JP3657479B2 - Speaker frame and manufacturing method thereof - Google Patents

Speaker frame and manufacturing method thereof Download PDF

Info

Publication number
JP3657479B2
JP3657479B2 JP29491499A JP29491499A JP3657479B2 JP 3657479 B2 JP3657479 B2 JP 3657479B2 JP 29491499 A JP29491499 A JP 29491499A JP 29491499 A JP29491499 A JP 29491499A JP 3657479 B2 JP3657479 B2 JP 3657479B2
Authority
JP
Japan
Prior art keywords
resin
weight
glass fibers
speaker frame
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29491499A
Other languages
Japanese (ja)
Other versions
JP2001119791A (en
Inventor
誠一 田枝
敏昭 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP29491499A priority Critical patent/JP3657479B2/en
Publication of JP2001119791A publication Critical patent/JP2001119791A/en
Application granted granted Critical
Publication of JP3657479B2 publication Critical patent/JP3657479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/34Directing or guiding sound by means of a phase plug
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers

Description

【0001】
【発明の属する技術分野】
本発明は、耐衝撃強度、耐熱性及び制振性等の諸性能に優れるスピーカーフレーム及びその製造方法、さらにスピーカーフレーム用樹脂組成物に関する。
【0002】
【従来の技術】
従来、金属製スピーカーフレームが広く使用されているが、設計自由度が大きく、しかも組立性及び軽量性の向上が可能であることから、ポリブチレンテレフタレート系樹脂(PBT)、耐熱アクリロニトリル系樹脂(AS)、ポリフェニレンエーテル系樹脂(PPE)、ポリカーボネート樹脂等をベース樹脂としてガラス繊維等の強化材を含有させた組成物からなる樹脂製スピーカーフレームの採用が増加しつつある。これら組成物を用いたスピーカーフレームの強度、耐熱性は良好であり要求性能を満足するものである。
しかしながら、かかるスピーカフレームは金属製フレームに比して弾性率がはるかに低いため、固有振動数が低周波数となって制振性が低下し、可聴範囲の音響振動と共振して音質が低下する問題があった。
以上の問題を解決するために、高制振性を有するポリプロピレン系樹脂を用い、さらに強度、靭性、耐熱変形性を高めるためにカット長10mm程度以上のガラス繊維で強化した樹脂組成物を用いることが提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、本発明者等が鋭意検討した結果、かかるガラス繊維を用いた場合には効率的にフレームが成形できず、しかもガラス繊維を配合したことによる補強効果が十分に得られないことが判明した。すなわち、ガラス繊維を破断させることなく樹脂中に均一分散させるためには低圧縮比スクリューを有する特殊な射出成形機が必要となるため費用、設備等の点で非効率であり、しかも該射出成形機を用いたとしても、ガラス長繊維が組成物内部で互いに絡み合って分散不良が生じることから、結局、ガラス繊維本来の補強効果が十分に奏されず、しかも外観が不良になってしまう。
本発明の目的は、耐衝撃強度、耐熱剛性、制振性等の諸性能に優れるスピーカーフレーム及びその効率的な製造方法、さらにスピーカーフレーム用樹脂組成物を提案することにある。
【0004】
【課題を解決するための手段】
本発明は、ポリプロピレン系樹脂、ガラス繊維及び直径35〜600μmでアスペクト比が30以上の板状無機フィラーを含有する樹脂組成物であって、かつ該ガラス繊維は該樹脂組成物を溶融混練することにより平均繊維長0.8mm以上5mm以下に破損されたものである樹脂組成物を用いてなるスピーカーフレームである。また本発明は、ポリプロピレン系樹脂、ガラス繊維及び直径35〜600μmでアスペクト比が30以上の板状無機フィラーを含有する樹脂組成物であって、かつ該ガラス繊維は該樹脂組成物を溶融混練することにより平均繊維長0.8mm以上5mm以下に破損されたものであるスピーカーフレーム用樹脂組成物である。さらに本発明は、平均繊維長5mm以上25mm以下のガラス繊維を含有するプロピレン系樹脂と直径35〜600μmでアスペクト比が30以上の板状無機フィラーを混合し、次いで熱溶融させるとともに剪断力を加えて該ガラス繊維を平均繊維長0.8mm以上5mm以下に破損させた後に賦形するスピーカーフレームの製造方法である。さらに本発明は、平均繊維長5mm以上25mm以下のガラス繊維を含有するプロピレン系樹脂と直径35〜600μmでアスペクト比が30以上の板状無機フィラーを含有するプロピレン系樹脂を混合し、次いで熱溶融させるとともに剪断力を加えて該ガラス繊維を平均繊維長0.8mm以上5mm以下に破損させた後に賦形するスピーカーフレームの製造方法である。
【0005】
【発明の実施の形態】
本発明は、スピーカーフレームを構成する樹脂組成物として特定の組成物を用いることにより、耐衝撃強度、耐熱剛性、制振性等の諸性能に優れるスピーカーフレームが得られることを見出したものである。一般に樹脂組成物の耐衝撃性を高めるためにはガラス長繊維を使用することが好ましいとされていたが、本発明はむしろ繊維長の比較的短いガラス短繊維を均一に分散させることにより顕著な効果が得られることを見出したものである。繊維長の比較的短い繊維を均一に分散させることは通常困難であるが、後述の方法によれば本発明のスピーカーフレーム及び樹脂組成物を容易に得ることができる。
【0006】
スピーカーフレームを構成する樹脂組成物中のガラス繊維の平均繊維長は、補強効果の点から0.8mm以上、特に1mm以上、さらに1.5mm以上であるのが好ましく、分散不良及び外観不良を抑制する点からは5mm以下、特に3mm以下であるのが好ましい。また補強効果、均一分散性の点からはガラス繊維の直径は5〜30μm、特に8〜20μmであるのが好ましい。
樹脂組成物中に占めるガラス繊維の割合は特に限定されないが、制振性、耐熱剛性、耐衝撃性の点から1重量%以上、特に3重量%以上、さらに5重量%以上とするのが好ましく、均一分散性等の点からは30重量%以下、特に25重量%以下とするのが好ましい。
【0007】
また本発明においては、無機フィラーを併用する必要がある。かかる無機フィラーを用いることにより、所望の長さのガラス繊維をマトリックス中に実質的に均一に分散させ得るとともに、樹脂組成物の耐熱剛性を高めることができる。ガラス繊維との絡み合いを保持して所定の長さに破断させる点、さらに均一分散性、耐熱剛性等の点から無機フィラーの直径(最大径)は35μm以上、さらに600μm以下、特に300μm以下であるのが好ましく、アスぺクト比は30以上である板状無機フィラーが好ましい。使用する無機フィラーの構成は特に種類されず、例えばマイカ、タルク、ガラスフレーク等が使用できる。剛性が高く高アスペクト比のものを工業的に容易に生産できることから、少なくともマイカを用いるのが好ましい。樹脂組成物中に占める板状無機フィラーの割合は特に限定されないが、制振性、耐熱剛性、耐衝撃性の点、さらにガラス繊維に適度な剪断力を加える点から5重量%以上、特に10重量%以上とするのが好ましく、均一分散性等の点からは50重量%以下、特に30重量%以下とするのが好ましい。
【0008】
本発明の樹脂組成物を構成する樹脂としては、少なくともポリプロピレン系樹脂を用いるのが好ましい。ポリプロピレン系樹脂は制振性に優れることから好適なスピーカーフレームを得ることができる。本発明の効果を損わない範囲であればポリプロピレン系樹脂以外の樹脂を併用してもかまわないが、該樹脂組成物を構成する樹脂の30重量%以上、特に50重量%以上、さらに80重量%以上をポリプロピレン系樹脂を用いるのが好ましい。
使用するポリプロピレン系樹脂の構成は特に限定されないが、耐熱剛性、制振性等の点からは少なくともホモポリプロピレン系樹脂を用いるのが好ましく、また機械的性能、耐熱老化性、成形性等の点からは該ポリプロピレン系樹脂の少なくとも一部として、酸変性ポリプロピレン系樹脂を用いるのが好ましく、その使用目的に合わせて該樹脂組成を設計することができる。
【0009】
以下に本発明のスピーカーフレームを得る好適な方法を詳細に説明する。
本発明においては平均繊維長5mm以上25mm以下のガラス繊維を含有するプロピレン系樹脂と無機フィラーを混合し、次いで溶融させるとともに剪断力を加えて該ガラス繊維を平均繊維長0.8mm以上5mm以下に破損させた後に賦形する方法を採用するのが好ましい。本発明は平均繊維長0.8mm以上5mm以下のガラス繊維により補強された樹脂組成物を用いるものであるが、予めかかる平均繊維長を有するガラス繊維を用いると、混練時、賦形時等に破断して平均繊維長が短くなりすぎる可能性があり、また破断しにくい温和な条件を採用した場合にはマトリックス中に均一に分散させるのが困難となる。しかしながら、上記の方法を採用した場合には、混練時、成形時等により生じる剪断力によりガラス繊維を所望の長さに容易に破断させることができ、しかも予めガラス繊維を分散させた樹脂として
該ポリプロピレン系樹脂粒(A)(以下樹脂粒(A)とする。)、例えばペレット、チップ等を用いれば良い。これにより一般には均一分散しにくい長さを有する繊維をマトリックス中に均一に分散させることができる。
【0010】
かかる樹脂粒(A)中のガラス繊維の平均繊維長は、賦形後のガラス繊維の平均繊維長を所望の範囲にするとともに十分な補強効果を得る点から、5mm以上とするのが好ましく、均一分散性等の点からは25mm以下、さらに15mm以下、特に10mm以下とするのがより好ましい。
また剪断力により破断しても繊維径は実質的に変化しないことから、樹脂粒(A)中のガラス繊維の直径は5〜30μm、特に8〜20μmであるのが好ましい。
【0011】
また樹脂粒(A)中のガラス繊維の含有割合は特に限定されないが、ガラス繊維を所望の長さに破断させるとともに均一分散させる点から、30重量%以上、特に40重量%以上、さらに50重量%以上とするのが好ましく、80重量%以下とするのが好ましい。また同理由から樹脂粒(A)を構成する樹脂組成物のMFRは1〜20g/分であるのが好ましい。
該樹脂粒(A)を構成する樹脂としては、前記のように少なくともポリプロピレン系樹脂を用いるのが好ましい。該ポリプロピレン系樹脂は制振性に優れることから好適なスピーカーフレームが得られる。また本発明の効果を損わない範囲であればポリプロピレン系樹脂以外のポリプロピレン系樹脂と相溶性の良い樹脂を併用してもかまわないが、樹脂粒(A)を構成する樹脂の30重量%以上、特に50重量%以上、さらに80重量%以上をポリプロピレン系樹脂とするのが好ましい。使用するポリプロピレン系樹脂の構成は特に限定されないが、前記のように耐熱剛性、制振性等の点からは少なくともホモポリプロピレン樹脂を用いるのが好ましい。
【0012】
また一方前記のように機械的性能、耐熱老化性、成形性等の点からは一部として、酸変性ポリプロピレン系樹脂を用いるのが好ましく、該樹脂粒(A)を構成する樹脂の0.1〜20重量%を該酸変性ポリプロピレン系樹脂とするのが好ましく、ポリプロピレン系樹脂100重量部に対して0.5〜5重量部の変性剤を用いて変性させたものがより好ましい。
変性剤としては、例えば無水マレイン酸、無水イタコン酸、無水シトラコン酸等のジカルボン酸無水物が挙げられる。なかでも無水マレイン酸が最も好ましい。
該変性剤の配合量が5重量部より多すぎると未反応の無水カルボン酸がポリプロピレン樹脂内に多量に残留してしまい好ましくない。
【0013】
なお本発明における樹脂粒とは、球形、円柱形、角柱等に造粒された成形材料を示し、本発明の効果が得られる範囲であればその大きさ、形態、その製造法は特に限定されない。また複数種の樹脂粒を併用することも可能である。
【0014】
かかる樹脂粒(A)と無機フィラーを混合し、次いで熱溶融させるとともに剪断力を加えて該ガラス繊維を所望の長さに破損させた後に賦形すればよい。無機フィラーとしては上記に挙げた無機フィラーが好適に使用できる。
ガラス繊維を均一に分散させる点からはポリプロピレン系樹脂が溶融しない条件で樹脂粒(A)と無機フィラーを十分に混合するのが好ましい。
しかしながら、ガラス繊維の破損状態をコントロールし、かつ良好に均一分散させる点からは、無機フィラーを、無機フィラー含有ポリプロピレン系樹脂粒(B)の形態で添加するのが好ましい。
該樹脂粒(B)を構成する樹脂組成物中に無機フィラーを均一分散するためにその含有量は30重量%以上、さらに40重量%以上であるのが好ましく、80重量%以下であるのが好ましい。またガラス繊維の長さが必要以上に短くなるのを抑制して適度な長さに破断する点からは、樹脂粒(B)を構成する樹脂組成物のMFRが1g/分以上であるのが好ましく、またスピーカーフレームの耐衝撃性を高める点からは50g/分以下であるのが好ましい。また本発明の効果を効率的に得る点からは、樹脂粒(B)としては実質的にガラス繊維が含まれていないものが好ましく、ガラス繊維含有量は1重量%以下、特に0〜0.5重量%であるのがより好ましい。
【0015】
該樹脂粒(B)を構成する樹脂としては、少なくともポリプロピレン系樹脂を用いるのが好ましい。ポリプロピレン系樹脂は制振性に優れることから好適なスピーカーフレームが得られる。本発明の効果を損わない範囲であればポリプロピレン系樹脂以外の樹脂を併用してもかまわないが、該樹脂粒(B)を構成する樹脂の30重量%以上、特に50重量%以上、さらに80重量%以上をポリプロピレン系樹脂とするのが好ましい。機械的性能、耐熱老化性、成形性等の点からは樹脂粒(B)を構成するポリプロピレン系樹脂の少なくとも一部として、酸変性ポリプロピレン系樹脂を用いるのが好ましく、樹脂粒(B)を構成する樹脂の0.1〜20重量%を該酸変性ポリプロピレン系樹脂とするのが好ましく、ポリプロピレン系樹脂100重量部に対して0.5〜5重量部の変性剤を用いて変性させたものがより好ましい。また複数種の樹脂粒(B)を併用することも可能である。
【0016】
上記のような樹脂粒(A)及び樹脂粒(B)を溶融混練することにより、樹脂粒(A)中のガラス繊維が適度な長さに破断するとともに樹脂中に均一分散されて顕著な効果が得られる。一般に繊維長の短いガラス繊維は均一分散が困難である問題があるが、かかる方法によれば所望の長さのガラス繊維が均一分散したスピーカーフレームを得ることができる。
樹脂粒(A)及び樹脂粒(B)の混合比は、A中のガラス繊維含有率等の諸条件により適宜設定すればよいが、2:1〜1:5程度(重量比)とするのが好ましい。
本発明の効果を損わない範囲であれば、他の素材が配合されていてもかまわない。例えば他の無機充填材(例えば炭酸カルシウム、ワラストナイト、二酸化チタン、カーボンブラック、黒鉛など)、有機質充填材(例えば木粉、パルプ、合成繊維、天然繊維など)、添加剤(着色剤、酸化防止剤、紫外線吸収剤、シランカップリング剤、チタネートカップリング剤、滑剤、帯電防止剤、難燃剤、造核剤等)、他の樹脂(樹脂粒等を包含する)などの1種以上を添加することができる。
【0017】
スピーカーフレームを構成する樹脂組成物の耐震性、耐熱剛性等をより一層高めるとともに、ガラス繊維をより均一に分散させる点からは、樹脂粒(A)、もしくは樹脂粒(A)及び樹脂粒(B)とは別に、さらに少なくともポリプロピレン系樹脂(C)を添加するのが好ましい。特にホモポリプロピレン樹脂を添加するのが好ましい。
樹脂(C)としては実質的にガラス繊維及び無機フィラーが含まれていないものが好ましく、ガラス繊維含有量は1重量%以下、特に0〜0.5重量%であるのがより好ましく、無機フィラー含有量は1重量%以下、特に0〜0.5重量%であるのがより好ましい。
樹脂(C)の添加量は適宜設定すればよいが、(樹脂粒(A)+樹脂粒(B)):樹脂(C)が30:70〜70:30(重量比)となるように添加混合するのが好ましい。
【0018】
ガラス繊維を均一に分散させる点からはポリプロピレン系樹脂が溶融しない条件で樹脂粒(A)と無機フィラーまたは無機フィラーを含む樹脂粒(B)を十分に混合するのが好ましい。各添加成分がペレットの場合にはより均一に混合可能であるためより優れた結果が得られる。
これらの溶融混練方法は特に限定されず、例えば単軸押出機、二軸押出機を使用して製造すればよい。具体的にはタンブラー、ブレンダー等を用いて均一に混合する。次いで熱可塑性樹脂に対して一般に採用されている成形方法、例えば射出成形法、押出成形法、プレス成形法などを用いて賦形すればよい。なかでもガラス繊維の分散効果を大きく生産性の優れる射出成形法を用いて成形するのがより好ましい。成形条件は適宜設定すればよいが、例えば射出成形を行う場合、シリンダー温度230〜280℃程度、射出速度30〜70%、背圧29〜80×104Pa−Gauge、金型温度30〜50℃等の条件を採用すればよい。
成形体の構造、形状、大きさは特に限定されず、目的に応じたものとすればよい。また得られた成形体と他の素材をさらに併用してスピーカーフレームを製造してもかまわない。
本発明によれば、例えば損失係数0.08以下、熱変形温度150℃以上、アイゾット衝撃強度290N・cm/cm2以上の諸性能に優れた板状物を製造でき、よって制振性、耐熱剛性、耐衝撃性等の諸性能に優れたスピーカーフレームが得られる。
【0019】
以下、実施例により本発明を詳細に説明するが、本発明は実施例により何等限定されるものではない。
【実施例】
【0020】
[ガラス繊維の平均繊維長 mm]
樹脂組成物の樹脂成分を焼成除去し、回収したガラス繊維300本以上の長さを光学顕微鏡で測定し、その平均繊維長を求めた。
【0021】
[無機フィラーの直径 μm、アスペクト比]
無機フィラーを各種目開きの標準ふるいを用いて湿式分級を行い、その結果をRosin−Rammlar線図にプロットして測定に供した無機フィラーの50重量%が通過するふるい目開きL50を求め、(√2)×L50により求めた。
またアスペクト比は、上記の方法で測定した重量平均径を重量平均フレ−ク厚さで除して求めた。なお重量平均フレ−ク厚さは、C.E.Capesらの報告による水面単粒子膜法により測定されるフレ−クの水面での占有面積をS、フレ−クの重量をW、フレ−クの比重をρ、フレ−クが水面上で最密充填状態をとった場合の占有率を1−εとしたとき、W/{ρ(1−ε)S}により算出される値である。
【0022】
[MFR g/分]
JIS K7210(熱可塑性プラスチックの流れ試験方法)に準じて測定した。
【0023】
[損失係数]
JIS K7198(プラスチックの非共振振動法による動的粘弾性の温度依存性に関する試験方法)に準じて測定した。
【0024】
[熱変形温度 ℃]
JIS K7207(硬質プラスチックの荷重たわみ試験)に準じて測定した。
【0025】
[アイゾット衝撃強度 N・cm/cm2
JIS K7110(硬質プラスチックのアイゾット衝撃試験方法)に準じて測定した。
【0026】
[実施例1]
平均繊維長8mm、直径10μmのガラス繊維を65重量%含有するポリプロピレン系樹脂ペレット(A)(グランドポリマー製ホモポリプロピレン系樹脂「J107W」使用)35重量部と、直径200μm、重量平均アスペクト比70のマイカ30重量%、グランドポリマー製ホモポリプロピレン樹脂「J107W」50重量%、無水マレイン酸変性ポリプロピレン系樹脂(ホモポリプロピレン樹脂100重量部に対して無水マレイン酸2重量部を反応させたもの)20重量%からなるポリプロピレン系樹脂ペレット(B)65重量部をタンブラーで均一に混合し、次いで日精製射出成形機「FS―80」に供給し、シリンダー温度260℃、射出速度50%、背圧49×104Pa−Gauge、金型温度40℃、の条件で成形サイクル40秒で試験片を成形した。
得られた成形品中のガラス繊維の平均繊維長は1.0mmであり、損失係数0.05、熱変形温度154℃、アイゾット衝撃強度300N・cm/cm2のように制振性、耐熱剛性、耐衝撃性等の諸性能に優れた成形体が得られた。該樹脂組成物を用いることにより優れたスピーカーフレームを得ることができる。
【0027】
[実施例2]
上記実施例1で使用した樹脂ペレット(A):15重量部と直径200μm、重量平均アスペクト比70のマイカ50重量%、グランドポリマー製ホモポリプロピレン樹脂「J107W」30重量%、無水マレイン酸変性ポリプロピレン系樹脂(ホモポリプロピレン樹脂100重量部に対して無水マレイン酸2重量部を反応させたもの)20重量%からなるポリプロピレン系樹脂ペレット(B):40重量部に、さらにホモポリプロピレン樹脂ペレット(C)(グランドポリマー社製「J107W」):45重量部を添加してタンブラーで均一に混合し、次いで実施例1と同様にして試験片を成形した。
得られた成形品中のガラス繊維の平均繊維長は2.1mmであり、損失係数0.05、熱変形温度155℃、アイゾット衝撃強度340N・cm/cm2のように制振性、耐熱剛性、耐衝撃性等の諸性能に優れた成形体が得られた。該樹脂組成物を用いることにより優れたスピーカーフレームを得ることができる。
【0028】
[比較例1]
平均繊維長2mm、直径10μmのガラス繊維を30重量%含有するポリプロピレン樹脂ペレット(A)(グランドポリマー製ホモポリプロピレン系樹脂「J107W」使用):33重量部;直径200μm、重量平均アスペクト比70のマイカ50重量%、グランドポリマー製ホモポリプロピレン系樹脂「J107W」30重量%、無水マレイン酸変性ポリプロピレン系樹脂(ホモポリプロピレン樹脂100重量部に対して無水マレイン酸2重量部を反応させたもの)20重量%からなるポリプロピレン系樹脂ペレット(B):MFR=10g/分):40重量部;ホモポリプロピレン樹脂ペレット(C)(グランドポリマー製ホモポリプロピレン系樹脂「J107W」)27重量部をタンブラーで均一に混合し、実施例1と同様に試験片を成形した。
該成形品中のガラス繊維の平均繊維長は0.45mmであり、損失係数は0.05であるものの、熱変形温度149℃、アイゾット衝撃強度255N・cm/cm2と耐熱剛性、耐衝撃性等の劣るものであった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a speaker frame excellent in various performances such as impact strength, heat resistance and vibration damping, a manufacturing method thereof, and a resin composition for a speaker frame.
[0002]
[Prior art]
Conventionally, metal speaker frames have been widely used, but they have a high degree of design freedom and can be improved in assembly and light weight. Therefore, polybutylene terephthalate resin (PBT), heat-resistant acrylonitrile resin (AS ), Resin speaker frames made of a composition containing a reinforcing material such as glass fiber using a polyphenylene ether resin (PPE), a polycarbonate resin, or the like as a base resin are increasing. The strength and heat resistance of the speaker frame using these compositions is satisfactory and satisfies the required performance.
However, such a speaker frame has a much lower elastic modulus than a metal frame, so that the natural frequency becomes low and vibration damping is reduced, and the sound quality deteriorates due to resonance with acoustic vibration in the audible range. There was a problem.
In order to solve the above problems, a polypropylene resin having a high vibration damping property is used, and a resin composition reinforced with a glass fiber having a cut length of about 10 mm or more is used in order to further improve strength, toughness, and heat distortion resistance. Has been proposed.
[0003]
[Problems to be solved by the invention]
However, as a result of intensive studies by the present inventors, it has been found that when such glass fibers are used, the frame cannot be efficiently molded, and the reinforcing effect due to the incorporation of the glass fibers cannot be sufficiently obtained. . In other words, in order to uniformly disperse the glass fiber in the resin without breaking, a special injection molding machine having a low compression ratio screw is required, which is inefficient in terms of cost, equipment, etc., and the injection molding Even if the machine is used, the long glass fibers are entangled with each other inside the composition, resulting in poor dispersion. Consequently, the original reinforcing effect of the glass fibers is not sufficiently achieved, and the appearance is poor.
An object of the present invention is to propose a speaker frame excellent in various performances such as impact resistance strength, heat resistance rigidity, vibration damping properties, an efficient manufacturing method thereof, and a speaker frame resin composition.
[0004]
[Means for Solving the Problems]
The present invention is a resin composition containing a polypropylene resin, glass fiber, and a plate-like inorganic filler having a diameter of 35 to 600 μm and an aspect ratio of 30 or more, and the glass fiber is obtained by melt-kneading the resin composition. Is a speaker frame using a resin composition that is broken to an average fiber length of 0.8 mm to 5 mm. Further, the present invention is a resin composition containing a polypropylene resin, glass fiber, and a plate-like inorganic filler having a diameter of 35 to 600 μm and an aspect ratio of 30 or more, and the glass fiber melt-kneads the resin composition. This is a resin composition for a speaker frame that is broken to an average fiber length of 0.8 mm to 5 mm. Furthermore, the present invention mixes a propylene-based resin containing glass fibers having an average fiber length of 5 mm or more and 25 mm or less and a plate-like inorganic filler having a diameter of 35 to 600 μm and an aspect ratio of 30 or more, and then heat-melting and applying a shearing force. Thus, the glass fiber is shaped after being broken to an average fiber length of 0.8 mm or more and 5 mm or less. Furthermore, the present invention mixes a propylene resin containing glass fibers having an average fiber length of 5 mm or more and 25 mm or less and a propylene resin containing a plate-like inorganic filler having a diameter of 35 to 600 μm and an aspect ratio of 30 or more, and then heat melting. And producing a speaker frame that is shaped after breaking the glass fiber to an average fiber length of 0.8 mm or more and 5 mm or less by applying a shearing force.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has been found that by using a specific composition as a resin composition constituting the speaker frame, a speaker frame having excellent performance such as impact resistance strength, heat resistance rigidity, vibration damping property and the like can be obtained. . In general, it has been considered preferable to use long glass fibers in order to increase the impact resistance of the resin composition, but the present invention is rather remarkable by uniformly dispersing short glass fibers having a relatively short fiber length. It has been found that an effect can be obtained. Although it is usually difficult to uniformly disperse fibers having relatively short fiber lengths, the speaker frame and the resin composition of the present invention can be easily obtained by the method described below.
[0006]
The average fiber length of the glass fibers in the resin composition constituting the speaker frame is preferably 0.8 mm or more, particularly 1 mm or more, more preferably 1.5 mm or more from the viewpoint of the reinforcing effect, and suppresses poor dispersion and poor appearance. From this point, it is preferably 5 mm or less, particularly 3 mm or less. From the viewpoint of reinforcing effect and uniform dispersibility, the diameter of the glass fiber is preferably 5 to 30 μm, particularly 8 to 20 μm.
The proportion of the glass fiber in the resin composition is not particularly limited, but is preferably 1% by weight or more, particularly 3% by weight or more, and more preferably 5% by weight or more from the viewpoint of vibration damping properties, heat resistance rigidity, and impact resistance. From the viewpoint of uniform dispersibility, it is preferably 30% by weight or less, particularly preferably 25% by weight or less.
[0007]
Moreover, in this invention, it is necessary to use an inorganic filler together. By using such an inorganic filler, glass fibers having a desired length can be dispersed substantially uniformly in the matrix, and the heat resistance rigidity of the resin composition can be increased. The diameter (maximum diameter) of the inorganic filler is 35 μm or more, further 600 μm or less, particularly 300 μm or less in terms of maintaining the entanglement with the glass fiber and breaking it to a predetermined length, and further in terms of uniform dispersibility, heat resistance rigidity and the like. The plate-like inorganic filler having an aspect ratio of 30 or more is preferable. The structure of the inorganic filler to be used is not particularly limited, and for example, mica, talc, glass flake and the like can be used. Since mica having a high rigidity and high aspect ratio can be easily produced industrially, at least mica is preferably used. The proportion of the plate-like inorganic filler in the resin composition is not particularly limited, but is 5% by weight or more, particularly 10% from the viewpoint of vibration damping properties, heat-resistant rigidity, impact resistance, and applying an appropriate shearing force to the glass fiber. It is preferable to be not less than 50% by weight, and from the viewpoint of uniform dispersibility etc., it is preferably not more than 50% by weight, particularly preferably not more than 30% by weight.
[0008]
As the resin constituting the resin composition of the present invention, it is preferable to use at least a polypropylene resin. Since polypropylene resin is excellent in vibration damping properties, a suitable speaker frame can be obtained. A resin other than a polypropylene resin may be used in combination as long as the effect of the present invention is not impaired, but it is 30% by weight or more, particularly 50% by weight or more, and further 80% by weight of the resin constituting the resin composition. It is preferable to use a polypropylene-based resin for at least%.
The configuration of the polypropylene resin to be used is not particularly limited, but it is preferable to use at least a homopolypropylene resin from the viewpoint of heat resistance rigidity, vibration damping, etc., and from the viewpoint of mechanical performance, heat aging resistance, moldability, etc. It is preferable to use an acid-modified polypropylene resin as at least a part of the polypropylene resin, and the resin composition can be designed according to the purpose of use.
[0009]
Hereinafter, a preferred method for obtaining the speaker frame of the present invention will be described in detail.
In the present invention, a propylene-based resin containing glass fibers having an average fiber length of 5 mm or more and 25 mm or less and an inorganic filler are mixed, and then melted and a shearing force is applied to make the glass fibers have an average fiber length of 0.8 mm or more and 5 mm or less. It is preferable to adopt a method of shaping after being damaged. The present invention uses a resin composition reinforced with glass fibers having an average fiber length of 0.8 mm or more and 5 mm or less, but if glass fibers having such an average fiber length are used in advance, during kneading, shaping, etc. There is a possibility that the average fiber length is too short due to breakage, and it is difficult to disperse uniformly in the matrix when mild conditions that are difficult to break are adopted. However, when the above method is adopted, the glass fiber can be easily broken to a desired length by a shearing force generated during kneading, molding, etc., and as a resin in which the glass fiber is previously dispersed, Polypropylene resin particles (A) (hereinafter referred to as resin particles (A)) such as pellets and chips may be used. This makes it possible to uniformly disperse fibers having a length that is generally difficult to uniformly disperse in the matrix.
[0010]
The average fiber length of the glass fibers in the resin particles (A) is preferably 5 mm or more from the viewpoint of obtaining a sufficient reinforcing effect while keeping the average fiber length of the glass fibers after shaping within a desired range, From the viewpoint of uniform dispersibility and the like, it is more preferably 25 mm or less, more preferably 15 mm or less, and particularly preferably 10 mm or less.
In addition, since the fiber diameter does not substantially change even when it is broken by a shearing force, the diameter of the glass fiber in the resin particles (A) is preferably 5 to 30 μm, particularly preferably 8 to 20 μm.
[0011]
Further, the content ratio of the glass fiber in the resin particle (A) is not particularly limited, but is 30% by weight or more, particularly 40% by weight or more, and further 50% from the viewpoint of breaking the glass fiber to a desired length and uniformly dispersing it. % Or more, preferably 80% by weight or less. For the same reason, the MFR of the resin composition constituting the resin particles (A) is preferably 1 to 20 g / min.
As resin which comprises this resin particle (A), it is preferable to use a polypropylene resin at least as mentioned above. Since the polypropylene resin is excellent in vibration damping properties, a suitable speaker frame can be obtained. Moreover, as long as the effect of the present invention is not impaired, a resin having good compatibility with a polypropylene resin other than the polypropylene resin may be used in combination, but 30% by weight or more of the resin constituting the resin particles (A). In particular, it is preferable to use 50% by weight or more, more preferably 80% by weight or more as a polypropylene resin. The configuration of the polypropylene-based resin to be used is not particularly limited, but it is preferable to use at least a homopolypropylene resin from the viewpoints of heat-resistant rigidity and vibration damping properties as described above.
[0012]
On the other hand, as described above, it is preferable to use an acid-modified polypropylene resin as a part from the viewpoint of mechanical performance, heat aging resistance, moldability, etc., and 0.1% of the resin constituting the resin particle (A). The acid-modified polypropylene resin is preferably ˜20% by weight, and more preferably 0.5 to 5 parts by weight of a modifier is used with respect to 100 parts by weight of the polypropylene resin.
Examples of the modifier include dicarboxylic anhydrides such as maleic anhydride, itaconic anhydride, and citraconic anhydride. Of these, maleic anhydride is most preferred.
If the blending amount of the modifier is more than 5 parts by weight, a large amount of unreacted carboxylic anhydride remains in the polypropylene resin, which is not preferable.
[0013]
The resin particles in the present invention indicate a molding material granulated into a spherical shape, a cylindrical shape, a prismatic shape, etc., and the size, form, and manufacturing method thereof are not particularly limited as long as the effects of the present invention are obtained. . It is also possible to use a plurality of types of resin particles in combination.
[0014]
The resin particles (A) and the inorganic filler may be mixed, then heat-melted and a shearing force may be applied to break the glass fiber to a desired length, followed by shaping. As the inorganic filler, the inorganic fillers listed above can be suitably used.
From the viewpoint of uniformly dispersing the glass fiber, it is preferable to sufficiently mix the resin particles (A) and the inorganic filler under the condition that the polypropylene resin does not melt.
However, it is preferable to add the inorganic filler in the form of inorganic filler-containing polypropylene-based resin particles (B) from the viewpoint of controlling the breakage state of the glass fiber and achieving good uniform dispersion.
In order to uniformly disperse the inorganic filler in the resin composition constituting the resin particles (B), the content is preferably 30% by weight or more, more preferably 40% by weight or more, and 80% by weight or less. preferable. Moreover, from the point which suppresses that the length of a glass fiber shortens more than necessary, and fractures | ruptures to appropriate length, it is that MFR of the resin composition which comprises a resin particle (B) is 1 g / min or more. It is preferably 50 g / min or less from the viewpoint of improving the impact resistance of the speaker frame. Further, from the viewpoint of efficiently obtaining the effects of the present invention, the resin particles (B) are preferably substantially free of glass fibers, and the glass fiber content is 1% by weight or less, particularly 0 to 0.00. More preferably, it is 5% by weight.
[0015]
It is preferable to use at least a polypropylene resin as the resin constituting the resin particles (B). Since a polypropylene resin is excellent in vibration damping properties, a suitable speaker frame can be obtained. A resin other than a polypropylene resin may be used in combination as long as the effect of the present invention is not impaired, but it is 30% by weight or more, particularly 50% by weight or more of the resin constituting the resin particles (B), 80% by weight or more is preferably a polypropylene resin. In view of mechanical performance, heat aging resistance, moldability, etc., it is preferable to use an acid-modified polypropylene resin as at least a part of the polypropylene resin constituting the resin particle (B), and the resin particle (B) is constituted. It is preferable that 0.1 to 20% by weight of the resin to be used is the acid-modified polypropylene resin, and a resin modified with 0.5 to 5 parts by weight of a modifier with respect to 100 parts by weight of the polypropylene resin. More preferred. It is also possible to use a plurality of types of resin particles (B) in combination.
[0016]
By melting and kneading the resin particles (A) and resin particles (B) as described above, the glass fibers in the resin particles (A) are broken to an appropriate length and are uniformly dispersed in the resin. Is obtained. In general, glass fibers having a short fiber length have a problem that it is difficult to uniformly disperse them. According to such a method, a speaker frame in which glass fibers having a desired length are uniformly dispersed can be obtained.
The mixing ratio of the resin particles (A) and the resin particles (B) may be appropriately set according to various conditions such as the glass fiber content in A, but about 2: 1 to 1: 5 (weight ratio). Is preferred.
Other materials may be blended as long as the effects of the present invention are not impaired. For example, other inorganic fillers (for example, calcium carbonate, wollastonite, titanium dioxide, carbon black, graphite, etc.), organic fillers (for example, wood flour, pulp, synthetic fibers, natural fibers, etc.), additives (colorants, oxidizing agents) One or more additives such as an inhibitor, an ultraviolet absorber, a silane coupling agent, a titanate coupling agent, a lubricant, an antistatic agent, a flame retardant, and a nucleating agent) and other resins (including resin particles) are added. can do.
[0017]
From the standpoint of further improving the earthquake resistance, heat resistance rigidity, etc. of the resin composition constituting the speaker frame and dispersing the glass fibers more uniformly, the resin particles (A), or the resin particles (A) and the resin particles (B In addition to the above, it is preferable to add at least a polypropylene resin (C). It is particularly preferable to add a homopolypropylene resin.
The resin (C) is preferably substantially free of glass fiber and inorganic filler, and the glass fiber content is more preferably 1% by weight or less, particularly preferably 0 to 0.5% by weight. The content is more preferably 1% by weight or less, particularly preferably 0 to 0.5% by weight.
The addition amount of the resin (C) may be set as appropriate, but is added so that (resin particles (A) + resin particles (B)): resin (C) is 30:70 to 70:30 (weight ratio). It is preferable to mix.
[0018]
From the viewpoint of uniformly dispersing the glass fibers, it is preferable to sufficiently mix the resin particles (A) and the resin particles (B) containing an inorganic filler or an inorganic filler under the condition that the polypropylene resin does not melt. When each additive component is a pellet, more uniform results can be obtained because the additives can be mixed more uniformly.
These melt-kneading methods are not particularly limited, and may be manufactured using, for example, a single screw extruder or a twin screw extruder. Specifically, it is mixed uniformly using a tumbler, blender or the like. Subsequently, the thermoplastic resin may be shaped using a molding method generally employed, for example, an injection molding method, an extrusion molding method, a press molding method, or the like. Among these, it is more preferable to mold using an injection molding method that has a great dispersion effect on glass fibers and is excellent in productivity. The molding conditions may be set as appropriate. For example, when injection molding is performed, the cylinder temperature is about 230 to 280 ° C., the injection speed is 30 to 70%, the back pressure is 29 to 80 × 10 4 Pa-Gauge, and the mold temperature is 30 to 50. Conditions such as ° C may be adopted.
The structure, shape, and size of the molded body are not particularly limited, and may be set according to the purpose. Further, a speaker frame may be manufactured by further using the obtained molded body and another material together.
According to the present invention, it is possible to produce a plate-like material having excellent performance such as a loss factor of 0.08 or less, a heat distortion temperature of 150 ° C. or more, and an Izod impact strength of 290 N · cm / cm 2 or more. A speaker frame with excellent performance such as rigidity and impact resistance can be obtained.
[0019]
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by an Example.
【Example】
[0020]
[Average fiber length mm of glass fiber]
The resin component of the resin composition was removed by baking, the length of 300 or more collected glass fibers was measured with an optical microscope, and the average fiber length was determined.
[0021]
[Inorganic filler diameter μm, aspect ratio]
The inorganic filler was subjected to wet classification using various sieves of standard sieves, and the results were plotted on a Rosin-Ramlar diagram to obtain a sieve opening L50 through which 50% by weight of the inorganic filler used for measurement passed ( √2) Obtained by × L50.
The aspect ratio was determined by dividing the weight average diameter measured by the above method by the weight average flake thickness. The weight average flake thickness is C.I. E. The area occupied on the surface of the flake measured by the water surface single particle membrane method reported by Capes et al. Is S, the weight of the flake is W, the specific gravity of the flake is ρ, and the flake is the most on the water surface. This is a value calculated by W / {ρ (1−ε) S}, where 1−ε is the occupation ratio when the tightly packed state is taken.
[0022]
[MFR g / min]
Measured according to JIS K7210 (Thermoplastic plastic flow test method).
[0023]
[Loss factor]
Measured according to JIS K7198 (Testing method for temperature dependence of dynamic viscoelasticity by plastic non-resonant vibration method).
[0024]
[Heat deformation temperature ℃]
The measurement was performed according to JIS K7207 (load deflection test of hard plastic).
[0025]
[Izod impact strength N · cm / cm 2 ]
Measured according to JIS K7110 (Izod impact test method for hard plastics).
[0026]
[Example 1]
Polypropylene resin pellets (A) containing 65% by weight of glass fibers having an average fiber length of 8 mm and a diameter of 10 μm (using ground polymer homopolypropylene resin “J107W”), 35 parts by weight, a diameter of 200 μm and a weight average aspect ratio of 70 30% by weight of mica, 50% by weight of homopolymer resin “J107W” made of ground polymer, 20% by weight of maleic anhydride-modified polypropylene resin (reacted with 2 parts by weight of maleic anhydride with 100 parts by weight of homopolypropylene resin) 65 parts by weight of polypropylene resin pellets (B) consisting of the above are uniformly mixed with a tumbler, and then fed to a daily refined injection molding machine “FS-80”. Cylinder temperature 260 ° C., injection speed 50%, back pressure 49 × 10 4 Pa-Gauge, mold temperature 40 ° C., the condition at a molding cycle of It was molded test specimens at 00 seconds.
The average fiber length of the glass fibers in the obtained molded product is 1.0 mm, and the vibration damping property and heat resistance rigidity are as follows: loss factor 0.05, heat distortion temperature 154 ° C., Izod impact strength 300 N · cm / cm 2. A molded article excellent in various performances such as impact resistance was obtained. An excellent speaker frame can be obtained by using the resin composition.
[0027]
[Example 2]
Resin pellets (A) used in Example 1 above: 15 parts by weight, diameter of 200 μm, 50% by weight of mica having a weight average aspect ratio of 70, ground polymer homopolypropylene resin “J107W” 30% by weight, maleic anhydride modified polypropylene system Polypropylene resin pellets (B) consisting of 20% by weight of resin (100 parts by weight of homopolypropylene resin reacted with 2 parts by weight of maleic anhydride): 40 parts by weight of polypropylene resin pellets (C) ( “J107W” manufactured by Grand Polymer Co., Ltd.): 45 parts by weight were added and mixed uniformly with a tumbler, and then a test piece was molded in the same manner as in Example 1.
The average fiber length of the glass fiber in the obtained molded product is 2.1 mm, the damping factor is 0.05, the thermal deformation temperature is 155 ° C., and the Izod impact strength is 340 N · cm / cm 2. A molded article excellent in various performances such as impact resistance was obtained. An excellent speaker frame can be obtained by using the resin composition.
[0028]
[Comparative Example 1]
Polypropylene resin pellet (A) containing 30% by weight of glass fiber having an average fiber length of 2 mm and a diameter of 10 μm (using a ground polymer homopolypropylene resin “J107W”): 33 parts by weight; mica having a diameter of 200 μm and a weight average aspect ratio of 70 50% by weight, ground polymer homopolypropylene resin “J107W” 30% by weight, maleic anhydride-modified polypropylene resin (100 parts by weight of homopolypropylene resin reacted with 2 parts by weight of maleic anhydride) 20% by weight Polypropylene resin pellets (B): MFR = 10 g / min): 40 parts by weight; 27 parts by weight of homopolypropylene resin pellets (C) (a homopolypropylene resin “J107W” manufactured by Grand Polymer) were uniformly mixed with a tumbler. In the same manner as in Example 1, Molded.
Although the average fiber length of the glass fiber in the molded product is 0.45 mm and the loss factor is 0.05, the heat distortion temperature is 149 ° C., the Izod impact strength is 255 N · cm / cm 2 , the heat resistance rigidity, and the impact resistance. Etc. were inferior.

Claims (5)

ポリプロピレン系樹脂、ガラス繊維及び直径35〜600μmでアスペクト比が30以上の板状無機フィラーを含有する樹脂組成物であって、かつ該ガラス繊維は該樹脂組成物を溶融混練することにより平均繊維長0.8mm以上5mm以下に破損されたものである樹脂組成物を用いてなるスピーカーフレーム。A resin composition containing a polypropylene-based resin, glass fibers, and a plate-like inorganic filler having a diameter of 35 to 600 μm and an aspect ratio of 30 or more , and the glass fibers are obtained by melt-kneading the resin composition to obtain an average fiber length A speaker frame made of a resin composition that is broken to 0.8 mm or more and 5 mm or less . 板状無機フィラーがマイカである請求項1に記載のスピーカーフレーム。The speaker frame according to claim 1, wherein the plate-like inorganic filler is mica. ポリプロピレン系樹脂、ガラス繊維及び直径35〜600μmでアスペクト比が30以上の板状無機フィラーを含有する樹脂組成物であって、かつ該ガラス繊維は該樹脂組成物を溶融混練することにより平均繊維長0.8mm以上5mm以下に破損されたものであるスピーカーフレーム用樹脂組成物。A resin composition containing a polypropylene-based resin, glass fibers, and a plate-like inorganic filler having a diameter of 35 to 600 μm and an aspect ratio of 30 or more , and the glass fibers are obtained by melt-kneading the resin composition to obtain an average fiber length A resin composition for a speaker frame, which is damaged to 0.8 mm or more and 5 mm or less . 平均繊維長5mm以上25mm以下のガラス繊維を含有するプロピレン系樹脂と直径35〜600μmでアスペクト比が30以上の板状無機フィラーを混合し、次いで熱溶融させるとともに剪断力を加えて該ガラス繊維を平均繊維長0.8mm以上5mm以下に破損させた後に賦形するスピーカーフレームの製造方法。A propylene-based resin containing glass fibers having an average fiber length of 5 mm or more and 25 mm or less and a plate-like inorganic filler having a diameter of 35 to 600 μm and an aspect ratio of 30 or more are mixed and then thermally melted and shearing force is applied to the glass fibers. A method for manufacturing a speaker frame, which is shaped after being broken to an average fiber length of 0.8 mm to 5 mm. 平均繊維長5mm以上25mm以下のガラス繊維を含有するプロピレン系樹脂と直径35〜600μmでアスペクト比が30以上の板状無機フィラーを含有するプロピレン系樹脂を混合し、次いで熱溶融させるとともに剪断力を加えて該ガラス繊維を平均繊維長0.8mm以上5mm以下に破損させた後に賦形するスピーカーフレームの製造方法。A propylene-based resin containing glass fibers having an average fiber length of 5 mm or more and 25 mm or less and a propylene-based resin containing a plate-like inorganic filler having a diameter of 35 to 600 μm and an aspect ratio of 30 or more are mixed, and then heat-melted and shearing force is applied. In addition, a method for manufacturing a speaker frame, wherein the glass fiber is shaped after being broken to an average fiber length of 0.8 mm to 5 mm.
JP29491499A 1999-10-18 1999-10-18 Speaker frame and manufacturing method thereof Expired - Fee Related JP3657479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29491499A JP3657479B2 (en) 1999-10-18 1999-10-18 Speaker frame and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29491499A JP3657479B2 (en) 1999-10-18 1999-10-18 Speaker frame and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001119791A JP2001119791A (en) 2001-04-27
JP3657479B2 true JP3657479B2 (en) 2005-06-08

Family

ID=17813895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29491499A Expired - Fee Related JP3657479B2 (en) 1999-10-18 1999-10-18 Speaker frame and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3657479B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677274B2 (en) * 2005-04-21 2011-04-27 パイオニア株式会社 Component parts for speaker device and manufacturing method thereof
JP2007295239A (en) * 2006-04-25 2007-11-08 Asahi Kasei Chemicals Corp Resin molding for acoustic apparatus
US7978871B2 (en) 2006-12-21 2011-07-12 Ford Global Technologies, Llc Speaker system for a vehicle
EP2632178A4 (en) * 2010-10-20 2015-03-25 Acoustic molded article, speaker using same, and electronic equipment and mobile apparatus using speaker
JP2011050111A (en) * 2010-12-06 2011-03-10 Pioneer Electronic Corp Speaker device
KR102584434B1 (en) * 2021-03-04 2023-10-05 주식회사 삼양사 Thermoplastic resin composition having adjustable damping ratio and molded article comprising the same, and method for adjusting damping ratio of thermoplastic resin composition and method for controlling sound property of the composition thereby

Also Published As

Publication number Publication date
JP2001119791A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
KR970008215B1 (en) Thermoplastic composite material reinforced with hemp fibers
JP5395496B2 (en) Method for producing cellulose fiber-containing thermoplastic resin composition
JP4846315B2 (en) Method for producing cellulose fiber-containing thermoplastic resin composition
US20070191532A1 (en) Method for preparing long glass fiber-reinforced composition and fabricated articles therefrom
JPWO2011049162A1 (en) Composition comprising microfibrillated plant fibers
KR20070001944A (en) Fiber-reinforced polyolefin resin composition and molding thereof
JPH11172121A (en) Thermoplastic composite composition reinforced with mica and woody fibrous filler
US4983647A (en) Reinforced polypropylene composition
JPH10193347A (en) Manufacture of woody fiber composite material product with high rigidity and high heat-deformation temperature characteristics
JP3657479B2 (en) Speaker frame and manufacturing method thereof
JP2008297479A (en) Method for producing cellulose fiber-containing thermoplastic resin composition
JP2002302578A (en) Polypropylene resin composition containing organic fiber filler and molded article thereof
JPH0115526B2 (en)
JP2009001597A (en) Method for producing thermoplastic resin composition containing cellulose fiber
JPH02124956A (en) Production of composite material composition
JP4179037B2 (en) Molding composition, speaker unit mounting member using the same, and speaker system using the same
JP2000256505A (en) Resin composition
JPS6411219B2 (en)
JP2018119048A (en) Resin composition containing biomass powder and having high impact resistance
JPH08170022A (en) Thermoplastic resin composition
JP2005110064A (en) Resin composition for molding speaker diaphragm and manufacturing method thereof
JP2960334B2 (en) Fiber reinforced polybutylene terephthalate resin composition
JPH039952A (en) Thermoplastic resin composition
JPH08259750A (en) Production of fiber-reinforced polypropylene composition
JPH06284496A (en) Acoustic diaphragm

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050309

R150 Certificate of patent or registration of utility model

Ref document number: 3657479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees