JP3656203B2 - Thermoplastic powder coating - Google Patents

Thermoplastic powder coating Download PDF

Info

Publication number
JP3656203B2
JP3656203B2 JP00023697A JP23697A JP3656203B2 JP 3656203 B2 JP3656203 B2 JP 3656203B2 JP 00023697 A JP00023697 A JP 00023697A JP 23697 A JP23697 A JP 23697A JP 3656203 B2 JP3656203 B2 JP 3656203B2
Authority
JP
Japan
Prior art keywords
powder coating
molecular weight
coating
resin
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00023697A
Other languages
Japanese (ja)
Other versions
JPH10195176A (en
Inventor
正義 楫野
勉 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohto Kasei Co Ltd
Original Assignee
Tohto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohto Kasei Co Ltd filed Critical Tohto Kasei Co Ltd
Priority to JP00023697A priority Critical patent/JP3656203B2/en
Publication of JPH10195176A publication Critical patent/JPH10195176A/en
Application granted granted Critical
Publication of JP3656203B2 publication Critical patent/JP3656203B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は熱可塑性粉体塗料に関するものである。更に詳しくは、ビスフェノール類とエピクロルヒドリンより合成される高分子量ポリヒドロキシポリエーテルからなる熱可塑性粉体塗料に関するものであり、この粉体塗料を用いて金属を被覆することにより、優れた防食性を有す有機被覆金属加工品を得ることが出来る。
【0002】
【従来の技術】
殆どの金属加工品は錆止めの為に有機被覆塗装が施されている。特に長期防食性を要求される金属加工品にはエポキシ樹脂系塗料で被覆されているケースが多く、エポキシ樹脂特有の金属との密着性、耐衝撃性、可撓性により更に信頼性を付与している。一方、塗料の傾向として無公害性、省エネルギー化から溶剤型塗料から溶剤を使用しない粉体塗料による塗装が施されるようになってきている。
【0003】
【発明が解決しようとする課題】
しかしながら、粉体塗料は熱硬化性樹脂であるが故に潜在性硬化剤が混合されており、製造時や保管時に温度条件の管理が必要である。また塗装時においても硬化のための温度や時間を十分に注意をしながら使用しなければならない。硬化温度が低い若しくは硬化時間が短い場合には硬化不足を招き、逆の場合にはオーバーベイク即ち熱劣化を生じてしまい、共に設計した特性が確保できない等の問題を生じてしまう。また粉体塗料は回収再利用可能とされているが、被塗装物が大型になると予熱が必要であり、この場合には粉体塗料自身が熱履歴を受けて反応が進んでしまっており再利用出来ない場合も生じている。
【0004】
【課題を解決するための手段】
上記問題を解決するために、例えば貯蔵安定性の解決の為には粉体塗料中の硬化剤のマイクロカプセル化(特開平2−227470号公報)、硬化剤や硬化促進剤のドライブレンド法(特公昭62−28193号公報)、硬化条件の面では低温でも硬化するように低温硬化化(特開平3−239764号公報)等多くの方法が提案されているが、これらの問題点は使用する樹脂が熱硬化性樹脂であるが故に総て硬化性が絡んできており根本的な解決には至っていない。
【0005】
このことから、硬化の必要の無い熱可塑性樹脂を用いて粉体塗料化を行うことで解決出来ることは容易に思いつくが、本来の必要特性である金属との密着性、加工性、機械特性、長期防食性を保持するのは非常に困難であり、特公平8−11206号公報に記載されているようにプライマーの塗布が必要であった。
【0006】
本発明は上記問題を鑑み鋭意研究を行った結果、ビスフェノール類とエピクロルヒドリンより合成される高分子量ポリヒドロキシポリエーテルを粉体塗料化することによって、エポキシ樹脂系塗料の持つ金属との密着性、加工性、機械特性、長期防食性を妨げることなく熱可塑性粉体塗料を得ることを見い出し、本発明を完成したもので、本発明の目的は熱可塑性を有する粉体塗料を提供することである。
【0007】
【課題を解決するための手段】
本発明の要旨は、重量平均分子量3万〜12万(GPCにて測定:ポリスチレンによる検量線から算出)、DSCによる融点80〜120℃、還元粘度0.20〜0.60(0.2%THF溶液)で表されるビスフェノール類とエピクロルヒドリンより合成される下記の化学式で表わされる高分子量ポリヒドロキシポリエーテルからなる硬化剤の不要な熱可塑性粉体塗料である。
【0008】
【化2】

Figure 0003656203
【0009】
即ち、本発明はビスフェノール類とエピクロルヒドリンとの縮合反応によって合成される特定範囲の分子量を有する高分子量ポリヒドロキシポリエーテル、または、ビスフェノール類のグリシジルエーテルとビスフェノール類との付加重合反応によって得られる特定範囲の分子量を有する高分子量ポリヒドロキシポリエーテルを粉体塗料化したものであって、この高分子量ポリヒドロキシポリエーテルは熱硬化性樹脂であるエポキシ樹脂の基本構造を内部に保有していること、分子内にアルコール性水酸基を多く含有していること、それ自身自己造膜性を保有しているという特徴がある。即ち、エポキシ樹脂のもつ金属との密着性、加工性、機械特性、耐薬品性、長期防食性を兼ね備えており、更に熱可塑性を有する高分子量の樹脂である。
【0010】
【発明の実施の態様】
本発明について詳細に説明する。
本発明に係わる熱可塑性粉体塗料用樹脂である高分子量ポリヒドロキシポリエーテルはビスフェノール類とエピクロロヒドリンとをNaOHにて溶媒存在下もしくは不存在にて直接縮合反応させる方法によって得られる。また、ビスフェノール類のグリシジルエーテルとビスフェノール類とを溶媒存在下もしくは不存在にて塩基性触媒を用い高温の反応温度にて付加重合反応して得られる。付加重合反応に用いられるビスフェノール類のグリシジルエーテルは低分子量の液状エポキシ樹脂(例えば東都化成株式会社エポ−トートYD−128)でも良く、高分子量の固形エポキシ樹脂(例えば東都化成株式会社エポ−トートYD−014)であっても良い。また、公知の方法によって製造されるものであっても特に限定されるものではない。
従来、中分子量ポリヒドロキシポリエーテル系のこの種の樹脂(エポキシ樹脂)は、硬化剤を添加して熱硬化性樹脂として使用するものであって、硬化剤を添加することなくそのまま粉体塗料とすることは出来ない。
しかしながら本発明では、熱可塑性を保有する特定範囲の高分子量ポリヒドロキシポリエーテル系の樹脂を粉体塗料とすることを可能とした新規な発明である。
【0011】
これらの方法によって得られた熱可塑性粉体塗料用樹脂である高分子量ポリヒドロキシポリエーテルの性状の範囲としては、GPCによりポリスチレンによる検量線から算出される重量平均分子量が3万〜12万、好ましくは4〜8万、DSCによる融点80〜120℃、好ましくは85〜110℃、0.2%THF溶液での還元粘度が0.20〜0.60、好ましくは0.30〜0.50である。重量平均分子量が3万以下では自己造膜性が不足して、金属との密着性や加工性に劣り、如いては防食性に欠けてしまう。また重量平均分子量が12万以上になると塗料化が非常に困難であり実用性に欠けてしまう。更に塗装性にも問題が生じて塗膜の平滑性を保持出来ず、防食性に欠けてしまう。本発明に用いられる樹脂の具体例を挙げると東都化成株式会社製フェノトートYP−50等がある。
【0012】
本発明で粉体塗料用樹脂の製造に使用するビスフェノール類とは例えばビスフェノールA、ビスフェノールFが用いられる。更に、本発明に係わる粉体塗料は必要に応じて着色顔料、一例を挙げると酸化チタンやカーボンブラック等が使用でき、更に防食性向上や強度アップを目的に体質顔料、一例を挙げると炭酸カルシウム、シリカ、硫酸バリウム、マイカ、ガラス短繊維等が使用できる。また一般的に粉体塗料に使用されている塗料添加剤、一例を挙げると流れ性調製剤、シランカップリング剤、消泡剤等の併用も可能である。
塗料の製造方法に関しては従来から粉体塗料に採用されている方法を取ることが出来る。即ち、これらの原材料をヘンシェルミキサーにて予備混合した後押出し混練機にて溶融混合し、更に微粉砕することにより粉体塗料を得ることが出来る。塗装方法に関しても粉体塗料と同一の塗装方法を利用でき静電スプレー塗装、流動浸漬塗装、溶射塗装等いずれの方法でも塗装出来る。
【0013】
【実施例及び比較例】
以下に実施例と比較例を用いて、更に具体的に説明する。
実施例1
YP−50を90重量部(以下部と略す)に酸化チタン9部と流動性調整剤1部を三井鉱山(株)製ヘンシェルミキサーにて予備混合した後、東芝機械(株)製TEM−50を用いて溶融混合した。更にセイシン企業(株)製冷凍粉砕機を用いて粉砕分級を行い、平均粒径90μmの粉体塗料1を得た。この粉体塗料を用いて試験片の製作を行った。一方得られた粉体塗料1の貯蔵安定性評価も行った。
試験片−1 下表−1塗膜外観評価用試験片
300℃に予熱された被塗装物に流動浸漬塗装を行う。塗装終了後はそのまま室温まで放冷した。被塗装物の大きさは10×10×100mmの鉄心を用いた。
試験片−2 下表−1塗膜強度及び防食性評価用試験片
300℃に予熱された被塗装物に被塗装物に静電スプレー塗装を行う。塗装終了後はそのまま室温まで放冷した。被塗装物の大きさは下表−2に示す。
試験片−3 下表−1接着試験評価用試験片
250℃に予熱された被塗装物2枚に流動浸漬塗装を行う。流動浸漬後塗装終了後速やかに12.5mm幅で重ね合わせた後そのまま室温まで放冷した。被塗装物の大きさは25×100×1.6mmの冷間圧延鋼板を用いた。
【0014】
実施例2
YP−50を80重量部に炭酸カルシウム14部、酸化チタン5部と流動性調整剤1部とした以外は実施例1と同様の処理を行った。得られた粉体塗料を粉体塗料2とする。評価は実施例1と同一の項目につき評価した。
【0015】
実施例3
YP−50を80重量部に硫酸バリウム14部、酸化チタン5部と流動性調整剤1部とした以外は実施例1と同様の処理を行った。得られた粉体塗料を粉体塗料3とする。評価は実施例1と同一の項目につき評価した。
【0016】
実施例4
ビスフェノールF型エポキシ樹脂とビスフェノールFを用いてYP−50と同一の製造方法で高分子量ポリヒドロキシポリエーテルを得た。この樹脂は重量平均分子量45,800、DSCによる融点84℃、還元粘度0.47であった。この樹脂を80部にシリカ14部、酸化チタン5部と流動性調整剤1部とした以外は実施例1と同様の処理を行った。得られた粉体塗料を粉体塗料4とする。評価は実施例1と同一の項目につき評価した。
実施例5
実施例1で使用した際の回収粉体塗料と未使用の粉体塗料を1/2づつ混合して同様の評価を行った。
【0017】
比較例1
標準硬化条件が200℃×20分硬化タイプのエポキシ樹脂系粉体塗料を用いて実施例1と同様の評価を行った。この粉体塗料はエポキシ樹脂78.1部(東都化成株式会社製エポトートYD−014)とジシアンジアミド1.7部(日本カーバイド株式会社ヂシアンヂアミド)と促進剤0.2部(四国化成工業株式会社製キュアゾールC11Z)と炭酸カルシウム14部、酸化チタン5部と流動性調整剤1部からなり、三井鉱山(株)製ヘンシェルミキサーにて予備混合した後、ブッスジャパン(株)製PLK−46を用いて溶融混合した。更にホソカワミクロン(株)製ACMパルペライザーACM−10を用いて粉砕分級を行い、平均粒径50μmの粉体塗料1を得た。
比較例2
特性比較のため比較例1の粉体塗料を標準硬化条件で硬化させた試験片についても同様の評価を行った。
【0018】
比較例3
特性比較のため比較例1で使用した際の回収粉体塗料と未使用の粉体塗料を1/2づつ混合して同様の評価を行った。
比較例4
特性比較のため特許請求範囲外である数平均分子量が2万の樹脂を用いた以外は実施例1と同様の評価を行った。
【0019】
以上の比較評価結果を表1に、又試験項目及び試験方法を表2に示す。
【0020】
【表1】
Figure 0003656203
【0021】
【表2】
Figure 0003656203
【0022】
【発明の効果】
本発明は以上に述べたとおり、塗膜外観、機械物性、防食性を損なうことなく後硬化の必要としない粉体塗料であることが明白である。即ち塗装時の塗膜外観さえ確保できる温度を設定すれば後硬化も必要なく、そのうえ回収粉体塗料の再使用や高温長時間の保管を行っても何ら問題が発生しないことが判明した。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoplastic powder coating. More specifically, the present invention relates to a thermoplastic powder coating composed of a high molecular weight polyhydroxy polyether synthesized from bisphenols and epichlorohydrin. By coating the metal with this powder coating, it has excellent anticorrosive properties. An organic coated metal processed product can be obtained.
[0002]
[Prior art]
Most metal products have an organic coating to prevent rust. In particular, many metal processed products that require long-term anticorrosion properties are coated with an epoxy resin-based paint, which provides even more reliability through adhesion, impact resistance, and flexibility with metal specific to epoxy resins. ing. On the other hand, as a tendency of the paint, coating with a powder paint that does not use a solvent is being applied from a solvent-type paint due to non-pollution and energy saving.
[0003]
[Problems to be solved by the invention]
However, since the powder coating is a thermosetting resin, a latent curing agent is mixed therein, and it is necessary to manage temperature conditions during production and storage. In addition, it must be used with careful attention to the temperature and time for curing during painting. When the curing temperature is low or when the curing time is short, insufficient curing is caused, and in the opposite case, overbaking, that is, thermal degradation occurs, and problems such as inability to secure the characteristics designed together are caused. In addition, powder coatings can be recovered and reused, but preheating is required when the object to be coated becomes large. In this case, the powder coating itself has received a thermal history and the reaction has progressed, so There are cases where it cannot be used.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, for example, in order to solve the storage stability, microencapsulation of a curing agent in a powder coating (Japanese Patent Laid-Open No. 2-227470), a dry blending method of a curing agent and a curing accelerator ( Japanese Patent Publication No. 62-28193), and in terms of curing conditions, many methods such as low-temperature curing (Japanese Patent Laid-Open No. Hei 3-239964) have been proposed so as to cure even at low temperatures. However, these problems are used. Since the resin is a thermosetting resin, all the curability is entangled and no fundamental solution has been reached.
[0005]
From this, it is easy to think that it can be solved by making a powder coating using a thermoplastic resin that does not need curing, but the original required properties of adhesion with metal, workability, mechanical properties, It was very difficult to maintain long-term anticorrosion properties, and it was necessary to apply a primer as described in Japanese Patent Publication No. 8-111206.
[0006]
As a result of diligent research in view of the above-mentioned problems, the present invention makes powder coating a high molecular weight polyhydroxy polyether synthesized from bisphenols and epichlorohydrin, thereby allowing adhesion and processing with a metal of an epoxy resin coating. The present invention has been completed by finding that a thermoplastic powder coating can be obtained without impairing properties, mechanical properties, and long-term corrosion resistance, and an object of the present invention is to provide a powder coating having thermoplasticity.
[0007]
[Means for Solving the Problems]
The gist of the present invention is a weight average molecular weight of 30,000 to 120,000 (measured by GPC: calculated from a calibration curve using polystyrene), a melting point of 80 to 120 ° C. by DSC, and a reduced viscosity of 0.20 to 0.60 (0.2%). This is a thermoplastic powder coating material that does not require a curing agent and is composed of a high molecular weight polyhydroxypolyether represented by the following chemical formula synthesized from bisphenols represented by (THF solution) and epichlorohydrin.
[0008]
[Chemical formula 2]
Figure 0003656203
[0009]
That is, the present invention relates to a high molecular weight polyhydroxy polyether having a specific range of molecular weight synthesized by a condensation reaction of bisphenols and epichlorohydrin, or a specific range obtained by addition polymerization reaction of glycidyl ethers of bisphenols and bisphenols. A high molecular weight polyhydroxypolyether having a molecular weight of ## STR1 ## is made into a powder coating, and this high molecular weight polyhydroxypolyether has a basic structure of an epoxy resin, which is a thermosetting resin, It has a feature that it contains a lot of alcoholic hydroxyl groups and has self-forming properties. That is, it is a high molecular weight resin that has adhesiveness to a metal possessed by an epoxy resin, processability, mechanical properties, chemical resistance, and long-term corrosion resistance, and further has thermoplasticity.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in detail.
The high molecular weight polyhydroxy polyether, which is a resin for thermoplastic powder coatings according to the present invention, can be obtained by a method in which bisphenols and epichlorohydrin are directly subjected to a condensation reaction with NaOH in the presence or absence of a solvent. Further, it can be obtained by subjecting glycidyl ether of bisphenol and bisphenol to an addition polymerization reaction at a high reaction temperature using a basic catalyst in the presence or absence of a solvent. The glycidyl ether of bisphenol used in the addition polymerization reaction may be a low molecular weight liquid epoxy resin (for example, Toto Kasei Epo Tote YD-128) or a high molecular weight solid epoxy resin (for example, Toto Kasei Epo Tote YD). -014). Moreover, even if it is manufactured by a known method, it is not particularly limited.
Conventionally, this kind of resin (epoxy resin) of medium molecular weight polyhydroxypolyether type is used as a thermosetting resin by adding a curing agent, and can be used as a powder coating without adding a curing agent. I can't do it.
However, the present invention is a novel invention that makes it possible to use a high molecular weight polyhydroxypolyether-based resin having a specific range of thermoplasticity as a powder coating material.
[0011]
The range of properties of the high molecular weight polyhydroxypolyether, which is a resin for thermoplastic powder coatings obtained by these methods, is that the weight average molecular weight calculated from a calibration curve by polystyrene by GPC is 30,000 to 120,000, preferably Is 40 to 80,000, melting point by DSC is 80 to 120 ° C., preferably 85 to 110 ° C., and reduced viscosity in 0.2% THF solution is 0.20 to 0.60, preferably 0.30 to 0.50. is there. When the weight average molecular weight is 30,000 or less, the self-film forming property is insufficient, the adhesion to metal and the workability are inferior, and thus the anticorrosion property is insufficient. Further, when the weight average molecular weight is 120,000 or more, it is very difficult to make a coating material, which is not practical. Furthermore, a problem also arises in the paintability, the smoothness of the coating film cannot be maintained, and the anticorrosion property is lacking. Specific examples of the resin used in the present invention include Phenotote YP-50 manufactured by Tohto Kasei Co., Ltd.
[0012]
In the present invention, bisphenol A and bisphenol F are used as the bisphenols used in the production of the resin for powder coatings. Further, the powder coating according to the present invention can be used as a color pigment, if necessary, for example, titanium oxide or carbon black. For example, an extender pigment for the purpose of improving the anticorrosion property and increasing the strength. For example, calcium carbonate. Silica, barium sulfate, mica, short glass fiber, etc. can be used. In addition, paint additives generally used in powder coatings, for example, a flowability adjusting agent, a silane coupling agent, and an antifoaming agent can be used in combination.
With respect to the method for producing the paint, a method conventionally used for powder paint can be employed. That is, a powder coating material can be obtained by premixing these raw materials with a Henschel mixer, melting and mixing with an extrusion kneader, and further finely pulverizing. As for the coating method, the same coating method as that of the powder coating can be used, and it can be applied by any method such as electrostatic spray coating, fluid immersion coating, and spray coating.
[0013]
[Examples and Comparative Examples]
This will be described in more detail below using examples and comparative examples.
Example 1
90 parts by weight (hereinafter abbreviated as YP-50) of YP-50 and 9 parts of titanium oxide and 1 part of a fluidity adjusting agent were premixed with a Henschel mixer manufactured by Mitsui Mining Co., Ltd., and then TEM-50 manufactured by Toshiba Machine Co., Ltd. Were melt mixed. Furthermore, pulverization classification was performed using a freeze pulverizer manufactured by Seishin Enterprise Co., Ltd. to obtain a powder coating material 1 having an average particle size of 90 μm. Test pieces were produced using this powder coating material. On the other hand, the storage stability of the obtained powder coating material 1 was also evaluated.
Test piece-1 Table 1 below Test piece for coating film appearance evaluation Fluidized dip coating is performed on an object to be coated preheated to 300 ° C. After the completion of painting, it was allowed to cool to room temperature. The size of the object to be coated was an iron core of 10 × 10 × 100 mm.
Test piece-2 Table 1 below Test piece for coating strength and corrosion resistance evaluation Electrostatic spray coating is performed on the object to be coated which has been preheated to 300 ° C. After the completion of painting, it was allowed to cool to room temperature. The size of the object is shown in Table-2 below.
Test piece-3 Test piece for adhesion test evaluation in the following table-1 Fluid dip coating is performed on two objects to be coated preheated to 250 ° C. After the fluid immersion, after the coating was completed, the layers were superposed with a width of 12.5 mm and then allowed to cool to room temperature. A cold-rolled steel plate having a size of 25 × 100 × 1.6 mm was used for the object to be coated.
[0014]
Example 2
The same treatment as in Example 1 was performed except that 80 parts by weight of YP-50 was replaced with 14 parts of calcium carbonate, 5 parts of titanium oxide, and 1 part of a fluidity modifier. The obtained powder coating material is designated as powder coating material 2. Evaluation was performed on the same items as in Example 1.
[0015]
Example 3
The same treatment as in Example 1 was performed except that 80 parts by weight of YP-50 was changed to 14 parts of barium sulfate, 5 parts of titanium oxide, and 1 part of a fluidity modifier. The obtained powder coating material is designated as powder coating material 3. Evaluation was performed on the same items as in Example 1.
[0016]
Example 4
Using bisphenol F type epoxy resin and bisphenol F, high molecular weight polyhydroxy polyether was obtained by the same production method as YP-50. This resin had a weight average molecular weight of 45,800, a melting point of 84 ° C. by DSC, and a reduced viscosity of 0.47. The same treatment as in Example 1 was performed except that 80 parts of this resin was replaced with 14 parts of silica, 5 parts of titanium oxide and 1 part of a fluidity modifier. The obtained powder coating material is designated as powder coating material 4. Evaluation was performed on the same items as in Example 1.
Example 5
The same evaluation was performed by mixing the recovered powder paint used in Example 1 and the unused powder paint in half.
[0017]
Comparative Example 1
The same evaluation as in Example 1 was performed using an epoxy resin powder coating with a standard curing condition of 200 ° C. × 20 minutes. This powder coating is composed of 78.1 parts of epoxy resin (Epototo YD-014 manufactured by Toto Kasei Co., Ltd.), 1.7 parts of dicyandiamide (Dicyandiamide, Nippon Carbide Co., Ltd.) and 0.2 parts of accelerator (Curesol manufactured by Shikoku Kasei Kogyo Co., Ltd.). C11Z), 14 parts of calcium carbonate, 5 parts of titanium oxide and 1 part of a fluidity modifier, premixed with a Henschel mixer manufactured by Mitsui Mining Co., Ltd., and then melted using PLK-46 manufactured by Buss Japan Co., Ltd. Mixed. Further, pulverization and classification were performed using an ACM pulperizer ACM-10 manufactured by Hosokawa Micron Corporation to obtain a powder coating material 1 having an average particle diameter of 50 μm.
Comparative Example 2
The same evaluation was performed on a test piece obtained by curing the powder coating material of Comparative Example 1 under standard curing conditions for property comparison.
[0018]
Comparative Example 3
In order to compare the characteristics, the recovered powder paint used in Comparative Example 1 and the unused powder paint were mixed in half and the same evaluation was performed.
Comparative Example 4
Evaluation was performed in the same manner as in Example 1 except that a resin having a number average molecular weight of 20,000, which is outside the scope of the claims, was used for characteristic comparison.
[0019]
The above comparative evaluation results are shown in Table 1, and the test items and test methods are shown in Table 2.
[0020]
[Table 1]
Figure 0003656203
[0021]
[Table 2]
Figure 0003656203
[0022]
【The invention's effect】
As described above, it is apparent that the present invention is a powder coating that does not require post-curing without impairing the appearance of the coating film, mechanical properties, and corrosion resistance. In other words, it was found that if a temperature at which a coating film appearance at the time of coating can be ensured is set, no post-curing is necessary, and no problem occurs even if the recovered powder coating is reused or stored at a high temperature for a long time.

Claims (1)

重量平均分子量3万〜12万(GPCにて測定:ポリスチレンによる検量線から算出)、DSCによる融点80〜120℃、還元粘度0.20〜0.60(0.2%THF溶液)で表されるビスフェノール類とエピクロルヒドリンより合成される下記の化学式で表わされる高分子量ポリヒドロキシポリエーテルからなる硬化剤の不要な熱可塑性粉体塗料。
Figure 0003656203
Weight average molecular weight 30,000 to 120,000 (measured with GPC: calculated from calibration curve with polystyrene), melting point 80 to 120 ° C. with DSC, reduced viscosity 0.20 to 0.60 (0.2% THF solution) A thermoplastic powder coating material that does not require a curing agent and is composed of a high molecular weight polyhydroxypolyether represented by the following chemical formula synthesized from bisphenols and epichlorohydrin.
Figure 0003656203
JP00023697A 1997-01-06 1997-01-06 Thermoplastic powder coating Expired - Fee Related JP3656203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00023697A JP3656203B2 (en) 1997-01-06 1997-01-06 Thermoplastic powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00023697A JP3656203B2 (en) 1997-01-06 1997-01-06 Thermoplastic powder coating

Publications (2)

Publication Number Publication Date
JPH10195176A JPH10195176A (en) 1998-07-28
JP3656203B2 true JP3656203B2 (en) 2005-06-08

Family

ID=11468345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00023697A Expired - Fee Related JP3656203B2 (en) 1997-01-06 1997-01-06 Thermoplastic powder coating

Country Status (1)

Country Link
JP (1) JP3656203B2 (en)

Also Published As

Publication number Publication date
JPH10195176A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
US7122585B2 (en) Coating powders, methods of manufacture thereof, and articles formed therefrom
US8574708B2 (en) Thin chip resistant powder topcoats for steel
CA2039273A1 (en) Elastomer modified epoxy resin for powder coating compositions
US5264503A (en) Phenol-terminated epoxy resin with functional elastomer
JPH06293867A (en) Matte powdery coating composition, method for coating and film made therefrom
US6537671B2 (en) Coating powders having enhanced electrostatic chargeability
US6749939B2 (en) Composition having sealing and sound dampening properties and methods related thereto
KR101138470B1 (en) A method of epoxy resins for a pulverulent body paints and a pulverulent body paints composition
EP1361257B1 (en) Coating powders, methods of manufacture thereof, and articles formed therefrom
US7223477B2 (en) Coating powders having enhanced flexability
JP3656203B2 (en) Thermoplastic powder coating
JPS59193970A (en) Powder coating composition
JP4779379B2 (en) Epoxy resin composition for powder coating
JP2000109728A (en) Powder coating composition capable of being cured at wide baking temperature range and its coating application
JP3283224B2 (en) Manufacturing method of exterior painted cast iron pipe and exterior painted cast iron pipe
US6841251B2 (en) Composition having sealing and sound dampening properties and methods related thereto
JPS6336305B2 (en)
JPS60248725A (en) Epoxy resin powder composition
JP2000204289A (en) Powder paint composition
JP3794289B2 (en) Metal tubes coated with epoxy resin powder coating
KR102175053B1 (en) Powder coating composition
JPH08283656A (en) Solid epoxy resin composition for rapidly curable powder coating
JPS6369872A (en) Composition for electrically conductive epoxy resin coating
JPH09100425A (en) Powder paint for casting
JP4971556B2 (en) Epoxy resin powder coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees