thermoplastic fiber. A needle punch entangled laminated nonwoven fabric as the second fiber layer is preferred.
[0020]
The obtained nonwoven fabric is subjected to thermal calendering treatment at a temperature at which the low melting point thermoplastic fibers on the film contact surface side are softened or melted to smooth the surface and adjust the average pore diameter. The thermal calendering process is preferably performed only on one side of the film contact surface. This is because if the other surface is also subjected to thermal calendering treatment, it becomes difficult for the curable resin to impregnate the nonwoven fabric. The heat calendering treatment conditions may be adjusted as appropriate according to the target average pore diameter, the elongation of the nonwoven fabric, and the temperature, pressure, roll speed, etc., but it is better to carry out at a temperature at which the high melting point thermoplastic fiber does not soften or melt. .
[0021]
The obtained non-woven fabric for pipe repair material preferably has an elongation in the pipe circumferential direction of 10% or less at a load of 5 kg / cm 2 . More preferably, the elongation is 8% or less. This is because if the elongation exceeds 10%, elongation occurs during insertion while inverting the tube, and deformation and wrinkles are likely to occur.
[0022]
And as for a pipe line repair material, a film layer is laminated on the film contact surface of said nonwoven fabric. The material of the film may be any of nylon resin, polypropylene resin, polyethylene resin, etc., but in the present invention, the elasticity of the polyurethane resin is large, and when the film layer is formed, the resin has a high elongation. It is particularly useful. Furthermore, when impregnating with various curable resins, even if the chemical properties for the resin used for the film layer and the solvent used for the curable resin are poor, the contact area between the two is small, so that the resin of the film layer is minimized. Limit to the limit.
[0023]
【Example】
Hereinafter, the content of the present invention will be specifically described with reference to examples. The average pore diameter and elongation of the nonwoven fabric were measured by the following methods.
[0024]
[Average pore diameter] “Palm Porometer” manufactured by Porous Materials Co., Ltd. was used according to ASTM F 316-86 (Bubble Point Method).
[0025]
[Elongation] According to JIS L 1096, a sample having a width of 5 cm and a length of 15 cm is held at a holding interval of 10 cm, and using a constant speed extension type tensile tester (trade name: manufactured by Tensilon Orientec Co., Ltd.), a tensile speed of 20 cm The elongation was defined as the elongation at the time of 5 kg / cm 2 load.
[0026]
[Example 1]
In the film contact surface layer, polyethylene terephthalate fiber (manufactured by Toray Industries, Inc.) having a fineness of 5 denier, a fiber length of 76 mm and a melting point of 260 ° C. is used as the high melting point thermoplastic fiber, and a fineness of 4 denier and the fiber length as the low melting point thermoplastic fiber. Copolymerized polyester fiber (manufactured by Kanebo Co., Ltd.) having a diameter of 51 mm and a melting point of 140 ° C. was prepared.
[0027]
Fiber webs were prepared by blending 90% by weight of high-melting thermoplastic fibers and 10% by weight of low-melting thermoplastic fibers, and subjected to needle punching at a punch density of 300 N / cm 2 to give a basis weight of 450 g / m 2 .
[0028]
In another layer, a fiber web having a basis weight of 450 g / m 2 made of the above-mentioned high-melting-point thermoplastic fiber was prepared, and subjected to needle punching under the above conditions, then laminated with the needle punched nonwoven fabric, and then subjected to needle punching again. A nonwoven fabric having a basis weight of 900 g / m 2 was obtained.
[0029]
Next, the nonwoven fabric was subjected to a heat calendar treatment with a flat roll so that a roll temperature of 180 ° C. and a linear pressure of 20 kg / cm 2 were applied to the film contact surface side.
A polyurethane resin was laminated on the film contact surface of the obtained nonwoven fabric to obtain a pipeline repair material.
[0030]
[Example 2]
A pipeline repair material was prepared in the same manner as in Example 1 except that the high melting point thermoplastic fiber of the film contact surface layer was 60% by weight and the low melting point thermoplastic fiber was 40% by weight.
[0031]
[Comparative Example 1]
A fiber web having a basis weight of 450 g / m 2 made of the high-melting point thermoplastic fiber of Example 1 was prepared and subjected to needle punching under the same conditions as in Example 1, then two layers were laminated, and needle punching was performed again. As a result, a nonwoven fabric having a basis weight of 900 g / m 2 was obtained.
A polyurethane resin was laminated on the film contact surface of the obtained nonwoven fabric to obtain a pipeline repair material.
The nonwoven fabric performance of Examples 1 and 2 and Comparative Example 1 is shown in Table 1.
[0032]
[Table 1]
Figure 0003657762
[0033]
When the pipe repair material of Examples 1 and 2 was impregnated with an unsaturated polyester resin using a styrene monomer as a solvent and inserted into the pipe, the reversibility of the repair material was good, and deformation and wrinkles did not occur. . Further, the polyurethane resin was not affected by the styrene monomer. On the other hand, Comparative Example 1 was partially affected by the styrene monomer, and a pinhole was formed by water pressure when the pipe was inserted, causing partial deformation.
[0034]
【The invention's effect】
The nonwoven fabric for pipe repair material of the present invention has chemical properties against the solvent used for the curable resin impregnated into the nonwoven fabric because the film contact surface of the nonwoven fabric is heat-sealed and the average pore diameter is 30 μm or less. Even if it is bad, it is possible to minimize the attack of the resin of the film layer.
Further, at least the film contact surface of the nonwoven fabric is composed of a high-melting point thermoplastic fiber and a low-melting point thermoplastic fiber having a melting point (Tm 2 ) that is 20 ° C. lower than the melting point (Tm 1 ) of the high-melting point thermoplastic fiber, and Since the low-melting point thermoplastic fibers are heat-sealed, it is possible to suppress the elongation of the nonwoven fabric as much as possible, and to suppress deformation and wrinkle generation when inserted while being reversed into the pipe.

Claims (7)

フィルム層と硬化性樹脂を含浸可能な不織布を積層した管路補修材に用いられる管路補修材用不織布において、該不織布のフィルム接触面側表面が熱カレンダー処理により熱融着され、かつ不織布の平均孔径が30μm以下であることを特徴とする管路補修材用不織布。Oite a curable resin and film layers to the conduit repair materials for the nonwoven fabric used for the conduit repair material obtained by laminating impregnable nonwoven, film contacting surface side surface of the nonwoven fabric is heat-sealed by heat calendering treatment, and A nonwoven fabric for pipe repair material, wherein the nonwoven fabric has an average pore diameter of 30 µm or less. 不織布の少なくともフィルム接触面側表面が、高融点熱可塑性繊維および該高融点熱可塑性繊維の融点(Tm1)より20℃以上低い融点(Tm2)を有する低融点熱可塑性繊維からなり、かつ該低融点熱可塑性繊維が熱融着されていることを特徴とする請求項1記載の管路補修材用不織布。At least the film contact surface side surface of the nonwoven fabric is composed of a high-melting point thermoplastic fiber and a low-melting point thermoplastic fiber having a melting point (Tm 2 ) that is 20 ° C. lower than the melting point (Tm 1 ) of the high-melting point thermoplastic fiber, The nonwoven fabric for pipe repair material according to claim 1, wherein the low-melting point thermoplastic fiber is heat-sealed. 低融点熱可塑性繊維が不織布の少なくともフィルム接触面側表面に5〜50重量%含有していることを特徴とする請求項2記載の管路補修材用不織布。The low-melting-point thermoplastic fiber is contained in an amount of 5 to 50% by weight on at least the film contact surface side surface of the non-woven fabric. 不織布が高融点熱可塑性繊維および低融点熱可塑性繊維からなる層を第1繊維層とし、高融点熱可塑性繊維からなる層を第2繊維層としたニードルパンチ絡合積層不織布であることを特徴とする請求項2記載の管路補修材用不織布。  The nonwoven fabric is a needle-punch entangled laminated nonwoven fabric in which a layer made of high-melting thermoplastic fibers and low-melting thermoplastic fibers is a first fiber layer, and a layer made of high-melting thermoplastic fibers is a second fiber layer. The nonwoven fabric for pipe repair materials according to claim 2. 5kg/cm2荷重時における管周方向の伸度が10%以下であることを特徴とする請求項1または2記載の管路補修材用不織布。The nonwoven fabric for pipe repair material according to claim 1 or 2, wherein the elongation in the pipe circumferential direction at a load of 5 kg / cm 2 is 10% or less. 管路補修材のフィルム層と積層する熱硬化性樹脂を含浸可能な不織布において、少なくともフィルム接触面側表面が高融点熱可塑性繊維および該高融点熱可塑性繊維の融点(Tm1)より20℃以上低い融点(Tm2)を有する低融点熱可塑性繊維からなる繊維ウェブをニードルパンチ法により絡合させ、フィルム接触面側表面を該低融点熱可塑性繊維が軟化あるいは溶融する温度で熱カレンダー処理を施すことを特徴とする管路補修材用不織布の製造方法。In a non-woven fabric that can be impregnated with a thermosetting resin to be laminated with a film layer of a pipe repair material, at least the film contact surface side surface is 20 ° C. or higher than the high melting point thermoplastic fiber and the melting point (Tm 1 ) of the high melting point thermoplastic fiber. A fiber web made of low-melting thermoplastic fibers having a low melting point (Tm 2 ) is entangled by a needle punch method, and the surface of the film contact surface is subjected to thermal calendering at a temperature at which the low-melting thermoplastic fibers are softened or melted. The manufacturing method of the nonwoven fabric for pipe repair materials characterized by the above-mentioned. 請求項1〜5のいずれかに記載の管路補修材用不織布のフィルム接触面側表面に、フィルム層をラミネートした管路補修材。A pipe repair material comprising a film layer laminated on the film contact surface side surface of the nonwoven fabric for pipe repair material according to claim 1.
JP1778798A 1998-01-13 1998-01-13 Non-woven fabric for pipe repair material and manufacturing method thereof Expired - Fee Related JP3657762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1778798A JP3657762B2 (en) 1998-01-13 1998-01-13 Non-woven fabric for pipe repair material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1778798A JP3657762B2 (en) 1998-01-13 1998-01-13 Non-woven fabric for pipe repair material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11200215A JPH11200215A (en) 1999-07-27
JP3657762B2 true JP3657762B2 (en) 2005-06-08

Family

ID=11953440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1778798A Expired - Fee Related JP3657762B2 (en) 1998-01-13 1998-01-13 Non-woven fabric for pipe repair material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3657762B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2392565T3 (en) * 2007-01-18 2012-12-11 Lubrizol Advanced Materials, Inc. On-site cured pipe liner
CN112481819B (en) * 2020-11-23 2021-12-03 舒城娃娃乐儿童用品有限公司 Preparation method of hard cotton

Also Published As

Publication number Publication date
JPH11200215A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
US6732763B2 (en) Stretch-resistant pipe liner
JP4039809B2 (en) Three-dimensional structured fiber planar product and method for producing the same
KR100642029B1 (en) Acoustical fibrous insulation product for use in a vehicle
ES2248949T3 (en) EMPLOYMENT OF AN ADHESIVE TAPE BASED ON A NON-FABRICED VELO THERMALLY FIXED WITH BLOWED EXTRUDED FIBERS.
EP1174257B1 (en) Laminated sheet for house wrap material and roof underlay sheet
CA2216684C (en) Flexible nonwoven fabric and laminate thereof
MXPA03006209A (en) Breathable nonwoven/film laminate.
EP1130149A1 (en) Ground fabric for tufted carpet and tufted carpet made using the ground fabric
JP3657762B2 (en) Non-woven fabric for pipe repair material and manufacturing method thereof
JPH10323661A (en) Oil adsorption material
JP2951559B2 (en) Bulk nonwoven fabric and method for producing the same
JP2002086605A (en) Heat adhesive composite sheet
ES2899912T3 (en) Fire retardant composite substrates for bituminous membranes
JP4039464B1 (en) Underlying cushioning material for waterproof coating construction and waterproof coating construction method
JP6024146B2 (en) Protective mat
JP4361201B2 (en) Sound-absorbing material including meltblown nonwoven fabric
JPH11226337A (en) Activated carbon fiber sheet for filter
JP2008290642A (en) Sound absorbing material and its manufacturing method
JP2007105685A (en) Filter for biodegradable air cleaner
US20040248488A1 (en) Wallcovering backing fabric
JP2011025179A (en) Protective mat
JP2986263B2 (en) Cleaning fiber assembly
JP2004292991A (en) Hardly water-permeable civil engineering sheet, and method for producing the same
CA1185775A (en) Composite lining material
JP3908086B2 (en) Non-halogen resin processed cloth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees