JP3657119B2 - Battery protection circuit power saving measurement method - Google Patents

Battery protection circuit power saving measurement method Download PDF

Info

Publication number
JP3657119B2
JP3657119B2 JP21219898A JP21219898A JP3657119B2 JP 3657119 B2 JP3657119 B2 JP 3657119B2 JP 21219898 A JP21219898 A JP 21219898A JP 21219898 A JP21219898 A JP 21219898A JP 3657119 B2 JP3657119 B2 JP 3657119B2
Authority
JP
Japan
Prior art keywords
protection circuit
battery protection
terminal
current
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21219898A
Other languages
Japanese (ja)
Other versions
JP2000050506A (en
Inventor
直也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP21219898A priority Critical patent/JP3657119B2/en
Publication of JP2000050506A publication Critical patent/JP2000050506A/en
Application granted granted Critical
Publication of JP3657119B2 publication Critical patent/JP3657119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Protection Of Static Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、充放電可能な充電池を保護するための電池保護回路が正常に動作するか否かを試験する電池保護回路の試験方法に関する。
【0002】
【従来の技術】
従来の電池保護回路について、図1及び図5を用いて説明する。図1は電池保護回路の構成を示したブロック図である。電池保護回路1は、端子2〜6と、端子2と端子の5との間に直列に接続したNチャネルMOSFETトランジスタQ1、Q2と、端子4と端子6との間に接続した電流検出抵抗Rと、端子2と端子3間の電位差、端子3と端子4の電位差、及び前記電流検出抵抗の両端にかかる電位差を測定するとともに前記電位差がそれぞれ正常範囲であれば前記NチャネルMOSFETトランジスタQ1、Q2が両方ともONの状態であるように制御するような保護IC7とを有する回路である。
【0003】
また、NチャネルMOSFETトランジスタQ1、Q2は、各トランジスタQ1、Q2のソースがそれぞれ前記端子2、前記端子5と接続するとともに、両トランジスタのドレイン同士が接続している。また、両トランジスタのゲートは保護IC7と接続している。
【0004】
尚、前記電池保護回路1は、前記電流検出抵抗Rと前記NチャネルMOSFETトランジスタQ1、Q2が、前記端子2と前記端子5との間、又は前記端子4と前記端子6との間に直列に接続されているような構成の電池保護回路でも良い。
【0005】
このような構成の電池保護回路1において、端子2と端子3との間に2次電池B1を、端子3と端子4との間に2次電池B2を接続する。放電時に該2次電池B1、B2のいずれかの電圧が正常範囲を下回ったとき、前記保護IC7によって過放電保護作用が働き、前記トランジスタQ2のゲート電圧を下げて該トランジスタQ2の動作を停止させることによって、放電電流をカットする。
【0006】
また、逆に充電時に前記2次電池B1、B2のいずれかの電圧が正常範囲を上回ったとき、前記保護IC7によって過充電保護作用が働き、前記トランジスタQ1のゲート電圧を下げて該トランジスタQ1の動作を停止させることによって、充電電流をカットする。
【0007】
更に、充放電時に、前記電流検出抵抗Rに過電流が流れ、該抵抗Rの両端にかかる電位差がその正常範囲を超えると、前記保護IC7によって過電流保護が働き、充電時には前記トランジスタQ1の動作を停止させて充電電流をカットし、放電時には前記トランジスタQ2の動作を停止させて放電電流をカットする。
【0008】
図5は前記電池保護回路1の動作を確認する試験を行うための従来の試験装置を示すブロック図である。前記電池保護回路1の端子2と端子3の間、及び端子3と端子4の間に充放電を行う2次電池の擬似的な電源としてバイポーラ電源8、9が接続され、端子5にスイッチ10が接続され、前記スイッチ10の接点10aと端子6の間に充電装置11が、前記スイッチ10の接点10bと端子6の間に負荷の大きさが可変的な大容量の負荷12がそれぞれ接続されている。
【0009】
以下に、上記のような構成の試験装置を使用した従来の過放電試験、過充電試験及び過電流試験のそれぞれについて説明する。
【0010】
過放電試験は、まず、スイッチ10の接点10b側に設定し、前記電池保護回路1と負荷12と接続することによって、2次電池が放電動作を行うような状態にする。このとき、放電電流IDを流した状態で前記バイポーラ電源8又は9の電圧を下降させて、該電圧がその正常範囲を下回ったときに前記放電電流IDがカットされたか否かを確認する。
【0011】
過充電試験は、まず、前記スイッチ10の接点10a側に設定し、前記電池保護回路1と充電装置11を接続することによって、2次電池が充電動作を行うような状態にする。このとき、充電電流ICを流した状態で前記バイポーラ電源8又は9の電圧を上昇させて、該電圧がその正常範囲を上回ったときに前記充電電流ICがカットされたか否かを確認する。
【0012】
過電流試験は、前記スイッチ10の接点10b側に設定することによって、放電電流が前記電池保護回路1に流れ込むような状態にする。このとき、前記バイポーラ電源8及び9の電圧を正常な範囲の電圧に制御し、該電池保護回路1に接続された前記負荷12を操作することによって、該電池保護回路1に流れ込む放電電流を増加させ、該電流が正常範囲を上回ったとき、電流がカットされたか否かを確認する。
【0013】
尚、2次電池の充電動作が行わている状態で過電流が流れることは極めてまれなことであるので、充電状態での過電流試験は、一般的には行われない。
【0014】
【発明が解決しようとする課題】
従来の電池保護回路の試験方法の場合、上述したように前記電池保護回路1に実際の負荷を接続して試験を行うので、実際に使用するときの電力を試験装置から害電池保護回路1に供給する必要がある。
【0015】
該試験方法で使用するのに必要な前記電力は、直列に接続された前記充電池の数Nを該充電池の電圧4Vに掛けて得られる電圧4NVに、更に該試験を行うために必要な試験電流1〜10Aを掛け合わせた4N〜40NWという大電力となる。そのため、該試験方法で使用されるバイポーラ電源装置もこのような大電力を供給するような電源が必要なために容量の大きな装置が必要となる。
【0016】
また、該試験方法では、前記バイポーラ電源8、9に容量の大きなバイポーラ電源装置が必要となるだけでなく、該バイポーラ電源8、9を使用して模擬的に前記電池保護回路1を介して充放電を行わせるための前記充電装置11と前記大容量の負荷12をも必要とするために、該試験方法で使用する試験装置は大規模なものとなる。
【0017】
そこで、本発明では、電池保護回路1に接続する電源が小容量ですむような電池保護回路の試験方法を提供することを目的とする。
【0018】
また、本発明では、小規模な試験装置で試験することが可能な電池保護回路の試験方法を提供することを目的とする。
【0019】
また、前記従来の試験方法によると、実際に使用するときに直列に接続される2次電池の数が変化するとともに前記電池保護回路1にかかる電圧が変化することを想定して、前記電池保護回路1に設定電圧の違う前記バイポーラ電源8、9を接続したとき、接続する前記充電装置11及び前記大容量の負荷12をも別の容量のものに変更しなければならない。そのため、前記充電装置11と前記大容量の負荷12が多種必要となり、前記バイポーラ電源の設定電圧を変更する度に前記試験装置を組み替え直さなければならない。
【0020】
本発明では、上記問題を鑑み、前記電池保護回路1に接続した電源から供給される設定電圧の大きさを変更する度に、前記試験装置を組み替え直す必要がなく、前記電池保護回路1のスイッチング制御の動作が正常に行われるか否か試験できるような汎用性のある試験装置を使用した電池保護回路の試験方法を提供することを目的とする。
【0021】
【課題を解決するための手段】
本発明の電池保護回路の試験方法は、充放電可能な2次電池が接続される2次電池接続端子と、負荷又は充電装置が接続される負荷接続端子と、前記2次電池の電圧値を検出する電圧検出部と、前記2次電池から流れる電流値を検出する電流検出部と、前記電圧検出部で検出した電圧値が所定の電圧値より高くなるか、もしくは前記電流検出部で検出した電流値が所定の電流値を超えたときに前記2次電池の充放電路を遮断する出力制御部とを有する電池保護回路が正常に働いているか否かを試験する電池保護回路の試験方法において、前記電池保護回路の2次電池接続端子に試験電圧を供給する電源と、前記電池保護回路の2次電池接続端子と負荷接続端子間に試験電流を供給する定電流電源とを前記2次電池の代わりに前記電池保護回路に接続して行うことを特徴とする。
【0022】
このような構成で行われる電池保護回路の試験方法によると、従来の試験方法のように該電池保護回路の負荷接続端子に実際に使用される負荷や充電装置を接続する必要がない。また、2次電池接続端子に接続した電源に流れる電流値を小さくし、かつ2次電池接続端子と負荷接続端子間に接続した定電流電源にかかる電圧を低くして、試験装置が消費する消費電力を抑制する。
【0023】
【発明の実施の形態】
本発明の実施形態について、図1〜4を用いて説明する。図2は、電池保護回路1の動作の確認を行うための試験装置の構成を示したブロック図である。図3は、図2の電源回路13の回路図の1例を示したものである。図4は、図2の定電流電源14、15の内部の構成を示した簡単な回路図である。
【0024】
本実施形態では、図1に示した電池保護回路1を試験対象として、説明する。尚、従来の試験方法と同様に、図1に示した電池保護回路以外の、前記電流検出抵抗RとNチャネルMOSFETトランジスタQ1、Q2が、端子2と端子5との間、又は端子4と端子6との間に直列に接続されているような構成の電池保護回路を試験対象としても良い。
【0025】
図2に示すように、前記電池保護回路1の端子2〜4に電源回路13を接続し、また、前記電池保護回路1の端子2と端子5の間と、端子4と端子6の間とにそれぞれ定電流電源14、15を接続する。このとき使用する電源回路13は、実際に前記電池保護回路1を2次電池に接続したときの充放電時の電圧を供給するとともに、該電池保護回路1を動作させるのに十分な1mAまでの少量の電流を供給するような電源回路である。
【0026】
このような電源回路13においてオペアンプを使用した例について、図3(a)を用いて説明する。コントローラ16の出力端子16aに抵抗R1を、出力端子16bに抵抗R5を、出力端子16cに抵抗R3とR7をそれぞれ接続する。また、抵抗R1と抵抗R2の接続ノードをオペアンプA1の負入力端子A1aに接続し、抵抗R3と抵抗R4の接続ノードをオペアンプの正入力端子A1bに接続する。そして、抵抗R5と抵抗R6の接続ノードをオペアンプA2の負入力端子A2aに接続し、抵抗R7と抵抗R8の接続ノードをオペアンプA2の正入力端子A2bに接続する。前記抵抗R2の他端を前記オペアンプA1の出力端子A1cと前記電池保護回路1の端子2に接続し、抵抗R4の他端と抵抗R6の他端を前記オペアンプA2の出力端子A2cに接続するとともに、前記電池保護回路1の端子3に接続する。更に、抵抗R8の他端を、前記電池保護回路1の端子4に接続する。
【0027】
上記のような電源回路13は、図3(b)のような電源回路を組み合わせて構成される。図3(b)の電源回路は3.5Vの電源の正側に抵抗R11を、負側に抵抗R12をそれぞれ接続し、抵抗R11と抵抗R13の接続ノードをオペアンプAの負入力端子Aaに接続し、抵抗R12と抵抗R14の接続ノードをオペアンプAの正入力端子Abに接続している。また、抵抗R13の他端をオペアンプAの出力端子Acと端子17に接続し、抵抗R14の他端を端子18を介して2Vの電源の正側に接続する。更に、前記3.5Vの電源と前記2Vの電源の負側を接地する。このとき、端子17と端子18との電位差をV11とし、端子17とグランド間にかかる電圧をV12とする。
【0028】
図3(b)のような構成の回路において、図3(c)のように端子Ca、Cb、Cc、Cdにかかる電位をそれぞれV21、V22、V23、V24とし、V21−V22=V23−V24という関係が成り立つとすると、V11は3.5Vとなり、V12はV12=V11+2より5.5Vとなる。
【0029】
よって、前記コントローラ16の出力端子16a、16c間の電位差をV1、同じく出力端子16b、16c間の電位差をV2、前記バッテリー保護回路1の端子2、3、4の電位をVa、Vb、Vcとそれぞれ定めると、図3(a)のような電源回路を用いたときVa=Vb+V1、Vb=Vc+V2となり、2次電池を直列に接続したときと同様の状態の電圧を端子16a〜16cにかけることができる。
【0030】
また、前記試験装置において使用する前記定電流電源14、15は、実際に前記電池保護回路1を2次電池に接続したときに流れる1〜10Aの電流を供給が可能な電源で、かつ、その電源から流れる電流の方向を、定電流電源14の場合は、端子2→端子5及び端子5→端子2(定電流電源15の場合は、端子4→端子6及び端子6→端子4)のそれぞれの方向に変換することが可能であるような電源である。また、該定電流電源14、15によってかかる電圧は、0.1Vまでの低電圧である。
【0031】
定電流電源14、15の構成についてその一例を、図4を用いて説明する。該定電流電源14、15は、それぞれ定電流を供給する電流源20、21を有し、また、定電流電源14の3点接続のスイッチ22、23はそれぞれ前記電池保護回路1の端子2、端子5に接続し、定電流電源15の3点接続のスイッチ24、25はそれぞれ前記電池保護回路1の端子4、端子6に接続している。また、前記スイッチ22、23の3接点の内、それぞれ2接点が前記電流源20と接続している。また、前記スイッチ24、25についても同様に、該スイッチの3接点の内、それぞれ2接点が前記電流源21に接続している。
【0032】
これらのスイッチ22〜25の接点の内電流源20、21と接続した側の接点は、それぞれ、接点aと接点dとが、接点bと接点cとが、接点eと接点hとが、接点fと接点gとが接続している。また、前記電流源20は接点a→接点c(接点d→接点b)の方向に、同じく前記電流源21は接点e→接点g(接点h→接点f)の方向に電流が常に流れている。
【0033】
上記のように接続された定電流電源14、15によると、定電流電源14内の前記スイッチ22を接点a側に、前記スイッチ23を接点c側にそれぞれ接続するとともに、定電流電源15内の前記スイッチ24を接点f側に、前記スイッチ25を接点h側にそれぞれ接続する。このとき、前記電池保護回路1で行われる動作は、該電池保護回路1の端子5と端子6に充電装置を接続したときと同様の動作となる。すなわち、2次電池を充電するときの動作が正常に行われているか否かを試験していることになる。
【0034】
逆に、定電流電源14内の前記スイッチ22を接点b側に、前記スイッチ23を接点d側にそえぞれ接続するとともに、定電流電源15内の前記スイッチ24を接点e側に、前記スイッチ25を接点g側にそれぞれ接続する。このとき、前記電池保護回路1で行われる動作は、該電池保護回路1の端子5と端子6に大容量の負荷を接続したときと同様の動作となる。すなわち、2次電池を放電するときの動作が正常に行われているか否かを試験していることになる。
【0035】
【発明の効果】
本発明の電池保護回路の試験方法によれば、該電池保護回路に接続している定電流電源の正負をつなぎ変えるだけで、充電時、放電時の試験を行うことができるので、充電装置や負荷を該電池保護回路に接続する必要がなくなる。
【0036】
本発明の電池保護回路の試験方法によれば、該電池保護回路に電圧供給する電源が供給する電流は該電池保護回路が該電源によってかかる電圧を検知するのに十分な大きさの電流でよいので、前記電源をオペアンプを用いたような小容量の電源回路で構成することができる。
【0037】
また、本発明の電池保護回路の試験方法によれば、該電池保護回路に電圧供給する電源が供給する電流は該電池保護回路が該電源によってかかる電圧を検知するのに十分な大きさの電流でよく、また、試験電流を供給する定電流電源が出力制御部や電流検出部にかける電圧も該電池保護回路が動作するのに必要な低い電圧で十分なので、該電池保護回路の試験装置が消費する消費電力が小さくなる。
【0038】
また、本発明の電池保護回路の試験方法によれば、試験装置が消費する消費電力が小さくなるので、該試験方法で使用される試験装置が小規模ですむ。
【0039】
また、本発明の電池保護回路の試験方法によれば、充電時や放電時の電流を擬似的に該電池保護回路に流すための定電流電源と、該電池保護回路に接続される充電池の電圧を擬似的に供給するための電源とが別になっているため、従来のように前記充電池の電圧によって充電装置や負荷を変えるというように、該試験方法を行う装置の構成を大きく変化させる必要がないので、該装置の汎用性がある。
【図面の簡単な説明】
【図1】電池保護回路のブロック図。
【図2】本発明の電池保護回路の試験を行うための装置のブロック図。
【図3】電池保護回路の制御部を動作させるための電源回路。
【図4】電池保護回路に定電流を供給するための定電流電源内部の回路図。
【図5】従来の電池保護回路の試験を行うための装置のブロック図。
【符号の説明】
1 電池保護回路
2〜6 端子
7 保護IC
8 バイポーラ電源
9 バイポーラ電源
10 スイッチ
11 充電装置
12 大容量の負荷
13 電源回路
14 定電流電源
15 定電流電源
16 コントローラ
20 電流源
21 電流源
22〜25 スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery protection circuit test method for testing whether or not a battery protection circuit for protecting a chargeable / dischargeable battery operates normally.
[0002]
[Prior art]
A conventional battery protection circuit will be described with reference to FIGS. FIG. 1 is a block diagram showing the configuration of the battery protection circuit. The battery protection circuit 1 includes terminals 2 to 6, N-channel MOSFET transistors Q1 and Q2 connected in series between the terminal 2 and the terminal 5, and a current detection resistor R connected between the terminal 4 and the terminal 6. And the potential difference between the terminal 2 and the terminal 3, the potential difference between the terminal 3 and the terminal 4, and the potential difference applied to both ends of the current detection resistor, and if the potential difference is within a normal range, the N-channel MOSFET transistors Q1, Q2 Is a circuit having a protection IC 7 that controls so that both are ON.
[0003]
In the N-channel MOSFET transistors Q1 and Q2, the sources of the transistors Q1 and Q2 are connected to the terminal 2 and the terminal 5, respectively, and the drains of both transistors are connected to each other. The gates of both transistors are connected to the protection IC 7.
[0004]
The battery protection circuit 1 includes the current detection resistor R and the N-channel MOSFET transistors Q1 and Q2 connected in series between the terminal 2 and the terminal 5 or between the terminal 4 and the terminal 6. A battery protection circuit having a configuration as connected may be used.
[0005]
In the battery protection circuit 1 having such a configuration, the secondary battery B1 is connected between the terminal 2 and the terminal 3, and the secondary battery B2 is connected between the terminal 3 and the terminal 4. When one of the voltages of the secondary batteries B1 and B2 falls below the normal range at the time of discharge, the protection IC 7 performs an overdischarge protection action, lowers the gate voltage of the transistor Q2, and stops the operation of the transistor Q2. This cuts the discharge current.
[0006]
On the other hand, when the voltage of either of the secondary batteries B1 and B2 exceeds the normal range during charging, the overcharge protection function is activated by the protection IC 7, and the gate voltage of the transistor Q1 is lowered to reduce the transistor Q1. The charging current is cut by stopping the operation.
[0007]
Further, when an overcurrent flows through the current detection resistor R during charging and discharging, and the potential difference applied to both ends of the resistor R exceeds the normal range, overcurrent protection is activated by the protection IC 7, and the operation of the transistor Q1 is performed during charging. Is stopped to cut the charging current, and when discharging, the operation of the transistor Q2 is stopped to cut the discharging current.
[0008]
FIG. 5 is a block diagram showing a conventional test apparatus for performing a test for confirming the operation of the battery protection circuit 1. Bipolar power supplies 8 and 9 are connected as pseudo power supplies of the secondary battery for charging / discharging between the terminals 2 and 3 of the battery protection circuit 1 and between the terminals 3 and 4, and the switch 10 is connected to the terminal 5. Are connected, a charging device 11 is connected between the contact 10a of the switch 10 and the terminal 6, and a large-capacity load 12 having a variable load size is connected between the contact 10b of the switch 10 and the terminal 6. ing.
[0009]
Hereinafter, each of the conventional overdischarge test, overcharge test, and overcurrent test using the test apparatus configured as described above will be described.
[0010]
In the overdischarge test, first, the switch 10 is set on the contact 10b side, and the battery protection circuit 1 and the load 12 are connected so that the secondary battery performs a discharge operation. At this time, the voltage of the bipolar power supply 8 or 9 is lowered with the discharge current ID flowing, and it is checked whether or not the discharge current ID is cut when the voltage falls below the normal range.
[0011]
The overcharge test is first set on the contact 10a side of the switch 10, and the battery protection circuit 1 and the charging device 11 are connected so that the secondary battery performs a charging operation. At this time, the voltage of the bipolar power supply 8 or 9 is increased with the charging current IC flowing, and it is confirmed whether or not the charging current IC is cut when the voltage exceeds the normal range.
[0012]
In the overcurrent test, the switch 10 is set on the contact 10b side so that a discharge current flows into the battery protection circuit 1. At this time, the voltage of the bipolar power supplies 8 and 9 is controlled to a normal range voltage, and the discharge current flowing into the battery protection circuit 1 is increased by operating the load 12 connected to the battery protection circuit 1. When the current exceeds the normal range, it is confirmed whether or not the current is cut.
[0013]
In addition, since it is extremely rare for an overcurrent to flow while the secondary battery is being charged, an overcurrent test in a charged state is generally not performed.
[0014]
[Problems to be solved by the invention]
In the case of the conventional battery protection circuit test method, since the test is performed by connecting an actual load to the battery protection circuit 1 as described above, the power for actual use is transferred from the test apparatus to the harmful battery protection circuit 1. It is necessary to supply.
[0015]
The electric power required for use in the test method is necessary to further perform the test to a voltage 4NV obtained by multiplying the number N of the rechargeable batteries connected in series by the voltage 4V of the rechargeable battery. A large power of 4N to 40NW is obtained by multiplying the test currents 1 to 10A. For this reason, the bipolar power supply device used in the test method also requires a power supply that supplies such a large amount of power, so that a device with a large capacity is required.
[0016]
Further, in this test method, not only a bipolar power supply device with a large capacity is required for the bipolar power supplies 8 and 9, but also the bipolar power supplies 8 and 9 are used to simulate charging through the battery protection circuit 1. Since the charging device 11 for discharging and the large-capacity load 12 are also required, the test device used in the test method is large-scale.
[0017]
Therefore, an object of the present invention is to provide a battery protection circuit test method in which a power source connected to the battery protection circuit 1 requires a small capacity.
[0018]
Another object of the present invention is to provide a test method for a battery protection circuit that can be tested with a small-scale test apparatus.
[0019]
Further, according to the conventional test method, the battery protection is performed on the assumption that the number of secondary batteries connected in series in actual use changes and the voltage applied to the battery protection circuit 1 changes. When the bipolar power supplies 8 and 9 having different set voltages are connected to the circuit 1, the connected charging device 11 and the large-capacity load 12 must be changed to those having different capacities. For this reason, the charging device 11 and the large-capacity load 12 need to be various, and the test device must be recombined each time the set voltage of the bipolar power supply is changed.
[0020]
In the present invention, in view of the above problem, it is not necessary to rearrange the test apparatus each time the magnitude of the set voltage supplied from the power source connected to the battery protection circuit 1 is changed, and the switching of the battery protection circuit 1 is performed. It is an object of the present invention to provide a test method for a battery protection circuit using a versatile test apparatus that can test whether a control operation is normally performed.
[0021]
[Means for Solving the Problems]
The battery protection circuit testing method of the present invention includes a secondary battery connection terminal to which a chargeable / dischargeable secondary battery is connected, a load connection terminal to which a load or a charging device is connected, and a voltage value of the secondary battery. A voltage detection unit to detect, a current detection unit to detect a current value flowing from the secondary battery, and a voltage value detected by the voltage detection unit is higher than a predetermined voltage value or detected by the current detection unit In a battery protection circuit test method for testing whether or not a battery protection circuit having an output control unit that cuts off a charging / discharging path of the secondary battery when a current value exceeds a predetermined current value is operating normally A power source for supplying a test voltage to the secondary battery connection terminal of the battery protection circuit, and a constant current power source for supplying a test current between the secondary battery connection terminal and the load connection terminal of the battery protection circuit. Instead of the battery protection circuit And performing connected.
[0022]
According to the test method of the battery protection circuit performed in such a configuration, it is not necessary to connect a load or a charging device that is actually used to the load connection terminal of the battery protection circuit unlike the conventional test method. Also, the current consumed by the test equipment is reduced by reducing the value of the current flowing through the power source connected to the secondary battery connection terminal and lowering the voltage applied to the constant current power source connected between the secondary battery connection terminal and the load connection terminal. Suppress power.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a block diagram showing a configuration of a test apparatus for confirming the operation of the battery protection circuit 1. FIG. 3 shows an example of a circuit diagram of the power supply circuit 13 of FIG. FIG. 4 is a simple circuit diagram showing the internal configuration of the constant current power supplies 14 and 15 of FIG.
[0024]
In the present embodiment, the battery protection circuit 1 shown in FIG. 1 will be described as a test target. Similar to the conventional test method, the current detection resistor R and the N-channel MOSFET transistors Q1 and Q2 other than the battery protection circuit shown in FIG. 1 are connected between the terminal 2 and the terminal 5 or between the terminal 4 and the terminal. A battery protection circuit that is connected in series with the battery 6 may be the test target.
[0025]
As shown in FIG. 2, a power supply circuit 13 is connected to terminals 2 to 4 of the battery protection circuit 1, and between the terminals 2 and 5 of the battery protection circuit 1 and between the terminals 4 and 6. Are connected to constant current power supplies 14 and 15, respectively. The power supply circuit 13 used at this time supplies the voltage at the time of charging / discharging when the battery protection circuit 1 is actually connected to the secondary battery, and up to 1 mA sufficient to operate the battery protection circuit 1. This is a power supply circuit that supplies a small amount of current.
[0026]
An example in which an operational amplifier is used in such a power supply circuit 13 will be described with reference to FIG. A resistor R1 is connected to the output terminal 16a of the controller 16, a resistor R5 is connected to the output terminal 16b, and resistors R3 and R7 are connected to the output terminal 16c. Further, a connection node between the resistors R1 and R2 is connected to the negative input terminal A1a of the operational amplifier A1, and a connection node between the resistors R3 and R4 is connected to the positive input terminal A1b of the operational amplifier. A connection node between the resistors R5 and R6 is connected to the negative input terminal A2a of the operational amplifier A2, and a connection node between the resistors R7 and R8 is connected to the positive input terminal A2b of the operational amplifier A2. The other end of the resistor R2 is connected to the output terminal A1c of the operational amplifier A1 and the terminal 2 of the battery protection circuit 1, and the other end of the resistor R4 and the other end of the resistor R6 are connected to the output terminal A2c of the operational amplifier A2. , Connected to the terminal 3 of the battery protection circuit 1. Further, the other end of the resistor R8 is connected to the terminal 4 of the battery protection circuit 1.
[0027]
The power supply circuit 13 as described above is configured by combining power supply circuits as shown in FIG. In the power supply circuit of FIG. 3B, the resistor R11 is connected to the positive side of the 3.5V power supply, the resistor R12 is connected to the negative side, and the connection node of the resistors R11 and R13 is connected to the negative input terminal Aa of the operational amplifier A. The connection node between the resistor R12 and the resistor R14 is connected to the positive input terminal Ab of the operational amplifier A. The other end of the resistor R13 is connected to the output terminal Ac and the terminal 17 of the operational amplifier A, and the other end of the resistor R14 is connected to the positive side of the 2V power source via the terminal 18. Further, the negative side of the 3.5 V power source and the 2 V power source is grounded. At this time, the potential difference between the terminal 17 and the terminal 18 is V11, and the voltage applied between the terminal 17 and the ground is V12.
[0028]
In the circuit configured as shown in FIG. 3B, the potentials applied to the terminals Ca, Cb, Cc, and Cd are V21, V22, V23, and V24, respectively, as shown in FIG. 3C, and V21−V22 = V23−V24. If this relationship is established, V11 becomes 3.5V, and V12 becomes 5.5V from V12 = V11 + 2.
[0029]
Therefore, the potential difference between the output terminals 16a and 16c of the controller 16 is V1, the potential difference between the output terminals 16b and 16c is V2, and the potentials of the terminals 2, 3, and 4 of the battery protection circuit 1 are Va, Vb, and Vc. When each is determined, when a power supply circuit as shown in FIG. 3A is used, Va = Vb + V1 and Vb = Vc + V2 are obtained, and a voltage in the same state as when a secondary battery is connected in series is applied to the terminals 16a to 16c. Can do.
[0030]
The constant current power supplies 14 and 15 used in the test apparatus are power supplies capable of supplying a current of 1 to 10 A that flows when the battery protection circuit 1 is actually connected to a secondary battery, and The direction of the current flowing from the power source is as follows: terminal 2 → terminal 5 and terminal 5 → terminal 2 (in the case of constant current power supply 15, terminal 4 → terminal 6 and terminal 6 → terminal 4) in the case of constant current power source 14. It is a power supply that can be converted to the direction of The voltage applied by the constant current power supplies 14 and 15 is a low voltage up to 0.1V.
[0031]
An example of the configuration of the constant current power supplies 14 and 15 will be described with reference to FIG. The constant current power supplies 14 and 15 have current sources 20 and 21 for supplying a constant current, respectively, and the three-point connection switches 22 and 23 of the constant current power supply 14 are respectively connected to the terminal 2 of the battery protection circuit 1. The switches 24 and 25 connected to the terminal 5 and connected to the three points of the constant current power supply 15 are connected to the terminals 4 and 6 of the battery protection circuit 1, respectively. Also, two of the three contacts of the switches 22 and 23 are connected to the current source 20. Similarly for the switches 24 and 25, two of the three contacts of the switches are connected to the current source 21, respectively.
[0032]
The contacts on the side connected to the current sources 20 and 21 of the contacts of these switches 22 to 25 are the contact a and the contact d, the contact b and the contact c, the contact e and the contact h, respectively. f and contact g are connected. The current source 20 always flows in the direction of contact a → contact c (contact d → contact b), and similarly, the current source 21 constantly flows in the direction of contact e → contact g (contact h → contact f). .
[0033]
According to the constant current power supplies 14 and 15 connected as described above, the switch 22 in the constant current power supply 14 is connected to the contact a side and the switch 23 is connected to the contact c side. The switch 24 is connected to the contact f side, and the switch 25 is connected to the contact h side. At this time, the operation performed in the battery protection circuit 1 is the same as that when the charging device is connected to the terminal 5 and the terminal 6 of the battery protection circuit 1. That is, it is tested whether the operation when charging the secondary battery is normally performed.
[0034]
Conversely, the switch 22 in the constant current power supply 14 is connected to the contact b side, the switch 23 is connected to the contact d side, and the switch 24 in the constant current power supply 15 is connected to the contact e side. 25 is connected to the contact g side. At this time, the operation performed by the battery protection circuit 1 is the same as that when a large-capacity load is connected to the terminal 5 and the terminal 6 of the battery protection circuit 1. That is, it is tested whether or not the operation when discharging the secondary battery is performed normally.
[0035]
【The invention's effect】
According to the battery protection circuit test method of the present invention, it is possible to perform tests at the time of charging and discharging simply by changing the polarity of the constant current power source connected to the battery protection circuit. There is no need to connect a load to the battery protection circuit.
[0036]
According to the test method for the battery protection circuit of the present invention, the current supplied by the power supply for supplying voltage to the battery protection circuit may be a current large enough for the battery protection circuit to detect the voltage applied by the power supply. Therefore, the power source can be constituted by a small-capacity power circuit using an operational amplifier.
[0037]
Further, according to the battery protection circuit testing method of the present invention, the current supplied by the power supply for supplying voltage to the battery protection circuit is a current that is large enough for the battery protection circuit to detect the voltage applied by the power supply. In addition, the voltage applied to the output control unit and the current detection unit by the constant current power source for supplying the test current is sufficient as the low voltage necessary for the battery protection circuit to operate. Power consumption is reduced.
[0038]
In addition, according to the test method of the battery protection circuit of the present invention, the power consumption consumed by the test apparatus is reduced, so that the test apparatus used in the test method can be small.
[0039]
Further, according to the battery protection circuit testing method of the present invention, a constant current power source for artificially flowing a current during charging or discharging to the battery protection circuit, and a rechargeable battery connected to the battery protection circuit Since the power supply for artificially supplying the voltage is separate, the configuration of the apparatus for performing the test method is greatly changed, such as changing the charging apparatus and the load depending on the voltage of the rechargeable battery as in the past. Since it is not necessary, the apparatus has versatility.
[Brief description of the drawings]
FIG. 1 is a block diagram of a battery protection circuit.
FIG. 2 is a block diagram of an apparatus for testing a battery protection circuit of the present invention.
FIG. 3 is a power supply circuit for operating a control unit of the battery protection circuit.
FIG. 4 is a circuit diagram of a constant current power source for supplying a constant current to the battery protection circuit.
FIG. 5 is a block diagram of an apparatus for testing a conventional battery protection circuit.
[Explanation of symbols]
1 Battery protection circuit 2-6 Terminal 7 Protection IC
8 Bipolar Power Supply 9 Bipolar Power Supply 10 Switch 11 Charging Device 12 Large Capacity Load 13 Power Supply Circuit 14 Constant Current Power Supply 15 Constant Current Power Supply 16 Controller 20 Current Source 21 Current Sources 22-25 Switch

Claims (1)

充放電可能な2次電池が接続される2次電池接続端子と、負荷又は充電装置が接続される負荷接続端子と、前記2次電池の電圧値を検出する電圧検出部と、前記2次電池から流れる電流値を検出する電流検出部と、前記電圧検出部で検出した電圧値が所定の電圧値より高くなるかもしくは低くなるか、または前記電流検出部で検出した電流値が所定の電流値を超えたときに前記2次電池の充放電路を遮断する出力制御部とを有する電池保護回路が正常に働いているか否かを試験する電池保護回路の試験方法において、
前記電池保護回路の2次電池接続端子に試験電圧を供給する電源と、
前記電池保護回路の2次電池接続端子と負荷接続端子間に試験電流を供給する定電流電源とを
前記2次電池の代わりに前記電池保護回路に接続して行うことを特徴とする電池保護回路の試験方法。
A secondary battery connection terminal to which a chargeable / dischargeable secondary battery is connected; a load connection terminal to which a load or a charging device is connected; a voltage detection unit for detecting a voltage value of the secondary battery; and the secondary battery. A current detection unit that detects a current value flowing from the current detection unit, and a voltage value detected by the voltage detection unit is higher or lower than a predetermined voltage value, or a current value detected by the current detection unit is a predetermined current value In the test method of the battery protection circuit for testing whether or not the battery protection circuit having the output control unit that cuts off the charge / discharge path of the secondary battery when it exceeds the limit,
A power supply for supplying a test voltage to a secondary battery connection terminal of the battery protection circuit;
A battery protection circuit comprising a constant current power source for supplying a test current between a secondary battery connection terminal and a load connection terminal of the battery protection circuit connected to the battery protection circuit instead of the secondary battery. Test method.
JP21219898A 1998-07-28 1998-07-28 Battery protection circuit power saving measurement method Expired - Fee Related JP3657119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21219898A JP3657119B2 (en) 1998-07-28 1998-07-28 Battery protection circuit power saving measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21219898A JP3657119B2 (en) 1998-07-28 1998-07-28 Battery protection circuit power saving measurement method

Publications (2)

Publication Number Publication Date
JP2000050506A JP2000050506A (en) 2000-02-18
JP3657119B2 true JP3657119B2 (en) 2005-06-08

Family

ID=16618554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21219898A Expired - Fee Related JP3657119B2 (en) 1998-07-28 1998-07-28 Battery protection circuit power saving measurement method

Country Status (1)

Country Link
JP (1) JP3657119B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5049569B2 (en) * 2006-01-30 2012-10-17 任天堂株式会社 Electrical equipment, electrical equipment systems, and power equipment
JP4795082B2 (en) * 2006-04-10 2011-10-19 パナソニック株式会社 Inspection circuit, battery pack and battery pack unit
CN101527448B (en) * 2009-04-21 2014-07-02 无锡中星微电子有限公司 Battery protection circuit, testing device and method for battery protection circuit
KR101005851B1 (en) 2009-04-29 2011-01-05 김권중 Overcurrent Testing Apparatus of Battery Multi Cell Protection Circuit with Serial Loop
CN103728547A (en) * 2012-10-12 2014-04-16 技嘉科技股份有限公司 Testing system used for testing circuit board and leakage current testing method
CN103545896B (en) * 2013-11-07 2015-09-30 成都芯源系统有限公司 Bidirectional switch circuit, mobile power supply circuit and control method thereof
JP2015100213A (en) * 2013-11-19 2015-05-28 蔡富生 Method and apparatus for executing battery cell control with support of virtual battery mechanism
CN104931839B (en) * 2015-06-30 2018-05-29 河北工业大学 A kind of battery protection plate detector
KR102338637B1 (en) 2018-09-30 2021-12-13 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 Test system and method of charging device
CN112947654B (en) * 2019-12-10 2022-12-30 圣邦微电子(北京)股份有限公司 Threshold voltage generating circuit, testing machine and charging protection chip testing device

Also Published As

Publication number Publication date
JP2000050506A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
CN1832248B (en) Battery pack current monitoring
US6624614B2 (en) Charge and discharge controller
JP3580123B2 (en) Battery device
JP4627588B2 (en) Battery pack and its inspection device
EP2339716A1 (en) Battery pack and line open detecting method thereof
US5883495A (en) Bidirectional current control circuit suitable for controlling the charging and discharging of rechargeable battery cells
JPH06245406A (en) Charging/discharging circuit
KR20010094974A (en) Charging and discharging control circuit and charging type power supply device
CN101459267A (en) Battery pack
JP3657119B2 (en) Battery protection circuit power saving measurement method
JP3124963B2 (en) Voltage monitoring circuit for rechargeable batteries
JP2000184609A (en) Capacity leveling circuit of group battery
CN115372686A (en) Current detection circuit of charging chip and electronic equipment
CN101252284A (en) Semiconductor device and rechargeable power supply unit
US5789904A (en) Computer battery pack charge current sensor with gain control
JP2018117438A (en) Power source module with lithium ion capacitor
JP5219653B2 (en) Power supply
JP3479872B2 (en) Charge / discharge device
CN100394670C (en) Charging/discharging control circuit and charging type electric power supply device
JP3997707B2 (en) Monitoring device, control device and battery module
US6969997B2 (en) Power source test instrument
US6472849B1 (en) Reverse blocking function integrated into charging circuit
JPH06284594A (en) Chargeable power supply apparatus
JPH10290536A (en) Battery charger
KR100541741B1 (en) apparatus for testing the function of charging

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees