JP3657044B2 - Water quality monitoring method and apparatus using aquatic organisms - Google Patents

Water quality monitoring method and apparatus using aquatic organisms Download PDF

Info

Publication number
JP3657044B2
JP3657044B2 JP33979595A JP33979595A JP3657044B2 JP 3657044 B2 JP3657044 B2 JP 3657044B2 JP 33979595 A JP33979595 A JP 33979595A JP 33979595 A JP33979595 A JP 33979595A JP 3657044 B2 JP3657044 B2 JP 3657044B2
Authority
JP
Japan
Prior art keywords
water
aquatic organisms
tank
quality monitoring
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33979595A
Other languages
Japanese (ja)
Other versions
JPH09178731A (en
Inventor
正治 田中
正視 山本
英雄 勝浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKAPREFECTURAL GOVERNMENT
Unitika Ltd
Original Assignee
OSAKAPREFECTURAL GOVERNMENT
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKAPREFECTURAL GOVERNMENT, Unitika Ltd filed Critical OSAKAPREFECTURAL GOVERNMENT
Priority to JP33979595A priority Critical patent/JP3657044B2/en
Publication of JPH09178731A publication Critical patent/JPH09178731A/en
Application granted granted Critical
Publication of JP3657044B2 publication Critical patent/JP3657044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水棲生物の毒物に対する忌避行動を利用した水中の毒物監視方法及び装置に関するものである。
【0002】
【従来の技術】
工業化の発展に伴い、河川が毒物で汚染される危険が増大しており、水道水中の毒性監視が重要視されている。従来、水道水の安全性については主として物理・化学的分析法により監視されているが、分析に多大の時間と労力がかかり、毒物を検出したときには対応が間に合わないこともあり、また分析対象以外の毒物に対しては監視ができないという問題があった。近年、これらの問題を解決する方法として、魚類などの水棲生物を用いて総合的な水の安全性を監視する方法が提案され、種々の水質監視装置が実用化されている。水棲生物を用いた水質監視方法の中で、最も一般的な方法は、河川水などを導いた水槽に魚類を飼育し、魚の行動変化を目視で観察して水質異常を察知するものであるが、人間が常時監視する必要があり、夜間などに発見が遅れて対応が間に合わないなどの問題があった。このような問題を解決するために、魚類が毒物を含む水が流入して来たときに下流側に逃げようとする習性(忌避行動)を利用して早期に毒物流入を検知し、テレビ画像を用いて連続自動監視するという装置が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、このようなテレビ画像を用いて連続自動監視する方法によると、流入水(検水)の濁度が高くなったり、水槽に藻が繁殖したりすると、魚影の確認が困難となったり、鮮明な画像を得るために魚類の色や大きさなどを制限する必要があった。また、撮影用の常時の照明が魚に多大なストレスを与え、生理生態反応に異常が出るなどの問題があった。
【0004】
本発明はこのような課題を解決するもので、検水の濁度、水槽の汚れなどに影響されず水棲生物の忌避行動を判定でき、水棲生物を自然の状態で飼育しながら毒物の混入を連続監視できる水質監視方法および水質監視装置を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らはこのような課題を解決するために鋭意検討の結果、毒物が流入したときに水棲生物が後段の水槽に移動する行動を各水槽に設置した水棲生物の活動電位を検出することにより、水棲生物を自然の状態で飼育しながら毒物の混入を連続監視することができるという事実を見い出し、本発明に到達した。
【0006】
すなわち第1の発明は、水棲生物を収納する複数個の水槽を直列に並べ、隣り合う水槽間には水棲生物が自由に移動できる通路を設け、毒性を監視する対象となる検水を水槽の一端から流入させ、他端に流出させるように構成した水質監視装置において、流入側水槽において給餌することにより通常時は水棲生物を主として流入側の水槽に存在させ、毒物が流入したときに水棲生物が後段の水槽に移動する行動を各水槽に設置した水棲生物の活動電位を検出する電極により検知することを特徴とする水質監視方法を要旨とするものである。また第2の発明は、水棲生物を収納する複数個の水槽を直列に並べ、隣り合う水槽間には水棲生物が自由に移動できる通路を設け、各水槽には水棲生物の活動電位を検出する電極を設置し、毒性を監視する対象となる検水を直列に並べた水槽の一端から流入させて他端に流出させるようにし、検水の流入側の水槽に自動給餌機を設置したことを特徴とする水質監視装置を要旨とするものである。
【0007】
以下、本発明を図面に基づいて具体的に説明する。
図1は本発明における水棲生物を用いた水質監視装置の一例を示すもので、1,1は水棲生物としての供試魚2を収納する複数個の水槽で、隣り合う水槽1,1間は供試魚2が自由に移動できる通路3を介して直列に並べられ、各水槽1,1には水中で発生する電位を検出する2本のセンサー電極4,5がそれぞれ設けられている。6,6は前記センサー電極4,5間に生じた電位差を増幅するために前記各水槽1に対応して設けられたアンプ、7は前記供試魚2の体動による電位のみを検出するために各アンプ6に接続されたフィルター、8は両フィルター7,7に接続され電位の絶対値を単位時間で積算して供試魚2の活動量を計算し、供試魚2が存在する水槽1を判定するマイクロコンピューター、9はこのマイクロコンピューター8に接続され供試魚2が下流側の水槽1に移動して毒物が混入したと判定したときに通報するアラームである。前記水槽1としてはたとえば硬質ポリ塩化ビニール製があげられ、2槽以上あることが必要であるが、センサー数が多すぎると不経済になるので、4〜6槽が好ましい。図面では2槽の水槽1が示され、検水10は前段の水槽1の検水入口11から入り、後段の水槽1の検水出口12から流出する。検水の流入側の前段の水槽1上側には平常時において供試魚2が流入側の水槽1に存在するように定期的に給餌する自動給餌機13が設けられている。前記水棲生物としては水中で活動可能な生物であれば良いが、実際上は入手のし易さ、飼育の点から前述のように魚が好ましく、通常5〜10尾収容するのが望ましい。給餌方法としては1回の給餌量を少量とし、回数を増やす方が、供試魚を給餌水槽1に集まるように訓練するためには好ましい。
【0008】
上記構成において、検水10は検水入口11から連続して流入しており、各水槽1を通過して検水出口12から流出する。検水の流入側の水槽1において30分〜2時間毎に餌を自動投入しており、平常時は複数尾の供試魚2が餌を求めて流入側の水槽1に集まっており、センサー電極4,5により検出される供試魚2の活動電位を単位時間積算した値(活動量)が流入側の水槽1において最も多くなっている。毒物が検水中に混入すると、供試魚2は嫌悪から忌避行動を起こして後段の水槽1に速やかに逃げ出す。これにより、後段の水槽1において検出される活動量が増大する。後段の水槽1における活動量をマイクロコンピューター8が検出したとき、供試魚2が毒物を忌避して後段の水槽1に移動したと判定してアラーム9により通報される。
【0009】
これにより、各水槽1の中に2本のセンサー電極4,5をセットするだけで、検水の濁度、水槽1の汚れなどに影響されず水棲生物の忌避行動を判定でき、水棲生物を自然の状態で飼育しながら毒物の混入を連続監視できる。
【0010】
【発明の実施の形態】
以下、本発明の一実施の形態について具体的に説明する。
図2において、1a〜1eは水棲生物である供試魚2として15〜20cmの鯉が複数匹入れられた5個の直列に並べられた水槽であり、隣り合う水槽間には鯉が自由に行き来できる通路3a〜3dを設けた。1つの水槽は30cm幅×50cm長×20cm深の硬質ポリ塩化ビニール製であり、通水量を6リットル/分とした。各水槽の両端に浸漬されるセンサー電極4,5は0.5mmのステンレスコード製であり、センサー電極4,5で検出された電位はアンプ6により1000倍に増幅され、その後供試魚2の体動に起因する0.2〜2Hzの周波数成分だけをフィルター7で選別されて活動電位とした。また、マイクロコンピューター8を用いてこの電位の絶対値を1分間につき積算した値を活動量(mV/分)とした。図3は各水槽における平常時の活動量の経時変化を示したものであり、流入側の水槽1aにおいて最も多く、次いで次段の水槽1bで多くなっている。図4は硫酸亜鉛を1mg/リットル投入したときの各水槽における活動量の経時変化を示したものであり、平常時においてほとんど検出されなかった流出側に位置する水槽1d,1eにおける活動量が増大しており、アラーム9により通報された。
【0011】
【発明の効果】
本発明によれば、水棲生物を収納する複数個の水槽を直列に並べ、隣り合う水槽間には水棲生物が自由に移動できる通路を設け、各水槽には水棲生物の活動電位を検出する電極を設置するという簡単な構成により、検水の濁度、水槽の汚れなどに影響されず水棲生物の忌避行動を判定でき、水棲生物を自然の状態で飼育しながら毒物の混入を連続監視できる。
【図面の簡単な説明】
【図1】本発明の原理を示す構成図である。
【図2】本発明の一実施の形態を示す水質監視装置の構成図である。
【図3】平常時において各水槽で取得される活動量の経時変化を示すグラフである。
【図4】毒物混入時において各水槽で取得される活動量の経時変化を示すグラフである。
【符号の説明】
1 水槽
1a〜1e 水槽
2 供試魚
3 通路
3a〜3d 通路
4,5 センサー電極
6 アンプ
7 フィルター
8 マイクロコンピューター
9 アラーム
10 検水
11 検水入口
12 検水出口
13 自動給餌機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underwater toxicological monitoring method and apparatus utilizing an aversion behavior against aquatic venom.
[0002]
[Prior art]
With the development of industrialization, the risk of rivers being polluted with poisons is increasing, and toxic monitoring in tap water is regarded as important. Conventionally, the safety of tap water has been mainly monitored by physical and chemical analysis methods, but it takes a lot of time and labor to analyze it, and when a poisonous substance is detected, the response may not be in time. There was a problem that it was not possible to monitor for poisonous substances. In recent years, as a method for solving these problems, a method for monitoring comprehensive water safety using aquatic organisms such as fish has been proposed, and various water quality monitoring devices have been put into practical use. Among the water quality monitoring methods using aquatic organisms, the most common method is to raise fish in an aquarium that has led to river water, etc., and visually observe changes in fish behavior to detect water quality abnormalities. There is a problem that humans need to be constantly monitored, and discovery is delayed at night and the response cannot be made in time. In order to solve such problems, the toxic inflow is detected at an early stage by using a habit (evasive behavior) that fish tries to escape to the downstream side when water containing toxic water flows in. There has been proposed an apparatus for continuous automatic monitoring using a computer.
[0003]
[Problems to be solved by the invention]
However, according to the method of continuous automatic monitoring using such TV images, if the turbidity of the influent water (test water) becomes high or algae grows in the aquarium, it may be difficult to confirm the fish shadow. In order to obtain a clear image, it was necessary to limit the color and size of fish. In addition, there was a problem that the regular lighting for photographing gave a great stress to the fish, and the physiological ecological reaction was abnormal.
[0004]
The present invention solves such problems, and can determine the repelling behavior of aquatic organisms without being affected by the turbidity of the test water, the dirt of the aquarium, etc. An object of the present invention is to provide a water quality monitoring method and a water quality monitoring device capable of continuous monitoring.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors have detected the action potential of aquatic organisms installed in each aquarium as an action in which aquatic organisms move to a subsequent aquarium when a toxic substance flows in. Thus, the present inventors have found the fact that the contamination of poisonous substances can be continuously monitored while breeding aquatic organisms in a natural state, and the present invention has been achieved.
[0006]
That is, in the first invention, a plurality of aquariums containing aquatic organisms are arranged in series, a passage in which aquatic organisms can freely move is provided between adjacent aquariums, and a test water to be monitored for toxicity is stored in the aquarium. In the water quality monitoring device configured to flow in from one end and flow out to the other end, feeding in the inflow side tank normally causes aquatic organisms to exist mainly in the inflow side tank, and when the poison enters the aquatic life The gist is a water quality monitoring method characterized in that an action of moving to a subsequent water tank is detected by an electrode for detecting an action potential of aquatic organisms installed in each water tank. In the second invention, a plurality of aquariums containing aquatic organisms are arranged in series, a passage through which aquatic organisms can freely move is provided between adjacent aquariums, and an action potential of aquatic organisms is detected in each aquarium. An electrode was installed, the test water to be monitored for toxicity was flown from one end of the aquarium in series and out to the other end, and the automatic feeder was installed in the water tank on the inflow side of the test water. The gist of the characteristic water quality monitoring device is as follows.
[0007]
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 shows an example of a water quality monitoring apparatus using aquatic organisms according to the present invention. Reference numerals 1 and 1 denote a plurality of aquariums for storing test fishes 2 as aquatic organisms. The test fish 2 is arranged in series via a passage 3 in which the fish 2 can freely move, and each of the water tanks 1 and 1 is provided with two sensor electrodes 4 and 5 for detecting a potential generated in water. Reference numerals 6 and 6 denote amplifiers provided corresponding to the respective water tanks 1 for amplifying a potential difference generated between the sensor electrodes 4 and 5, and reference numeral 7 denotes only a potential due to body movement of the test fish 2. A filter connected to each amplifier 6, 8 connected to both filters 7, 7 calculates the activity amount of the test fish 2 by accumulating the absolute value of the potential in unit time, and the aquarium in which the test fish 2 exists A microcomputer 9 for determining 1 is an alarm which is connected to the microcomputer 8 and notifies when the test fish 2 has moved to the downstream aquarium 1 and it has been determined that a poison has entered. The water tank 1 is made of, for example, hard polyvinyl chloride, and it is necessary that there are two or more tanks. However, if the number of sensors is too large, it becomes uneconomical, so 4-6 tanks are preferable. In the drawing, two water tanks 1 are shown, and the test water 10 enters from the water test inlet 11 of the front tank 1 and flows out from the water test outlet 12 of the rear tank 1. An automatic feeder 13 for feeding the test fish 2 periodically so that the test fish 2 is present in the inflow side water tank 1 is provided on the upper side of the upstream tank 1 on the inflow side of the test water. The aquatic organism may be any organism that can be active in water, but in practice, fish is preferable as described above from the viewpoint of easy availability and breeding, and it is usually desirable to house 5 to 10 fish. As a feeding method, it is preferable to reduce the amount of feeding at one time and increase the number of times in order to train the fish to be collected in the feeding water tank 1.
[0008]
In the above configuration, the test water 10 continuously flows from the test water inlet 11, passes through each water tank 1, and flows out from the water test outlet 12. In the tank 1 on the inflow side of the test water, food is automatically fed every 30 minutes to 2 hours, and during normal times, multiple fish 2 are gathered in the tank 1 on the inflow side in search of food. The value (activity amount) obtained by integrating the action potential of the test fish 2 detected by the electrodes 4 and 5 per unit time is the largest in the inflow-side water tank 1. When the poison is mixed in the test water, the test fish 2 is repelled from disgust and quickly escapes to the rear tank 1. Thereby, the activity amount detected in the water tank 1 of a back | latter stage increases. When the microcomputer 8 detects the amount of activity in the rear tank 1, it is determined that the test fish 2 has repelled the poison and moved to the rear tank 1 and is notified by an alarm 9.
[0009]
This makes it possible to determine the repelling behavior of aquatic organisms by simply setting two sensor electrodes 4 and 5 in each aquarium 1 without being affected by the turbidity of the test water, dirt of the aquarium 1, etc. It is possible to continuously monitor the contamination of toxic substances while keeping them in their natural state.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail.
In FIG. 2, 1 a to 1 e are five tanks arranged in series with a plurality of 15 to 20 cm cages as test fish 2 which is aquatic organisms, and cages can be freely placed between adjacent aquariums. The passages 3a to 3d that can come and go are provided. One water tank was made of hard polyvinyl chloride 30 cm wide × 50 cm long × 20 cm deep, and the water flow rate was 6 liters / minute. The sensor electrodes 4 and 5 immersed in both ends of each water tank are made of 0.5 mm stainless steel cord, and the potential detected by the sensor electrodes 4 and 5 is amplified 1000 times by the amplifier 6, and then the test fish 2 Only a frequency component of 0.2 to 2 Hz resulting from body movement was selected by the filter 7 and used as an action potential. Moreover, the value which integrated | accumulated the absolute value of this electric potential per minute using the microcomputer 8 was made into activity amount (mV / min). FIG. 3 shows the change in the amount of activity at normal times in each water tank, which is the largest in the water tank 1a on the inflow side and then in the next water tank 1b. FIG. 4 shows the change over time in the amount of activity in each tank when 1 mg / liter of zinc sulfate was added. The amount of activity in the tanks 1d and 1e located on the outflow side, which was hardly detected in normal times, increased. And was notified by alarm 9.
[0011]
【The invention's effect】
According to the present invention, a plurality of aquariums containing aquatic organisms are arranged in series, a passage is provided between adjacent aquariums so that aquatic organisms can freely move, and each aquarium has an electrode for detecting an action potential of aquatic organisms. With the simple configuration, the repellent behavior of aquatic organisms can be determined without being affected by the turbidity of the test water, the contamination of the aquarium, etc., and the contamination of toxic substances can be continuously monitored while raising the aquatic organisms in their natural state.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the principle of the present invention.
FIG. 2 is a configuration diagram of a water quality monitoring apparatus showing an embodiment of the present invention.
FIG. 3 is a graph showing the change over time of the amount of activity acquired in each water tank in normal times.
FIG. 4 is a graph showing the change over time of the amount of activity acquired in each water tank when poisonous substances are mixed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tank 1a-1e Tank 2 Test fish 3 Passage 3a-3d Passage 4,5 Sensor electrode 6 Amplifier 7 Filter 8 Microcomputer 9 Alarm 10 Test water 11 Test water inlet 12 Test water outlet 13 Automatic feeder

Claims (2)

水棲生物を収納する複数個の水槽を直列に並べ、隣り合う水槽間には水棲生物が自由に移動できる通路を設け、毒性を監視する対象となる検水を水槽の一端から流入させ、他端に流出させるように構成した水質監視装置において、流入側水槽において給餌することにより通常時は水棲生物を主として流入側の水槽に存在させ、毒物が流入したときに水棲生物が後段の水槽に移動する行動を各水槽に設置した水棲生物の活動電位を検出する電極により検知することを特徴とする水質監視方法。A plurality of aquariums containing aquatic organisms are arranged in series, a passage through which aquatic organisms can freely move is provided between adjacent aquariums, and water to be monitored for toxicity is introduced from one end of the aquarium, and the other end In the water quality monitoring device configured to flow out into the water tank, feeding in the inflow side tank normally causes aquatic organisms to exist mainly in the inflow side tank, and when poisonous material flows in, the aquatic organisms move to the subsequent tank. A water quality monitoring method, wherein an action is detected by an electrode for detecting an action potential of aquatic organisms installed in each tank. 水棲生物を収納する複数個の水槽を直列に並べ、隣り合う水槽間には水棲生物が自由に移動できる通路を設け、各水槽には水棲生物の活動電位を検出する電極を設置し、毒性を監視する対象となる検水を直列に並べた水槽の一端から流入させて他端に流出させるようにし、検水の流入側の水槽に自動給餌機を設置したことを特徴とする水質監視装置。A plurality of aquariums containing aquatic organisms are arranged in series, and a passage where aquatic organisms can freely move is provided between adjacent aquariums.Each aquarium is equipped with an electrode that detects the action potential of aquatic organisms. A water quality monitoring apparatus characterized in that a sample water to be monitored is flown from one end of a water tank arranged in series and flowed to the other end, and an automatic feeder is installed in the water tank on the inflow side of the water sample.
JP33979595A 1995-12-27 1995-12-27 Water quality monitoring method and apparatus using aquatic organisms Expired - Fee Related JP3657044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33979595A JP3657044B2 (en) 1995-12-27 1995-12-27 Water quality monitoring method and apparatus using aquatic organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33979595A JP3657044B2 (en) 1995-12-27 1995-12-27 Water quality monitoring method and apparatus using aquatic organisms

Publications (2)

Publication Number Publication Date
JPH09178731A JPH09178731A (en) 1997-07-11
JP3657044B2 true JP3657044B2 (en) 2005-06-08

Family

ID=18330887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33979595A Expired - Fee Related JP3657044B2 (en) 1995-12-27 1995-12-27 Water quality monitoring method and apparatus using aquatic organisms

Country Status (1)

Country Link
JP (1) JP3657044B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344847A (en) * 2018-02-05 2018-07-31 环境保护部华南环境科学研究所 A method of monitoring water quality toxicity using tetrahymena

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100697238B1 (en) * 2005-09-13 2007-03-22 광주과학기술원 Biological early warning system on measuring the water quality toxicity and method therefor
JP2007085828A (en) * 2005-09-21 2007-04-05 Japan Organo Co Ltd Water quality monitoring method and monitor
US9781907B2 (en) 2012-01-27 2017-10-10 Fundacion Azti System to detect the level of stress/discomfort of aquatic animals
ES2717145B2 (en) * 2017-12-19 2020-01-07 Consejo Superior Investigacion TEST MODULE FOR SIMULATION OF HETEROGENEUS HABITATS, MODULAR DEVICE AND ASSOCIATED PROCEDURE
CN117875573B (en) * 2024-03-12 2024-06-18 湖北省疾病预防控制中心(湖北省预防医学科学院) Water environment evaluation method and system based on biotoxicity and bioavailability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344847A (en) * 2018-02-05 2018-07-31 环境保护部华南环境科学研究所 A method of monitoring water quality toxicity using tetrahymena

Also Published As

Publication number Publication date
JPH09178731A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
JP6069570B1 (en) Automatic water quality monitoring device
JP4712908B1 (en) Water quality automatic monitoring device and low concentration toxicity detection method
US5140855A (en) Monitoring tank modules and array for use with biological sensors
JP3657044B2 (en) Water quality monitoring method and apparatus using aquatic organisms
EP0940078B1 (en) Method and device for determining the migration times of fish
Sánchez et al. Physiological perturbations in several generations of Daphnia magna Straus exposed to diazinon
JP6489994B2 (en) Water quality monitoring system and water quality monitoring method
Gerhardt A new multispecies freshwater biomonitor for ecologically relevant supervision of surface waters
JP2005326243A (en) Water-quality monitor device
US20200150104A1 (en) Method for detecting the presence of a contaminant in a liquid
Kirkpatrick et al. Suitability of Crangonyx pseudogracilis (Crustacea: Amphipoda) as an early warning indicator in the multispecies freshwater biomonitor
Crabill Biologic infestation at Indianapolis
JPH0712802A (en) Device and method for monitoring water quality
JPH11326312A (en) Device for monitoring quality of water
CN106680449A (en) Device for in-situ biological monitoring by using mussels, clams and snails
JP2535057B2 (en) How to monitor underwater poisons
Salánki et al. Mussel as a test animal for assessing environmental pollution and the sublethal effect of pollutants
KR100210198B1 (en) Observing device for aquatic animal image
CN116267686B (en) Rat swimming device
JP2900952B2 (en) How to monitor poisons in water
Stewart et al. Assessment of the Multispecies Freshwater Biomonitor™(MFB) in a marine context: the Green crab (Carcinus maenas) as an early warning indicator
Campbell et al. Microcomputer‐based detection and analysis of the electric organ discharges in the mormyrid fish gnathonemus petersi
Lewis et al. Microcomputer‐based monitoring of the effect of phenol on electric organ activity in the mormyrid fish Gnathonemus petersi
JP3933239B2 (en) Underwater poison monitoring method
JPH08160034A (en) Water quality monitor apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees