JP3656626B2 - Empty baking method for heat treatment furnace - Google Patents

Empty baking method for heat treatment furnace Download PDF

Info

Publication number
JP3656626B2
JP3656626B2 JP2002307972A JP2002307972A JP3656626B2 JP 3656626 B2 JP3656626 B2 JP 3656626B2 JP 2002307972 A JP2002307972 A JP 2002307972A JP 2002307972 A JP2002307972 A JP 2002307972A JP 3656626 B2 JP3656626 B2 JP 3656626B2
Authority
JP
Japan
Prior art keywords
heat treatment
baking
wafer
furnace
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002307972A
Other languages
Japanese (ja)
Other versions
JP2004146486A (en
Inventor
史夫 田原
明浩 木村
剛 大槻
偉峰 曲
宏 曲輪
孝俊 名古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2002307972A priority Critical patent/JP3656626B2/en
Publication of JP2004146486A publication Critical patent/JP2004146486A/en
Application granted granted Critical
Publication of JP3656626B2 publication Critical patent/JP3656626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエーハの熱処理工程等において用いられる熱処理炉を空焼きする方法に関するものである。
【0002】
【従来の技術】
近年、半導体素子の高集積化に伴い、高品質の半導体ウエーハの製造が求められている。それに伴い、半導体ウエーハの製造プロセスにおいて、半導体ウエーハの品質向上等のために、様々な条件で水素アニール、Arアニール、酸化、拡散等の熱処理工程が行われている。
【0003】
このような半導体ウエーハの熱処理工程において、従来から、消耗品であるチューブを取り換えた場合や、熱処理によって半導体ウエーハの品質悪化、特に金属汚染による悪化が生じた場合には、熱処理炉に空焼き熱処理が行われていた。
【0004】
しかしながら、従来では、このような熱処理炉に空焼き熱処理を行うための有効な空焼き方法が明確にされてなく、特に空焼き熱処理の熱処理時間については適切な長さが不明であった。そのため、従来の一般的な空焼き方法としては、比較的短時間の空焼き熱処理を行った後、熱処理炉に評価用ウエーハを投入して評価熱処理を行ない、その評価用ウエーハのヘイズやFe、Cu、Niの汚染濃度等の様々なウエーハ品質を評価して、熱処理炉の空焼きの状態を確認しながら、短時間の空焼き熱処理が複数回繰り返し行われていた。
【0005】
その結果、熱処理炉が、例えばデバイスメーカから要望されるヘイズや金属汚染等の様々な規格を満足して操業可能となるまでには、空焼き熱処理及び評価熱処理を何回も繰り返すことが必要となり、熱処理炉の操業を開始するまでにはかなりの時間が必要とされた。また、上述のように、熱処理炉の空焼きの状態を確認するためには、評価熱処理を行って評価用ウエーハの様々な品質を評価しなければならないため、空焼き熱処理以外に多くの時間が費やされ、また作業者への負担も大きいという問題があった。
【0006】
また、この評価熱処理では、評価熱処理前後で評価用ウエーハの投入・取り出しを行うために熱処理炉を一旦600〜1000℃に降温しなければならず、評価熱処理を行う毎に熱処理炉の昇温・降温が行われていた。したがって、従来のように空焼き熱処理と評価熱処理とが繰り返し複数回行われると、熱処理炉の空焼きにかかる時間をさらに長引かせてスループットを低下させ、さらにはコストアップを招く原因の一つになっていた。
【0007】
そこで、本出願人は、特開2002−25924号公報に記載されているように、熱処理炉の空焼き熱処理を効率良く行う空焼き方法として、酸化性雰囲気での熱処理を一定時間行なった後、非酸化性熱処理を一定時間行なう方法を提案した。
【0008】
この出願において、空焼き熱処理による熱処理炉の空焼きの状態は、評価用のウエーハを熱処理した後に、SPV法(Surface Photo Voltage method、表面光電圧法)での測定によるウエーハのFe汚染濃度の平均値が2×1010atoms/cm以下であるかどうかによって判断されている。ここで言うFe汚染濃度の平均値とは、SPV法によりウエーハ全面(直径200mmのウエーハで177点)を測定し、検出限界(1×1010atoms/cm)を下回る測定値は0atoms/cmとしてウエーハ全面の測定値の平均値を算出したものであった。
【0009】
このSPV法とは、ウエーハ内部に照射された光により発生した過剰少数キャリアを表面近傍の空乏層または反転層により電圧として検出する方法である。ここで、SPV法の測定について具体的に説明すると、先ず、透明電極を介してウエーハに波長の異なる光を照射して少数キャリアを誘起させる。この誘起させた少数キャリアは、ウエーハ表面に集められ表面起電力が発生する。次に各波長での表面起電力が一定となるように照射光強度を変える。照射光の波長が異なると吸収係数が変わるので、吸収係数の逆数と照射光強度をプロットする。そして、両者から直線関係が得られるが、この直線を外挿し、吸収係数の軸をよぎった値から拡散長を求めることができる。このようなSPV法を用いることにより、FeやCrの汚染濃度を定量的に評価することが可能となる(特開平11−87447号公報、特開2002−241194号公報参照)。
【0010】
しかしながら、上記のようにSPV法により評価用ウエーハのFe汚染濃度の平均値によって熱処理炉の空焼きの状態を確認しても、熱処理されたウエーハのFe汚染濃度以外の品質については十分に考慮していないため、熱処理炉が他の様々な品質を十分に満足した熱処理済みウエーハを提供できるものであるかどうかの判断が不明確であった。
【0011】
【特許文献1】
特開2002−25924号公報
【特許文献2】
特開平11−87447号公報
【特許文献3】
特開2002−241194号公報
【0012】
【発明が解決しようとする課題】
そこで、本発明は上記問題点に鑑みてなされたものであって、本発明の目的は、熱処理炉に短時間で効率的な空焼きを行って、様々な品質を確実に満足した熱処理済みウエーハを得ることのできる熱処理炉の空焼き方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、熱処理炉の空焼き方法であって、空焼き熱処理後に前記熱処理炉に評価用ウエーハを投入して評価熱処理を行い、該評価用ウエーハのFe汚染濃度の最大値が所定濃度未満となるように前記空焼き熱処理条件を設定することを特徴とする熱処理炉の空焼き方法が提供される(請求項1)。
【0014】
このように、空焼き熱処理後に評価熱処理を行い、評価用ウエーハのFe汚染濃度の最大値が所定濃度未満となるように空焼き熱処理条件を設定して空焼き熱処理を行うことによって、従来のように熱処理炉の空焼きの状態を確認するために評価熱処理を繰り返し行う必要がなくなるため、短時間で効率的な熱処理炉の空焼きを行うことができ、さらに様々な品質を確実に満足した熱処理済みウエーハを得ることができる熱処理炉を提供することができる。
【0015】
このとき、前記評価用ウエーハにおけるFe汚染濃度の最大値の所定濃度を1.0×1012atoms/cmとすることが好ましい(請求項2)。
このように、本発明では、評価用ウエーハにおけるFe汚染濃度の最大値の所定濃度を1.0×1012atoms/cmとすることにより、空焼き熱処理を行った熱処理炉を用いて熱処理を行ったウエーハが様々な品質を全て満足するものにすることができる。したがって、例えば、近年のデバイスメーカからの金属汚染レベルに対する要求に応えることのできる高品質の半導体ウエーハを製造することができる熱処理炉とすることができる。
【0016】
また、前記空焼き熱処理で設定する条件を、少なくとも、熱処理温度、熱処理時間、熱処理回数、熱処理雰囲気のうちの1つ以上の熱処理条件とすることができる(請求項3)。
このように、上記の空焼き熱処理における熱処理条件のうちの少なくとも1つ以上のものを、評価用ウエーハのFe汚染濃度の最大値が所定濃度未満となるように設定して空焼き熱処理を行うことによって、効率的な空焼き熱処理を容易に行うことができる。
【0017】
この場合、前記空焼き熱処理を、非酸化性雰囲気下において1200℃で30時間以上行うことが好ましい(請求項4)。
このように、空焼き熱処理を非酸化性雰囲気下において1200℃で30時間以上行うことによって、評価用ウエーハのFe汚染濃度の最大値を確実に1.0×1012atoms/cm未満とすることができる。
【0018】
さらに前記空焼き熱処理を、先ず酸素雰囲気下で行った後に、非酸化性雰囲気下で行うことがより好ましい(請求項5)。
熱処理炉の空焼き熱処理を行う際に、このように、先ず酸素雰囲気下で熱処理を行うことによって、雰囲気ガスに触れている熱処理炉の内部の表面に酸化膜が形成され、この酸化膜中に熱処理炉内に高濃度に局在している金属不純物を取り込むことができ、その後上記の非酸化性雰囲気下で熱処理を行うことによって、金属不純物を取り込んだ酸化膜が熱処理炉内部の表面からはがれ、より容易に熱処理炉の金属汚染レベルを低減させることが出来る。
【0019】
また、本発明によれば、前記熱処理炉を縦型炉とすることがより有効である(請求項6)。
本発明の空焼き方法が適用される熱処理炉が縦型炉であれば、炉口側が密閉されていない横型炉に比べて密閉性が高く、外気のリークや巻き込みが生じないため、例えば半導体ウエーハに熱処理を行ったときにウエーハのヘイズレベルが悪化しにくい。したがって、本発明の空焼き方法を縦型炉に行うことによって、熱処理炉のヘイズレベルを確実に低減することができる。
【0020】
さらに、前記空焼き熱処理を行う際に、熱処理炉内に半導体ウエーハを充填しておくことが好ましい(請求項7)。
このように、空焼き熱処理を行う際に、熱処理炉内に半導体ウエーハを充填しておくことによって、熱処理炉内の金属不純物を半導体ウエーハにゲッタリングさせることができるため、より効果的に熱処理炉の金属汚染レベルを低減することができる。
【0021】
【発明の実施の形態】
以下、本発明について実施の形態を説明するが、本発明はこれらに限定されるものではない。
従来、熱処理炉に空焼き熱処理を行う場合、熱処理炉が空焼き熱処理によって様々な規格を満足するまで、比較的短時間の空焼き熱処理と、熱処理炉の空焼きの状態を確認するための評価熱処理とが繰り返して複数回行われていた。そのため、熱処理炉を実際に操業させるまでには全体として非常に長時間の空焼きに関する工程が必要となり、さらに熱処理炉の空焼き等の工程を行う際の作業者への負担やコストアップが問題とされていた。
【0022】
さらに、本発明者等が、実際に特開2002−25924号公報に記載されている空焼き方法を用いて熱処理炉に空焼き熱処理を行い、その後評価熱処理を行ってその評価用ウエーハを詳細に検査したところ、熱処理炉からウエーハへの金属汚染はウエーハの外周部に集まりやすく、ウエーハ外周部でFe汚染濃度が非常に高い値を示すことが明らかとなった。したがって、特開2002−25924号公報のように評価用ウエーハ全面のFe汚染濃度の平均値を算出して、熱処理炉の空焼きの状態を確認したとしても、空焼き熱処理によって熱処理炉がFe汚染を十分に低減しているかどうかの判断ができない場合があることが新たにわかり、またその他の品質についてもデバイス製造歩留まりを低下させない様十分に考慮する必要があった。
【0023】
そこで、本発明者等は、熱処理炉に種々の条件で空焼き熱処理を行って各種データの調査・解析を行った。その結果、空焼き熱処理後に評価熱処理を行い、評価用ウエーハ(熱処理済みウエーハ)のFe汚染濃度の最大値が所定濃度未満であれば、熱処理炉がその他の品質についても十分なレベルに達していること、また、このような特徴を利用して空焼き熱処理の熱処理条件を設定すれば、結果として短時間で効率的な熱処理炉の空焼きが達成できることを見出し、本発明を完成させるに至った。
【0024】
すなわち、本発明の熱処理炉の空焼き方法は、熱処理炉の空焼き方法であって、空焼き熱処理後に熱処理炉に評価用ウエーハを投入して評価熱処理を行い、この評価用ウエーハのFe汚染濃度の最大値が所定濃度未満となるように空焼き熱処理条件を設定することに特徴を有するものである。
【0025】
以下に、本発明の熱処理炉の空焼き方法について詳細に説明するが、本発明はこれに限定されるものではない。
本発明者等は、先ず、空焼き熱処理によって熱処理炉が様々な品質レベルを確実に満足できるようにする方法を見出すために、以下のような実験を行った。
【0026】
(実験1)
先ず、直径200mmのウエーハを熱処理するために用いられる新規の石英チューブを縦型炉に組み付けて、酸素雰囲気下で空焼き熱処理(0)を1200℃で8時間行った。次いで、非酸化性雰囲気であるAr100%の雰囲気下において1200℃で8時間の空焼き熱処理(1)を行った。その後、熱処理炉の空焼きの状態を確認するために、熱処理炉に評価用ウエーハを投入して、Ar100%の雰囲気下において1200℃で1時間の評価熱処理を行った。
【0027】
評価熱処理後、評価用ウエーハを熱処理炉より取り出して、ウエーハ表面に存在するヘイズを集光灯下で評価したところ、ウエーハ外周から10mmまでの領域でヘイズが認められた。したがって、上記空焼き熱処理(1)を行った熱処理炉に対して、Ar100%の雰囲気下において1200℃で8時間の空焼き熱処理(2)を続けて行った。
【0028】
その後、空焼き熱処理(2)を行った熱処理炉に、新たに評価用ウエーハを投入して、上記と同条件で評価熱処理を行った。評価熱処理後、ウエーハ表面のヘイズを観察したところ、ヘイズは若干改善していたものの、ウエーハ外周から3mmまでの領域でヘイズが認められた。また、この評価用ウエーハに対して、Fe、Cu、Niについての各金属汚染濃度を全反射蛍光X線法(Total Reflection X−ray Fluorescence、TRXF)、原子吸光法(Atomic Absorption Spectroscopy、AAS)、及びSPV法により測定した。その結果、TRXF法によりウエーハ支持部(ウエーハとウエーハボートとの接触部)のFe汚染濃度を測定した結果、5.2×1010atoms/cmであった。また、AAS法により、評価用ウエーハの全面におけるNi及びCuの汚染濃度を測定した結果、Ni汚染濃度が2.0×1010atoms/cm、またCu汚染濃度が4.1×1011atoms/cmと検出された。
【0029】
さらに、SPV法によりウエーハ全面のFe汚染濃度を測定したところ、ウエーハ中心からウエーハ外周より20mmの地点までの領域では、ほとんどが検出限界以下の低濃度であったが、ウエーハ外周より10mmの領域において、Fe汚染濃度の最大値が4.1×1012atoms/cmと非常に高い金属汚染レベルが検出された。
【0030】
そこで、空焼き熱処理(2)を行った熱処理炉に対し、更にAr100%の雰囲気下において1200℃で8時間の空焼き熱処理(3)を追加して行い、その後、上記と同様に評価用ウエーハを熱処理炉に投入して評価熱処理を行った。その結果、評価用ウエーハのヘイズは改善しており、ウエーハ全面でヘイズは認められなくなった。また、この評価用ウエーハに対してFe、Cu、Niの金属汚染濃度を前回の評価と同様にTRXF法、及びAAS法で測定した結果、各元素とも1×1010atoms/cm未満と良好なレベルであった。
【0031】
しかしながら、SPV法により評価用ウエーハのFe汚染濃度を測定したところ、Fe汚染濃度の最大値が3.9×1012atoms/cmと検出された。この濃度のFe汚染は、デバイス製造時の歩留まりを低下させるため、さらに空焼き熱処理を行って熱処理炉の金属汚染レベルを低下させる必要がある。
【0032】
したがって、この熱処理炉に対して、更にAr100%の雰囲気下、1200℃で8時間の空焼き熱処理(4)を行い、その後、上記と同様の評価熱処理を行って評価用ウエーハの各種品質を評価した。その結果、SPV法により測定されたFe汚染濃度の最大値は4.1×1011atoms/cmと大幅に改善しており、デバイス製造歩留まりの低下を防ぐことが可能な1.0×1012atoms/cmよりも非常に低い金属汚染濃度を示した。また、その他の品質(ヘイズやウエーハ全面におけるFe、Ni、Cuの各金属の平均汚染濃度等)も非常に良好で、熱処理炉が全ての品質レベルを満足していることが確認されたため、空焼き熱処理を終了して、熱処理炉の操業を開始することができた。
【0033】
今回の空焼き熱処理を行った時間を積算すると、酸素雰囲気下での空焼き熱処理を8時間、非酸化性雰囲気下(Ar100%雰囲気)での空焼き熱処理を32時間行っている。さらに、熱処理炉の空焼き状態を確認するために評価熱処理を4回行い、またそれに伴う熱処理炉の昇温・降温にも時間を要しているため、空焼きを開始してから熱処理炉の操業を開始するまでには、実際には10日間程度の時間を費やしていた。
【0034】
(実験2〜4)
上記の実験1と同様にして、新たに新規チューブを熱処理炉に組み付けて、熱処理炉に空焼き熱処理を行う実験を3回行った(実験2〜4)。しかしながら、品質改善の過程は上記実験1と同様で、10時間程度の短時間の空焼き熱処理を行うことによって、ヘイズやTRXF法及びAAS法により測定されたFe、Ni、Cuの各金属汚染濃度は改善するものの、SPV法によるFe汚染濃度の最大値はデバイス製造歩留まりの低下を十分に防ぐことのできるレベル(1×1012atoms/cm)に達しておらず、さらにその後、追加の空焼き熱処理を行う必要があった。
また、追加の空焼き熱処理を十分に行って、Fe汚染濃度の最大値が前記レベルを満足した場合であれば、ヘイズ等のその他の全ての品質に関してもデバイス製造歩留まりを低下させることのない高品質なレベルであることが確認された。
【0035】
以上の実験1〜4の結果より、評価用ウエーハを用いて評価熱処理を行い、この評価用ウエーハのFe汚染濃度の最大値が所定濃度(例えば、1×1012atoms/cm)未満になる様に空焼き熱処理を行うことによって、その他の品質についても全て満足できることが明らかとなった。
【0036】
したがって、熱処理炉に空焼き熱処理を行う際には、評価用ウエーハを用いて評価熱処理を行い、この評価用ウエーハのFe汚染濃度の最大値が所定濃度未満となるように空焼き熱処理条件を設定して空焼き熱処理することによって、従来のように様々な品質を評価するために評価熱処理を繰り返して行う必要がなく、熱処理炉が様々な規格を確実に満足できるような空焼き熱処理を効率的に行うことができ、熱処理炉の空焼きを全体として短時間化することができる。
【0037】
現在においては、この評価用ウエーハにおけるFe汚染濃度の最大値が1.0×1012atoms/cm未満であれば、十分デバイス製造に耐え得るものとすることができる。したがって、上記の評価用ウエーハにおけるFe汚染濃度の最大値の所定濃度は、1.0×1012atoms/cmとすることが好ましい。尚、このFe汚染濃度の最大値の所定濃度は、技術の進歩やその他の様々な要因等によって適宜変更して設定することができる。
【0038】
また本発明において、評価用ウエーハのFe汚染濃度の最大値が所定濃度未満となるように空焼き熱処理で設定する条件は、特に限定されるものではないが、例えば、少なくとも、熱処理温度、熱処理時間、熱処理回数、熱処理雰囲気のうちの1つ以上の熱処理条件とすることが好ましい。これらの条件のうちの少なくとも1つ以上を評価用ウエーハのFe汚染濃度の最大値が所定濃度未満となるように適切に設定することによって、効率的な空焼き熱処理を容易に行うことができる。
【0039】
尚、熱処理雰囲気については、例えば、空焼き熱処理を酸素雰囲気下でのみ行った場合では、熱処理炉内に酸素が残留する恐れがある。このように酸素が残留している熱処理炉を用いて、その後ウエーハ製造工程において半導体ウエーハにArアニールや水素アニール等の非酸化性雰囲気下で熱処理が行われると、熱処理炉内に残存した酸素によりウエーハ表面に酸化膜が形成され、その酸化膜とシリコン(Si)がSiO+Si→2SiOという反応を起こして、結果的にSiがエッチングされて熱処理後の半導体ウエーハ表面にはヘイズが生じてしまう。したがって、空焼き熱処理は非酸化性雰囲気で行うことが好ましい。
【0040】
但し、本発明の空焼き方法では、空焼き熱処理を行う際に、先ず酸素雰囲気下で行った後に、上記の非酸化性雰囲気下で行うことがより好ましい。このように、空焼き熱処理において、先ず酸素雰囲気下で熱処理を行うことによって、雰囲気ガスに触れている熱処理炉の内部の表面に酸化膜が形成され、この酸化膜中に熱処理炉内に高濃度に局在している金属不純物を取り込むことができる。その後、非酸化性雰囲気下で熱処理を行うことによって、金属不純物を取り込んだ酸化膜が熱処理炉内部の表面からはがれ、より容易に熱処理炉の金属汚染レベルを低減させることが可能となる。
【0041】
さらにこのとき、予め熱処理炉内に半導体ウエーハを充填しておけば、空焼き熱処理を行う際に熱処理炉内の金属不純物を半導体ウエーハにゲッタリングさせることができるため、より効果的に金属汚染レベルを低減することができる。この場合、予め熱処理炉内に充填しておく半導体ウエーハとしては、バルク中に形成された酸素析出物やウエーハ表面に形成されたポリシリコン層やダメージ層などのゲッタリングサイトを有するシリコンウエーハを用いることが好ましい。
このような空焼き方法を用いることによって、Fe汚染濃度の最大値がより確実に低減されるように空焼き熱処理を行うことができる。
【0042】
一方、空焼き熱処理の熱処理温度については特に限定されるものではなく、例えば1000℃〜シリコンの融点以下で行うことができるが、一般に空焼き熱処理は1200℃前後で行われており、このように1200℃近傍で空焼き熱処理を行うことによって、熱処理炉内の金属汚染レベルを確実に低減することができる。低温だと長時間の空焼きが必要になる。一方、余りに高温だと炉を傷めてしまう恐れがあるし、新たな汚染が生じうる。
【0043】
ここで、上記実験1〜4の結果について、図1に、Ar100%の雰囲気下(非酸化性雰囲気下)での空焼き熱処理の累積時間とSPV法により測定した評価用ウエーハのFe汚染濃度の最大値との関係を示す。
【0044】
図1に示したように、非酸化性雰囲気下において1200℃の空焼き熱処理を行った場合、累積時間が30時間以上であれば、評価用ウエーハのFe汚染濃度の最大値が1.0×1012atoms/cm未満となっている。したがって、本発明の空焼き方法においては、空焼き熱処理条件を非酸化性雰囲気下において1200℃で30時間以上と設定することによって、空焼き熱処理を行った熱処理炉が確実にFe汚染濃度の最大値を1.0×1012atoms/cm未満とすることができる。またこの空焼き熱処理の熱処理時間を長く設定するほど、より熱処理炉の金属汚染レベルを低減することができるが、熱処理時間を長くし過ぎるとスループットの低下を招くため、熱処理時間は長くても60時間以下となるように設定することが好ましい。
【0045】
このような条件を設定して空焼き熱処理を行うことによって、従来のように評価熱処理を必要以上に繰り返して行う必要がなく、評価熱処理は空焼き熱処理後に確認のために一回だけ行えば良い。したがって、評価熱処理のために費やされる時間を短縮でき、また作業者の負担やコストアップも大幅に低減できるため、熱処理炉の空焼きを短時間でより効率的に行うことができる。
【0046】
尚、上記の空焼き熱処理における熱処理時間は累積時間を示すものである。したがって、空焼き熱処理が非酸化性雰囲気下、1200℃において全体として30時間以上行うものであれば、空焼き熱処理を連続的に一回の工程で行っても良いし、または複数段階の工程に分けて分割して行っても良いが、例えば、空焼き熱処理を一回の工程で30時間以上連続的に行うことによって、空焼き熱処理をより効率的に行うことができ、一層の短時間化を図ることができる。
【0047】
また、1200℃以上の高温で長時間の空焼きを連続して行うとチューブが変形や破損する恐れがある場合には、例えば1200℃で数時間程度の熱処理後、1000℃程度まで降温して0.5〜1時間保持し、再び1200℃まで昇温し熱処理することを繰り返す等して、1200℃の熱処理時間を合計で30時間以上とすることもできる。
【0048】
次に、上記のような本発明の空焼き方法が適用される熱処理炉は、縦型炉であることが好ましい。
一般に、シリコンウエーハに熱処理を行った際に引き起こされるヘイズレベルの低下は、上述のように、例えば熱処理工程中やウエーハ取り出し時に炉口から巻き込まれる外気中の酸素または水分とシリコンとが反応することが一因であることが知られている。
【0049】
そして、縦型炉は、炉口側が密閉されていない横型炉に比べて密閉性が高く、熱処理工程中の外気のリークや巻き込みが少ない。したがって、本発明の空焼き方法が適用される熱処理炉を縦型炉とすることによって、ヘイズレベルをより確実に向上させることができる。
【0050】
【実施例】
以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
先ず、直径200mmのウエーハを熱処理するために用いられる新規の石英チューブを縦型炉に組み付けた。次に、評価熱処理を行った評価用ウエーハのFe汚染濃度の最大値が1.0×1012atoms/cm未満となるように、先ず酸素雰囲気下、1200℃で8時間の空焼き熱処理を行い、その後Ar100%の雰囲気下、1200℃で30時間の空焼き熱処理を行った。続いて、熱処理炉に評価用ウエーハを投入して、Ar100%の雰囲気下において1200℃で1時間の評価熱処理を行った。
【0051】
評価熱処理後、SPV法により評価用ウエーハのFe汚染濃度をウエーハの177点で測定し、その最大値を評価した。その結果、評価用ウエーハのFe汚染濃度の最大値は、0.7×1012atoms/cmであり、1.0×1012atoms/cm未満の良好なレベルを示した。この値は、デバイス製造時の歩留まり低下を回避できるものである。
【0052】
さらに、確認のために、評価用ウエーハの表面を集光灯下で観察してヘイズを評価し、またTRXF法及びAAS法によってウエーハのFe、Ni、Cuの各金属汚染濃度を測定した。その結果、ウエーハ表面にヘイズは観察されず、またTRXF法及びAAS法による各金属の汚染濃度は、何れも1.0×1010atoms/cm未満の検出下限値以下であった。したがって、全ての品質が良好なレベルを示していることが確認された。
【0053】
また、この実施例において、熱処理炉の空焼き熱処理開始から品質評価が終了するまでの全体の空焼き工程に要した時間は5日間であった。すなわち、本発明の空焼き方法によれば、従来の空焼き方法に要する10日間に比べて、約半分の時間で効率的に熱処理の空焼きを完了させることができ、空焼き時間を大幅に短縮することができた。
【0054】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0055】
【発明の効果】
以上説明したように、本発明によれば、熱処理炉の空焼きを行う際に、評価用ウエーハのFe汚染濃度の最大値が所定濃度未満となるように空焼き熱処理条件を設定することによって、短時間で効率的な熱処理炉の空焼きを行うことができ、かつ熱処理炉が様々な規格を確実に満足できるようにすることができる。
【図面の簡単な説明】
【図1】非酸化性雰囲気下で行った空焼き熱処理の累積時間と評価用ウエーハのFe汚染濃度の最大値との関係を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for empty-fired a heat treatment furnace used in a heat treatment step of a semiconductor wafer.
[0002]
[Prior art]
In recent years, with the high integration of semiconductor elements, there has been a demand for manufacturing high-quality semiconductor wafers. Accordingly, in the semiconductor wafer manufacturing process, heat treatment steps such as hydrogen annealing, Ar annealing, oxidation, and diffusion are performed under various conditions in order to improve the quality of the semiconductor wafer.
[0003]
In such a semiconductor wafer heat treatment process, when a consumable tube is replaced, or when the quality of the semiconductor wafer deteriorates due to the heat treatment, particularly deterioration due to metal contamination, an air-burning heat treatment is performed in the heat treatment furnace. Was done.
[0004]
However, conventionally, an effective baking method for performing a baking heat treatment in such a heat treatment furnace has not been clarified, and in particular, an appropriate length has not been known for the heat treatment time of the baking heat treatment. Therefore, as a conventional general air baking method, after performing an air baking heat treatment for a relatively short time, the evaluation wafer is put into a heat treatment furnace and an evaluation heat treatment is performed, and the haze and Fe of the evaluation wafer, Various wafer qualities such as contamination concentrations of Cu and Ni were evaluated, and short-time baking heat treatment was repeatedly performed a plurality of times while checking the baking condition of the heat treatment furnace.
[0005]
As a result, it is necessary to repeat the empty heat treatment and evaluation heat treatment many times before the heat treatment furnace can be operated satisfying various standards such as haze and metal contamination requested by device manufacturers. A considerable amount of time was required before starting the heat treatment furnace operation. Further, as described above, in order to confirm the state of air baking in the heat treatment furnace, it is necessary to perform evaluation heat treatment to evaluate various qualities of the evaluation wafer. There was a problem that it was spent and the burden on the worker was large.
[0006]
Also, in this evaluation heat treatment, the heat treatment furnace must be once cooled to 600 to 1000 ° C. in order to load and remove the evaluation wafer before and after the evaluation heat treatment. A temperature drop was taking place. Therefore, if the baking process and the evaluation heating process are repeated a plurality of times as in the past, the time required for the baking process in the heat treatment furnace is further prolonged to lower the throughput and further increase the cost. It was.
[0007]
Therefore, the present applicant, as described in JP-A-2002-25924, after performing a heat treatment in an oxidizing atmosphere for a predetermined time as a method of performing an air-bake heat treatment in a heat treatment furnace efficiently, A method of performing non-oxidizing heat treatment for a certain time was proposed.
[0008]
In this application, the state of air baking in the heat treatment furnace by air baking heat treatment is the average value of the wafer Fe contamination concentration measured by the SPV method (Surface Photo Voltage method) after heat treating the wafer for evaluation. Is 2 × 10 10 atoms / cm 3 It is judged by whether or not The average value of the Fe contamination concentration mentioned here means that the entire surface of the wafer (177 points for a wafer with a diameter of 200 mm) is measured by the SPV method, and the detection limit (1 × 10 6 10 atoms / cm 3 ) Less than 0 atoms / cm 3 As a result, an average value of measured values on the entire wafer surface was calculated.
[0009]
The SPV method is a method in which excess minority carriers generated by light irradiated inside the wafer are detected as a voltage by a depletion layer or an inversion layer near the surface. Here, the measurement by the SPV method will be specifically described. First, minority carriers are induced by irradiating the wafer with light having different wavelengths through the transparent electrode. The induced minority carriers are collected on the wafer surface and surface electromotive force is generated. Next, the irradiation light intensity is changed so that the surface electromotive force at each wavelength is constant. Since the absorption coefficient changes when the wavelength of the irradiation light is different, the reciprocal of the absorption coefficient and the irradiation light intensity are plotted. A linear relationship is obtained from both, and the diffusion length can be obtained from a value obtained by extrapolating the straight line and crossing the axis of the absorption coefficient. By using such an SPV method, it becomes possible to quantitatively evaluate the contamination concentration of Fe and Cr (see JP-A-11-87447 and JP-A-2002-241194).
[0010]
However, as described above, even if the state of calcination of the heat treatment furnace is confirmed by the average value of the Fe contamination concentration of the evaluation wafer by the SPV method, the quality other than the Fe contamination concentration of the heat-treated wafer is sufficiently considered. Therefore, it was unclear whether the heat treatment furnace could provide a heat-treated wafer sufficiently satisfying various other qualities.
[0011]
[Patent Document 1]
JP 2002-25924 A
[Patent Document 2]
JP 11-87447 A
[Patent Document 3]
JP 2002-241194 A
[0012]
[Problems to be solved by the invention]
Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to perform heat-treated wafers in which heat treatment furnaces are efficiently baked in a short time to satisfy various qualities. It is an object of the present invention to provide an empty baking method for a heat treatment furnace.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, there is provided an air baking method for a heat treatment furnace, wherein after the air baking heat treatment, an evaluation wafer is introduced into the heat treatment furnace to perform an evaluation heat treatment, and Fe of the evaluation wafer is obtained. An air baking method for a heat treatment furnace is provided in which the air baking heat treatment conditions are set so that the maximum value of the contamination concentration is less than a predetermined concentration.
[0014]
In this way, the evaluation heat treatment is performed after the air baking heat treatment, and the air baking heat treatment conditions are set so that the maximum value of the Fe contamination concentration of the evaluation wafer is less than the predetermined concentration. In addition, it is no longer necessary to repeat the evaluation heat treatment to confirm the state of the heat treatment furnace baked, so the heat treatment furnace can be baked efficiently in a short time, and heat treatment that satisfies various qualities reliably. A heat treatment furnace capable of obtaining a used wafer can be provided.
[0015]
At this time, the predetermined concentration of the maximum value of the Fe contamination concentration in the evaluation wafer is 1.0 × 10 12 atoms / cm 3 (Claim 2).
Thus, in the present invention, the predetermined concentration of the maximum value of the Fe contamination concentration in the evaluation wafer is set to 1.0 × 10 6. 12 atoms / cm 3 By doing so, a wafer that has been heat-treated using a heat-treating furnace that has been subjected to an empty baking heat treatment can satisfy all the various qualities. Therefore, for example, it is possible to provide a heat treatment furnace capable of manufacturing a high-quality semiconductor wafer capable of meeting the recent demand for metal contamination from device manufacturers.
[0016]
Moreover, the conditions set in the empty baking heat treatment can be at least one heat treatment condition among a heat treatment temperature, a heat treatment time, the number of heat treatments, and a heat treatment atmosphere.
In this way, at least one or more of the heat treatment conditions in the above-mentioned air baking heat treatment is set so that the maximum value of the Fe contamination concentration of the evaluation wafer is less than a predetermined concentration and the air baking heat treatment is performed. Therefore, efficient air baking heat treatment can be easily performed.
[0017]
In this case, it is preferable that the air baking heat treatment is performed at 1200 ° C. for 30 hours or more in a non-oxidizing atmosphere.
In this way, by performing the air baking heat treatment at 1200 ° C. for 30 hours or more in a non-oxidizing atmosphere, the maximum value of the Fe contamination concentration of the evaluation wafer is reliably 1.0 × 10 6. 12 atoms / cm 3 Less than.
[0018]
Furthermore, it is more preferable that the air baking heat treatment is first performed in an oxygen atmosphere and then in a non-oxidizing atmosphere.
Thus, when performing an air-bake heat treatment in a heat treatment furnace, first, heat treatment is performed in an oxygen atmosphere, so that an oxide film is formed on the inner surface of the heat treatment furnace in contact with the atmospheric gas, and this oxide film is formed in this oxide film. Metal impurities localized at a high concentration can be taken into the heat treatment furnace, and then the heat treatment is performed in the above non-oxidizing atmosphere, so that the oxide film containing the metal impurities is peeled off from the surface inside the heat treatment furnace. Thus, the metal contamination level of the heat treatment furnace can be reduced more easily.
[0019]
According to the present invention, it is more effective that the heat treatment furnace is a vertical furnace.
If the heat treatment furnace to which the air baking method of the present invention is applied is a vertical furnace, it has higher hermeticity than a horizontal furnace in which the furnace port side is not sealed, and no leakage or entrainment of outside air occurs. When the heat treatment is performed, the haze level of the wafer is not easily deteriorated. Therefore, the haze level of the heat treatment furnace can be reliably reduced by performing the empty baking method of the present invention on the vertical furnace.
[0020]
Furthermore, it is preferable that the heat treatment furnace is filled with a semiconductor wafer when the air baking heat treatment is performed (claim 7).
As described above, when performing the baking heat treatment, by filling the semiconductor wafer in the heat treatment furnace, the metal impurities in the heat treatment furnace can be gettered to the semiconductor wafer. The metal contamination level can be reduced.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to these.
Conventionally, when performing a bake heat treatment in a heat treatment furnace, a relatively short time bake heat treatment and evaluation for confirming the bake state of the heat treatment furnace until the heat treatment furnace satisfies various standards by the bake heat treatment The heat treatment was repeated several times. For this reason, it takes a very long time for the baking process to actually operate the heat treatment furnace, and there is a problem of burden on workers and cost increase when performing a process such as baking the heat treatment furnace. It was said.
[0022]
Further, the present inventors actually performed an air baking heat treatment in a heat treatment furnace using the air baking method described in JP-A No. 2002-25924, and then performed an evaluation heat treatment to describe the evaluation wafer in detail. As a result of inspection, it was found that metal contamination from the heat treatment furnace to the wafer tends to collect on the outer periphery of the wafer, and the Fe contamination concentration is very high at the outer periphery of the wafer. Therefore, even if the average value of the Fe contamination concentration on the entire evaluation wafer is calculated as in Japanese Patent Application Laid-Open No. 2002-25924 and the state of the calcination of the heat treatment furnace is confirmed, the heat treatment furnace is subjected to Fe contamination by the calcination heat treatment. It has been newly found that there is a case where it is impossible to judge whether or not the device has been sufficiently reduced, and it is necessary to sufficiently consider other qualities so as not to lower the device manufacturing yield.
[0023]
Therefore, the present inventors conducted an empty baking heat treatment in various conditions in a heat treatment furnace and investigated and analyzed various data. As a result, if the evaluation heat treatment is performed after the air baking heat treatment, and the maximum value of the Fe contamination concentration of the evaluation wafer (heat treated wafer) is less than a predetermined concentration, the heat treatment furnace has reached a sufficient level for other qualities. In addition, by setting the heat treatment conditions of the air baking heat treatment using such characteristics, it was found that the heat treatment furnace can be efficiently burned in a short time, and the present invention has been completed. .
[0024]
That is, the empty baking method of the heat treatment furnace of the present invention is an empty baking method of the heat treatment furnace, and after the empty baking heat treatment, the evaluation wafer is put into the heat treatment furnace to perform the evaluation heat treatment, and the Fe contamination concentration of the evaluation wafer is It is characterized by setting the baking heat treatment conditions so that the maximum value of the above becomes less than a predetermined concentration.
[0025]
Below, the empty baking method of the heat-treatment furnace of this invention is demonstrated in detail, However, This invention is not limited to this.
The present inventors first performed the following experiment in order to find out a method for ensuring that the heat treatment furnace can satisfy various quality levels by air baking heat treatment.
[0026]
(Experiment 1)
First, a new quartz tube used for heat-treating a wafer having a diameter of 200 mm was assembled in a vertical furnace, and an empty baking heat treatment (0) was performed at 1200 ° C. for 8 hours in an oxygen atmosphere. Next, an air baking heat treatment (1) was performed at 1200 ° C. for 8 hours in an atmosphere of Ar 100% which is a non-oxidizing atmosphere. Thereafter, in order to confirm the state of baking in the heat treatment furnace, an evaluation wafer was introduced into the heat treatment furnace, and an evaluation heat treatment was performed at 1200 ° C. for 1 hour in an Ar 100% atmosphere.
[0027]
After the evaluation heat treatment, the evaluation wafer was taken out from the heat treatment furnace, and the haze existing on the wafer surface was evaluated under a condenser lamp. As a result, haze was observed in the region from the wafer outer periphery to 10 mm. Therefore, an air baking heat treatment (2) for 8 hours was continuously performed at 1200 ° C. in an atmosphere of Ar 100% for the heat treatment furnace in which the air baking heat treatment (1) was performed.
[0028]
Thereafter, an evaluation wafer was newly introduced into the heat treatment furnace in which the empty baking heat treatment (2) was performed, and the evaluation heat treatment was performed under the same conditions as described above. When the haze on the wafer surface was observed after the evaluation heat treatment, the haze was slightly improved, but was found in the region from the wafer outer periphery to 3 mm. In addition, with respect to this evaluation wafer, each metal contamination concentration for Fe, Cu, and Ni is measured by total reflection X-ray Fluorescence (TRXF), atomic absorption spectroscopy (AAS), And measured by the SPV method. As a result, the result of measuring the Fe contamination concentration of the wafer support portion (contact portion between the wafer and the wafer boat) by the TRXF method was 5.2 × 10. 10 atoms / cm 2 Met. Further, as a result of measuring the contamination concentration of Ni and Cu on the entire surface of the evaluation wafer by the AAS method, the Ni contamination concentration was 2.0 × 10. 10 atoms / cm 2 Cu contamination concentration is 4.1 × 10 11 atoms / cm 2 It was detected.
[0029]
Further, when the Fe contamination concentration on the entire surface of the wafer was measured by the SPV method, in the region from the wafer center to the point 20 mm from the outer periphery of the wafer, the concentration was mostly lower than the detection limit, but in the region 10 mm from the outer periphery of the wafer. The maximum value of Fe contamination concentration is 4.1 × 10 12 atoms / cm 3 And very high metal contamination levels were detected.
[0030]
Therefore, an additional baking heat treatment (3) for 8 hours at 1200 ° C. in an atmosphere of 100% Ar is added to the heat treatment furnace that has been subjected to the air baking heat treatment (2). Was put into a heat treatment furnace to perform evaluation heat treatment. As a result, the haze of the evaluation wafer was improved, and no haze was observed on the entire surface of the wafer. Further, as a result of measuring the metal contamination concentration of Fe, Cu, and Ni by the TRXF method and the AAS method in the same manner as the previous evaluation, 1 × 10 5 for each element. 10 atoms / cm 2 Less than good level.
[0031]
However, when the Fe contamination concentration of the evaluation wafer is measured by the SPV method, the maximum value of the Fe contamination concentration is 3.9 × 10 6. 12 atoms / cm 3 It was detected. Since this concentration of Fe contamination reduces the yield during device manufacturing, it is necessary to further perform an empty baking heat treatment to reduce the metal contamination level of the heat treatment furnace.
[0032]
Therefore, the heat treatment furnace is further subjected to an air baking heat treatment (4) for 8 hours at 1200 ° C. in an atmosphere of 100% Ar, and then the evaluation heat treatment similar to the above is performed to evaluate various qualities of the wafer for evaluation. did. As a result, the maximum value of Fe contamination concentration measured by the SPV method is 4.1 × 10. 11 atoms / cm 3 1.0 × 10, which is a significant improvement and can prevent a decrease in device manufacturing yield. 12 atoms / cm 3 It showed a much lower metal contamination concentration. In addition, other qualities (such as haze and average contamination concentration of Fe, Ni, and Cu metals on the entire surface of the wafer) were also very good, and it was confirmed that the heat treatment furnace satisfied all quality levels. After the baking heat treatment was completed, the operation of the heat treatment furnace could be started.
[0033]
When the time for performing the current baking heat treatment is added, the baking heat treatment in an oxygen atmosphere is performed for 8 hours, and the baking heat treatment in a non-oxidizing atmosphere (Ar 100% atmosphere) is performed for 32 hours. Furthermore, the evaluation heat treatment is performed four times in order to confirm the state of baking in the heat treatment furnace, and it takes time for the heat treatment furnace to rise and fall accordingly. Actually, it took about 10 days to start the operation.
[0034]
(Experiments 2-4)
In the same manner as in Experiment 1 above, a new tube was newly assembled in a heat treatment furnace, and an experiment for performing an air baking heat treatment in the heat treatment furnace was performed three times (Experiments 2 to 4). However, the process of quality improvement is the same as in Experiment 1 above, and each metal contamination concentration of Fe, Ni, and Cu measured by haze, TRXF method, and AAS method by performing a short baking heat treatment for about 10 hours. However, the maximum value of the Fe contamination concentration by the SPV method is a level that can sufficiently prevent a decrease in device manufacturing yield (1 × 10 12 atoms / cm 3 It was necessary to carry out an additional baking process after that.
In addition, if the additional air baking heat treatment is sufficiently performed and the maximum value of the Fe contamination concentration satisfies the above level, the device manufacturing yield is not lowered with respect to all other qualities such as haze. It was confirmed that the quality level.
[0035]
From the results of the above experiments 1 to 4, the evaluation heat treatment is performed using the evaluation wafer, and the maximum value of the Fe contamination concentration of the evaluation wafer is a predetermined concentration (for example, 1 × 10 12 atoms / cm 3 It was revealed that all the other qualities can be satisfied by performing the baking heat treatment so as to be less than.
[0036]
Therefore, when performing an air baking heat treatment in a heat treatment furnace, an evaluation heat treatment is performed using an evaluation wafer, and air baking heat treatment conditions are set so that the maximum value of Fe contamination concentration of the evaluation wafer is less than a predetermined concentration. In addition, it is not necessary to repeat the evaluation heat treatment in order to evaluate various qualities as in the past by performing the air baking heat treatment, and the heat treatment furnace is efficiently used so that the heat treatment furnace can surely satisfy various standards. It is possible to reduce the time required for baking the heat treatment furnace as a whole.
[0037]
At present, the maximum value of Fe contamination concentration in this evaluation wafer is 1.0 × 10 12 atoms / cm 3 If it is less than this, it is possible to sufficiently withstand device manufacturing. Therefore, the predetermined concentration of the maximum value of the Fe contamination concentration in the evaluation wafer is 1.0 × 10 12 atoms / cm 3 It is preferable that The predetermined concentration of the maximum value of the Fe contamination concentration can be appropriately changed and set according to technological progress, various other factors, and the like.
[0038]
Further, in the present invention, the conditions set in the air baking heat treatment so that the maximum value of the Fe contamination concentration of the evaluation wafer is less than a predetermined concentration is not particularly limited, but for example, at least the heat treatment temperature and the heat treatment time. It is preferable to set one or more heat treatment conditions among the number of heat treatments and the heat treatment atmosphere. By appropriately setting at least one of these conditions so that the maximum value of the Fe contamination concentration of the wafer for evaluation is less than a predetermined concentration, an efficient air baking heat treatment can be easily performed.
[0039]
As for the heat treatment atmosphere, for example, when the empty baking heat treatment is performed only in an oxygen atmosphere, oxygen may remain in the heat treatment furnace. When heat treatment is performed in a non-oxidizing atmosphere such as Ar annealing or hydrogen annealing on the semiconductor wafer in the wafer manufacturing process using the heat treatment furnace in which oxygen remains in this way, oxygen remaining in the heat treatment furnace is used. An oxide film is formed on the wafer surface, and the oxide film and silicon (Si) are SiO. 2 A reaction of + Si → 2SiO is caused. As a result, Si is etched, and haze is generated on the surface of the semiconductor wafer after the heat treatment. Therefore, it is preferable to perform the bake heat treatment in a non-oxidizing atmosphere.
[0040]
However, in the air baking method of the present invention, when performing the air baking heat treatment, it is more preferably performed first in an oxygen atmosphere and then in the above non-oxidizing atmosphere. Thus, in the air baking heat treatment, by first performing heat treatment in an oxygen atmosphere, an oxide film is formed on the inner surface of the heat treatment furnace that is in contact with the atmospheric gas, and a high concentration in the heat treatment furnace is formed in this oxide film. Metal impurities localized in can be taken in. Thereafter, by performing heat treatment in a non-oxidizing atmosphere, the oxide film incorporating metal impurities is peeled off from the surface inside the heat treatment furnace, and the metal contamination level of the heat treatment furnace can be more easily reduced.
[0041]
Further, at this time, if the semiconductor wafer is previously filled in the heat treatment furnace, the metal impurities in the heat treatment furnace can be gettered to the semiconductor wafer when performing the bake heat treatment. Can be reduced. In this case, a silicon wafer having gettering sites such as oxygen precipitates formed in the bulk, a polysilicon layer or a damage layer formed on the wafer surface is used as the semiconductor wafer to be filled in the heat treatment furnace in advance. It is preferable.
By using such an empty baking method, an empty baking heat treatment can be performed so that the maximum value of the Fe contamination concentration is more reliably reduced.
[0042]
On the other hand, the heat treatment temperature of the air baking heat treatment is not particularly limited, and can be performed, for example, from 1000 ° C. to the melting point of silicon or less. Generally, the air baking heat treatment is performed at around 1200 ° C. By performing the air baking heat treatment near 1200 ° C., the level of metal contamination in the heat treatment furnace can be reliably reduced. If it is low temperature, long baking is required. On the other hand, if the temperature is too high, the furnace may be damaged, and new contamination may occur.
[0043]
Here, with respect to the results of the above experiments 1 to 4, FIG. 1 shows the cumulative time of air baking heat treatment in an Ar 100% atmosphere (non-oxidizing atmosphere) and the Fe contamination concentration of the evaluation wafer measured by the SPV method. The relationship with the maximum value is shown.
[0044]
As shown in FIG. 1, when performing an air baking heat treatment at 1200 ° C. in a non-oxidizing atmosphere, if the cumulative time is 30 hours or more, the maximum value of the Fe contamination concentration of the evaluation wafer is 1.0 ×. 10 12 atoms / cm 3 Is less than Therefore, in the air baking method of the present invention, by setting the air baking heat treatment conditions at 1200 ° C. for 30 hours or more in a non-oxidizing atmosphere, the heat treatment furnace that has performed the air baking heat treatment reliably ensures the maximum Fe contamination concentration. The value is 1.0 x 10 12 atoms / cm 3 Less than. Further, the longer the heat treatment time of the baking heat treatment, the more the metal contamination level of the heat treatment furnace can be reduced. However, if the heat treatment time is too long, the throughput is lowered. It is preferable to set it to be less than the time.
[0045]
By performing such a condition and performing the baking heat treatment, it is not necessary to repeat the evaluation heat treatment more than necessary, and the evaluation heat treatment only needs to be performed once for confirmation after the baking heat treatment. . Therefore, the time spent for the evaluation heat treatment can be shortened, and the burden on the operator and the cost increase can be greatly reduced, so that the heat treatment furnace can be baked more efficiently in a short time.
[0046]
In addition, the heat treatment time in the above-mentioned air baking heat treatment indicates an accumulated time. Therefore, if the air baking heat treatment is performed in a non-oxidizing atmosphere at 1200 ° C. for 30 hours or more as a whole, the air baking heat treatment may be performed continuously in a single process, or a plurality of steps. For example, by performing the air baking heat treatment continuously for 30 hours or more in one step, the air baking heat treatment can be performed more efficiently, and the time can be further shortened. Can be achieved.
[0047]
If the tube may be deformed or damaged if it is continuously baked at a high temperature of 1200 ° C. or higher for a long time, the temperature is lowered to about 1000 ° C. after heat treatment at 1200 ° C. for several hours, for example. The heat treatment time at 1200 ° C. can be made to be 30 hours or more in total, for example, by holding for 0.5 to 1 hour, repeatedly raising the temperature to 1200 ° C. and performing heat treatment.
[0048]
Next, the heat treatment furnace to which the above-described empty baking method of the present invention is applied is preferably a vertical furnace.
In general, the decrease in haze level caused when heat treatment is performed on a silicon wafer is caused by the reaction of silicon with oxygen or moisture in the outside air that is involved from the furnace port, for example, during the heat treatment process or when the wafer is taken out. Is known to contribute.
[0049]
The vertical furnace has higher hermeticity than a horizontal furnace in which the furnace port side is not sealed, and there is less leakage or entrainment of outside air during the heat treatment process. Therefore, the haze level can be more reliably improved by using a vertical furnace as the heat treatment furnace to which the empty baking method of the present invention is applied.
[0050]
【Example】
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to these.
(Example)
First, a new quartz tube used for heat-treating a wafer having a diameter of 200 mm was assembled in a vertical furnace. Next, the maximum value of the Fe contamination concentration of the evaluation wafer subjected to the evaluation heat treatment is 1.0 × 10 12 atoms / cm 3 First, air baking heat treatment was performed at 1200 ° C. for 8 hours in an oxygen atmosphere, and then air baking heat treatment was performed at 1200 ° C. for 30 hours in an atmosphere of Ar 100%. Subsequently, an evaluation wafer was put into a heat treatment furnace, and evaluation heat treatment was performed at 1200 ° C. for 1 hour in an Ar 100% atmosphere.
[0051]
After the evaluation heat treatment, the Fe contamination concentration of the evaluation wafer was measured at 177 points of the wafer by the SPV method, and the maximum value was evaluated. As a result, the maximum value of the Fe contamination concentration of the evaluation wafer is 0.7 × 10 12 atoms / cm 3 1.0 × 10 12 atoms / cm 3 A good level of less than. This value can avoid a decrease in yield during device manufacturing.
[0052]
Further, for confirmation, the surface of the evaluation wafer was observed under a condensing lamp to evaluate haze, and the Fe, Ni, and Cu metal contamination concentrations of the wafer were measured by TRXF method and AAS method. As a result, no haze is observed on the wafer surface, and the contamination concentration of each metal by the TRXF method and the AAS method is 1.0 × 10. 10 atoms / cm 2 It was below the lower detection limit of less than. Therefore, it was confirmed that all qualities showed a good level.
[0053]
Further, in this example, the time required for the entire baking process from the start of the baking process in the heat treatment furnace to the end of the quality evaluation was 5 days. That is, according to the baking method of the present invention, the baking of the heat treatment can be completed efficiently in about half the time compared to the 10 days required for the conventional baking method, and the baking time is greatly increased. I was able to shorten it.
[0054]
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
[0055]
【The invention's effect】
As described above, according to the present invention, when performing baking in the heat treatment furnace, by setting the baking treatment conditions so that the maximum value of the Fe contamination concentration of the evaluation wafer is less than a predetermined concentration, It is possible to perform efficient baking of the heat treatment furnace in a short time and to ensure that the heat treatment furnace satisfies various standards.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the cumulative time of an empty baking heat treatment performed in a non-oxidizing atmosphere and the maximum value of Fe contamination concentration of an evaluation wafer.

Claims (7)

熱処理炉の空焼き方法であって、空焼き熱処理後に前記熱処理炉に評価用ウエーハを投入して評価熱処理を行い、該評価用ウエーハのFe汚染濃度の最大値が所定濃度未満となるように前記空焼き熱処理条件を設定することを特徴とする熱処理炉の空焼き方法。An air baking method for a heat treatment furnace, wherein after an air baking heat treatment, an evaluation wafer is introduced into the heat treatment furnace to perform an evaluation heat treatment, and the maximum value of Fe contamination concentration of the evaluation wafer is less than a predetermined concentration. An empty baking method for a heat treatment furnace, characterized by setting an empty baking heat treatment condition. 前記評価用ウエーハにおけるFe汚染濃度の最大値の所定濃度を1.0×1012atoms/cmとすることを特徴とする請求項1に記載の熱処理炉の空焼き方法。2. The air-baking method for a heat treatment furnace according to claim 1, wherein the predetermined concentration of the maximum value of the Fe contamination concentration in the evaluation wafer is 1.0 × 10 12 atoms / cm 3 . 前記空焼き熱処理で設定する条件を、少なくとも、熱処理温度、熱処理時間、熱処理回数、熱処理雰囲気のうちの1つ以上の熱処理条件とすることを特徴とする請求項1または請求項2に記載の熱処理炉の空焼き方法。3. The heat treatment according to claim 1, wherein the conditions set in the empty baking heat treatment are at least one heat treatment condition among a heat treatment temperature, a heat treatment time, the number of heat treatments, and a heat treatment atmosphere. How to bake the furnace. 前記空焼き熱処理を、非酸化性雰囲気下において1200℃で30時間以上行うことを特徴とする請求項1ないし請求項3のいずれか一項に記載の熱処理炉の空焼き方法。4. The heat baking method for a heat treatment furnace according to claim 1, wherein the air baking heat treatment is performed at 1200 ° C. for 30 hours or more in a non-oxidizing atmosphere. 前記空焼き熱処理を、先ず酸素雰囲気下で行った後に、非酸化性雰囲気下で行うことを特徴とする請求項1ないし請求項4のいずれか一項に記載の熱処理炉の空焼き方法。5. The air baking method for a heat treatment furnace according to claim 1, wherein the air baking heat treatment is performed first in an oxygen atmosphere and then in a non-oxidizing atmosphere. 前記熱処理炉を縦型炉とすることを特徴とする請求項1ないし請求項5のいずれか一項に記載の熱処理炉の空焼き方法。The method for empty baking of a heat treatment furnace according to any one of claims 1 to 5, wherein the heat treatment furnace is a vertical furnace. 前記空焼き熱処理を行う際に、熱処理炉内に半導体ウエーハを充填しておくことを特徴とする請求項1ないし請求項6のいずれか一項に記載の熱処理炉の空焼き方法。7. The heat treatment furnace empty baking method according to claim 1, wherein a semiconductor wafer is filled in a heat treatment furnace when performing the air baking heat treatment.
JP2002307972A 2002-10-23 2002-10-23 Empty baking method for heat treatment furnace Expired - Lifetime JP3656626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307972A JP3656626B2 (en) 2002-10-23 2002-10-23 Empty baking method for heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307972A JP3656626B2 (en) 2002-10-23 2002-10-23 Empty baking method for heat treatment furnace

Publications (2)

Publication Number Publication Date
JP2004146486A JP2004146486A (en) 2004-05-20
JP3656626B2 true JP3656626B2 (en) 2005-06-08

Family

ID=32454236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307972A Expired - Lifetime JP3656626B2 (en) 2002-10-23 2002-10-23 Empty baking method for heat treatment furnace

Country Status (1)

Country Link
JP (1) JP3656626B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5090728B2 (en) * 2006-12-28 2012-12-05 直江津電子工業株式会社 Evaluation method of heat treatment furnace
CN101652835B (en) * 2007-04-20 2012-03-21 佳能安内华股份有限公司 Method of annealing semiconductor device having silicon carbide substrate and semiconductor device
TWI740285B (en) * 2018-12-27 2021-09-21 日商勝高股份有限公司 Method for determining pretreatment conditions of heat treatment furnace, pretreatment method of heat treatment furnace, heat treatment device, and heat-treated semiconductor wafer manufacturing method and manufacturing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025924A (en) * 2000-07-06 2002-01-25 Shin Etsu Handotai Co Ltd Blank baking method of heat treatment furnace

Also Published As

Publication number Publication date
JP2004146486A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US6245311B1 (en) Method for heat treatment of silicon wafer and silicon wafer
KR100214795B1 (en) Fabricating method of semiconductor device
KR20010083771A (en) Method for thermally annealing silicon wafer and silicon wafer
JP2735772B2 (en) Contaminant removal and improved minority carrier lifetime in silicon.
JP3656626B2 (en) Empty baking method for heat treatment furnace
JP6971622B2 (en) Manufacturing method of semiconductor wafer and semiconductor wafer
JPH11168106A (en) Treatment method of semiconductor substrate
US8105078B2 (en) Heat treatment jig for semiconductor silicon substrates and method for manufacturing the same
CN103237930A (en) Method of manufacturing annealed wafer
JP4552415B2 (en) Method for manufacturing silicon wafer
JP3719021B2 (en) Silicon wafer manufacturing method and silicon wafer
JP4822582B2 (en) Method for heat treatment of boron-doped silicon wafer
Green et al. The influence of silicon heat treatments on the minority carrier generation and the dielectric breakdown in MOS structures
JP6845020B2 (en) Heat treatment method for silicon wafer
JP2004072066A (en) Method of manufacturing annealed wafer
JPH11289074A (en) Manufacture of solid image pickup device
JP5498678B2 (en) Silicon wafer manufacturing method
JP5517235B2 (en) Heat treatment method for silicon wafer
JP3890819B2 (en) Heat treatment method for silicon wafer
JP4609029B2 (en) Annealed wafer manufacturing method
JP2005166994A (en) Manufacturing method of solar cell, and solar cell manufactured by the method
WO2022181391A1 (en) Method for producing silicon wafer, and silicon wafer
JP7361061B2 (en) silicon wafer
JP2009182233A (en) Washing method of annealed wafer
JP7056608B2 (en) Manufacturing method of epitaxial silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Ref document number: 3656626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term