JP3655932B2 - Method for producing colored titanium material with excellent adhesion of oxide film - Google Patents

Method for producing colored titanium material with excellent adhesion of oxide film Download PDF

Info

Publication number
JP3655932B2
JP3655932B2 JP09272494A JP9272494A JP3655932B2 JP 3655932 B2 JP3655932 B2 JP 3655932B2 JP 09272494 A JP09272494 A JP 09272494A JP 9272494 A JP9272494 A JP 9272494A JP 3655932 B2 JP3655932 B2 JP 3655932B2
Authority
JP
Japan
Prior art keywords
voltage
titanium
adhesion
titanium alloy
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09272494A
Other languages
Japanese (ja)
Other versions
JPH07300697A (en
Inventor
直子 田籠
泉 武藤
和夫 山岸
与七 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyo Rikagaku Kenkyusho Co Ltd
Original Assignee
Nippon Steel Corp
Toyo Rikagaku Kenkyusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyo Rikagaku Kenkyusho Co Ltd filed Critical Nippon Steel Corp
Priority to JP09272494A priority Critical patent/JP3655932B2/en
Publication of JPH07300697A publication Critical patent/JPH07300697A/en
Application granted granted Critical
Publication of JP3655932B2 publication Critical patent/JP3655932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、建材や装飾品などに使用する酸化皮膜の密着性に優れた色ムラのない発色チタン材の製造方法に関する。
【0002】
【従来の技術】
近年、発色チタンは、腐食環境の厳しい地域での屋根材、外装材としてのみならず、意匠性及び美感を重んずるインテリアパネルとして、また、高級性及びファッション性を重んじるアクセサリー及びタイピンなどの装飾品として注目を浴びている。
【0003】
チタンの発色法としては従来から大気酸化法、陽極酸化法、化成処理法が知られている。これらの発色法の中でも陽極酸化法は中間色のみならず種々の色を発色させることが可能であり、極めて有効な手法であるが、酸化皮膜の密着姓が劣るため、密着姓を向上させるため様々な研究がなされている。
【0004】
例えば特開昭62−86197号公報には、アルカリ脱脂、フッ化水素酸による一次酸洗、フッ化水素酸−過酸化水素混合水溶液中での二次酸洗を行い、表面を清浄化したチタン材及びチタン合金材を陽極酸化法により酸化皮膜を形成した後、175℃〜375℃の温度に於いて3秒〜20分加熱処理することで酸化皮膜の密着性が高められることが開示されている。しかし、チタン材及びチタン合金材に複数の清浄化処理を行わなくてはならない上、チタン材及びチタン合金材の陽極酸化処理を行った後、電解浴中から取り出して、加熱炉に投入する複雑な作業工程を必要とするため、生産効率も悪く、製造コストも高くなる。
【0005】
また、特開昭63−18099号公報には、アルカリ脱脂、フッ化水素酸による一次酸洗、フッ化水素酸−過酸化水素混合水溶液での二次酸洗を行い、表面を清浄化したチタン材及びチタン合金材を100℃〜350℃の温度に於いて3秒以上加熱処理して酸化皮膜を生成せしめた後、印加電圧を3V〜180Vとして陽極酸化処理をすることで酸化皮膜の密着性が高められることが開示されている。しかし、チタン材及びチタン合金材の複数の清浄化処理を行わなくてはならない上、チタン材を加熱炉から取り出して、電解浴中に投入する複雑な作業工程を必要とするため、生産効率も悪く、製造コストも高くなる。
【0006】
さらに、特開平4−221099号公報には、酸洗による清浄化処理工程を省略したチタン材及びチタン合金材に、所定濃度の硫酸−クロム酸混合浴中で、0.02〜0.5A/dm2 の陽極及び陰極電流密度、0.01〜1.0Hzの繰り返し数で定電流交番電解を行うことで、酸化皮膜の密着性が高められることが開示されている。しかし、複雑な電解法により陽極酸化処理を行う上に、電解液にクロム酸を使用するため廃液処理を必要とする。
【0007】
さらにまた、特開平3−236496号公報には、フッ化水素酸による一次酸洗、フッ化水素酸−過酸化水素混合水溶液での二次酸洗を行い、表面を清浄化したチタン材及びチタン合金材を電解浴に浸漬し、カーボンを対極として予備電解(直流電解、交流電解、パルス電解など)を行った後に、陽極酸化処理を行うことで酸化皮膜の密着性が高められることが開示されている。この予備電解は、チタン材及びチタン合金材表面に吸着した酸化皮膜の密着性を阻害するアニオン成分を電気的に除去するために行う。しかし、チタン材及びチタン合金材に複数の清浄化処理を行う上、陽極酸化処理前に予備電解を必要とするため、生産効率が悪く、製造コストも高くなる。
【0008】
以上のように、今までの陽極酸化法による発色チタン材及び発色チタン合金材の製造法に於いて酸化皮膜の密着性を向上させる技術は、▲1▼複数の清浄化処理を行ったチタン材及びチタン合金材に、陽極酸化処理及び加熱処理を行う、▲2▼定電流交番電解を行う、▲3▼複数の清浄化処理を行ったチタン材及びチタン合金材に、予備電解を行った後、陽極酸化処理を行うことに基づいている。したがって、従来技術に基づいて酸化皮膜の密着性の優れた発色チタン材及び発色チタン合金材を得るには、複雑な作業工程、あるいは、複雑な電解法を行うことが必要である。
【0009】
【発明が解決しようとする課題】
このような技術の現状にかんがみて本発明は、複雑な作業工程及び複雑な電解法を必要としない、陽極酸化法による酸化皮膜の密着性に優れた発色チタン材及び発色チタン合金材の製造方法を提供するものであり、特に本発明は、陽極酸化法によるチタン材及びチタン合金材の酸化皮膜の密着性を向上することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は、簡易かつ少数工程で、陽極酸化法によるチタン材及びチタン合金材の酸化皮膜の密着性を向上すべく、電圧パターンと酸化皮膜の密着性の関係、電圧パターンと電解電流値及び酸化皮膜密着性の関係、陽極酸化条件と酸化皮膜の密着性の関係などについて研究を行った結果、
(1)陽極酸化法による発色チタン材及び発色チタン合金材の製造方法に於いて、自然浸漬状態からアノード分極方向に所定電圧に到達するまで分極し、チタン材及びチタン合金材を所定電圧で定電圧陽極酸化した後、所定電圧からカソード分極方向に分極し、0Vに戻す際、(所定の陽極酸化電圧(V))×0.5±25Vの範囲にパルス状のアノード電流が流れること、
(2)この(所定の陽極酸化電圧(V))×0.5±25Vで流れたパルス状のアノード電流が、酸化皮膜の密着性を著しく向上すること、
(3)所定の電解電圧で陽極酸化処理を行った後、(所定の陽極酸化電圧(V))×0.5±25Vの範囲で、カソード分極方向に分極し、通電を止めると、酸化皮膜の密着性は著しく向上すること、
(4)所定の電解電圧で陽極酸化処理を行った後、(所定の陽極酸化電圧(V))×0.5±25Vの範囲で、定電位保持した後、通電を止めると、酸化皮膜の密着性は著しく向上すること、
(5)(1)〜(4)の知見は脱脂による清浄化処理を行ったのみのチタン材及びチタン合金材で再現でき、複数の清浄化工程を必要としないため、経済的に優れていること、
などの全く新しい知見を得た。
【0011】
この発明は、上記知見によってなされたものであって、その要旨とするところは下記の通りである。
1)陽極酸化法による発色チタン材及び発色チタン合金材の製造方法に於いて、自然浸漬状態からアノード分極方向に掃引速度5V/min以上で所定電圧に到達するまで分極し、チタン材及びチタン合金材を所定電圧で定電圧陽極酸化した後、所定電圧からカソード分極方向に掃引速度5V/min〜100V/minで分極し、0Vに戻すことを特徴とする酸化皮膜の密着性に優れ、色ムラのない発色チタン材及びチタン合金材の製造方法。
2)陽極酸化法による発色チタン材及び発色チタン合金材の製造方法に於いて、自然浸漬状態からアノード分極方向に掃引速度5V/min以上で所定電圧に到達するまで分極し、チタン材及びチタン合金材を所定電圧で定電圧陽極酸化した後、通電を止める前に、(所定の陽極酸化電圧(V))×0.5±25Vの電圧範囲をカソード方向に掃引速度5V/min〜100V/minで分極すること、あるいはこの電圧範囲で5秒〜2分間定電位保持することを特徴とする酸化皮膜の密着性に優れ、色ムラのない発色チタン材及び発色チタン合金材の製造方法。
【0012】
【作用】
以下、本発明の電圧パターン及び種々の電解条件の限定理由について詳細に説明する。
(1)所定電圧で定電圧陽極酸化した後にカソード分極方向へ分極を行う理由この操作を行うと、(所定の陽極酸化電圧(V))×0.5±25Vの範囲でパルス状にアノード電流が流れ、酸化皮膜の密着性が従来のものに比べて大きく改善されることが、本発明者の実験により明らかになった。
【0013】
図1に、所定の陽極酸化電圧とパルス状のアノード電流(ここでは安定化電流と呼ぶ)が出現した電圧(ここでは安定化電圧と呼ぶ)の関係を示す。図1より、安定化電圧は、(所定の陽極酸化電圧(V))×0.5±25Vの範囲にあることが分かった。また、所定電圧で定電圧陽極酸化した後に瞬時に通電を止めたものでは、密着性が向上しないことが分かった。
【0014】
掃引速度5V/min〜100V/minに限定した理由は、これよりも速い掃引速度では、安定化電流が小さくなるため密着性が向上せず、遅い掃引速度では、密着性評価試験に於いて皮膜が白濁状に剥離するためである。このうち、10V/min〜90V/minが最も密着性が向上するため好ましい。
以上の知見から、所定電圧で定電圧陽極酸化を行った後に、カソード分極方向に掃引速度5V/min〜100V/minで分極を行うこととした。
【0015】
(2)所定電圧で定電圧陽極酸化する前に、自然浸漬状態から所定電圧に到達するまでアノード分極方向へ分極を行う理由
本発明者の実験により、(1)で述べた安定化電圧の及ぼす酸化皮膜の密着性の向上は、自然浸漬状態からアノード分極方向に掃引速度5V/min以上で所定電圧に到達するまで分極を行った後、所定電圧で定電圧陽極酸化を行った場合に、見られることが分かった。
掃引速度を5V/min以上に限定した理由は、これより遅い掃引速度では安定化電流は小さくなり密着性の向上は見られなかったためである。このうち、10V/min以上が最も密着性が向上するため好ましい。
以上の知見から、所定電圧で定電圧陽極酸化する前に、自然浸漬状態からアノード分極方向に掃引速度5V/min以上で所定電圧に到達するまで分極を行うこととした。
【0016】
(3)所定電圧で定電圧陽極酸化した後、通電を止める前に、(所定の陽極酸化電圧(V))×0.5±25Vの電圧範囲をカソード分極方向に分極、あるいはこの電圧範囲で定電圧電解した理由
本発明者は、安定化電圧の出現する(所定の陽極酸化電圧(V))×0.5±25Vの電圧範囲のみカソード分極方向に分極を行った場合でも、酸化皮膜の密着性が向上するのか確認実験を行った。この結果、(所定の陽極酸化電圧(V))×0.5±25Vの範囲をカソード分極方向に掃引速度5V/min〜100V/minで分極した場合、酸化皮膜の密着性が向上することが分かった。
ここで規定した電圧の範囲外で分極を行った場合では、酸化皮膜の密着性の向上は見られなかった。また、掃引速度を5V/min〜100V/minに限定した理由は、これより速い掃引速度では密着性の向上は見られず、遅い掃引速度では、密着性評価試験に於いて、皮膜が白濁状に剥離するためである。
【0017】
同様に、本発明者は、安定化電圧の出現する(所定の陽極酸化電圧(V))×0.5±25Vの電圧範囲で5秒〜2分間定電圧電解を行った場合でも、酸化皮膜の密着性が向上するのか確認実験を行った結果、酸化皮膜の密着性が向上することが分かった。
ここで規定した電圧の範囲外で定電圧電解を行った場合では、酸化皮膜の密着性の向上は見られなかった。また、定電圧電解時間を5秒〜2分間に限定した理由は、これより短い電解時間では密着性の向上は見られず、長い時間では密着性評価試験に於いて、皮膜が白濁状に剥離するためである。
電解電圧は所定の陽極酸化電圧に対し、図1のグラフ上にあることが好ましい。
【0018】
以上の知見から、所定電圧で定電圧陽極酸化した後、通電を止める前に、(所定の陽極酸化電圧(V))×0.5±25Vの電圧範囲をカソード分極方向に掃引速度5V/min〜100V/minで分極を行う、あるいはこの電圧範囲で5秒〜2分間、定電圧電解を行うこととした。
【0019】
以上の実験結果から、発色チタン材及び発色チタン合金材の酸化皮膜の密着性を向上させる方法として、3つの電圧パターンが採用できる。これらを図2に示す。A,B,Cの何れのパターンによっても、密着性の優れた発色チタン材及び発色チタン合金材が作製できるが、簡便な電圧パターンで密着性に優れた発色材が作製できるという点では、Aの電圧パターンが最も好ましい。
電解浴は一般的な、硫酸浴、硫酸−燐酸混合浴あるいは、硫酸−燐酸−過酸化水素混合浴中で充分な密着性が得られる。
【0020】
【実施例】
(実施例1)
本発明を実施例に基づいて詳細に説明する。
試料として、純チタン板(100mm×50mm×0.5mmt)を脱脂により清浄化したものを用いた。電解液の撹拌はポンプにより行った。
表1に、浴温20℃〜21℃の10g/l硫酸浴中で、図2(A)の電圧パターンで、自然浸漬状態からアノード分極方向に種々の掃引速度で所定電圧に到達するまで分極し、純チタン材を所定電圧で1分間、陽極酸化した後、所定電圧からカソード分極方向に種々の掃引速度で分極し、0Vに戻す製造法(請求項1の方法)で作製した発色チタン材の密着性評価試験結果を示す。
【0021】
密着性評価は、平面セロテープ試験、90°折曲げセロテープ試験、180°折曲げセロテープ試験により実施した。「平面セロテープ試験」とは、着色皮膜表面にセロテープを強く付着させた後、できるだけ速い速度で一気に引き剥がし、剥離した皮膜状態で評価するものである。「90°折曲げセロテープ試験」とは、試験材を90°に折曲げた角にセロテープを強く付着させた後、できるだけ速い速度で一気に引き剥がし、剥離した皮膜状態で評価するものである。「180°折曲げセロテープ試験」とは、試験材を180°に折曲げた角にセロテープを強く付着させた後、できるだけ速い速度で一気に引き剥がし、剥離した皮膜状態で評価するものである。
これらの試験の評価基準は、×…完全に剥離、△…少し変色、○…剥離なし、◎…全く剥離なし、とした。
【0022】
【表1】

Figure 0003655932
【0023】
表2に、浴温20℃〜21℃の10g/l硫酸−10g/l燐酸混合水溶液中で、同条件で陽極酸化処理を行った発色チタン材の密着性評価試験結果を示す。
【表2】
Figure 0003655932
【0024】
表3に、浴温20℃〜21℃の10g/l硫酸−10g/l燐酸−5g/l過酸化水素混合水溶液中で、同条件で陽極酸化処理を行った発色チタン材の密着性評価試験結果を示す。
【表3】
Figure 0003655932
【0025】
表4に、従来法である方形波を印加する陽極酸化法により作製した発色チタン材の密着性評価試験結果を示す。
【表4】
Figure 0003655932
【0026】
これらの結果から、従来法で作製した発色チタン材に比較し、本発明法で作製したものは高い密着性を示し、密着性が改善されていることが分かる。従って、本発明法は色ムラなく、発色チタン材の皮膜密着性を向上させるのに、極めて有効な手段であるといえる。
【0027】
(実施例2)
表5に、浴温20℃〜21℃の10g/l硫酸浴中で、図2(B)の電圧パターンで、自然浸漬状態からアノード分極方向に規定した掃引速度で所定電圧に到達するまで分極し、純チタン材を所定電圧で1分間、陽極酸化した後、(所定の陽極酸化電圧(V))×0.5±25Vの範囲内・外をカソード分極方向に請求項で規定した範囲内の掃引速度で分極した後に、通電を止める製造法(請求項2の方法)で作製した発色チタン材の密着性評価試験結果を示す。
請求項2で規定した電圧範囲内で、カソード分極方向の分極を行ったものは密着性が向上した。
【表5】
Figure 0003655932
【0028】
(実施例3)
表6に、浴温20℃〜21℃の10g/l硫酸浴中で、図2(C)の電圧パターンで、自然浸漬状態からアノード分極方向に請求項で規定した掃引速度で所定電圧に到達するまで分極し、純チタン板を所定電圧で1分間、陽極酸化した後、(所定の陽極酸化電圧(V))×0.5±25Vの範囲内・外の電圧で、1分間定電圧電解した後、通電を止める製造法(請求項3の方法)で作製した発色チタン材の密着性評価試験の結果、及び(所定の陽極酸化電圧(V))×0.5±25Vの範囲内の電圧で種々の時間定電圧電解を行い作製したものの密着性評価試験結果を示す。
請求項3で規定した電圧範囲内で、5秒〜2分間、定電圧電解したものは密着性が向上した。
【表6】
Figure 0003655932
【0029】
【発明の効果】
以上のように、本発明の着色皮膜の密着性に優れたチタンの製造法によれば、陽極酸化皮膜の色彩を変化させることなく、種々の色彩を有する着色皮膜を優れた密着性を持たせてチタン材に生成せしめることができ、建築材料及びアクセサリー類や装飾品等に最適の素材として広範な利用が期待できる。
【図面の簡単な説明】
【図1】パルス状のアノード電流の出現した電圧(安定化電圧)と陽極酸化電圧の関係を示した図である。
【図2】(A),(B),(C)は本発明法1〜3の電圧パターンの模式図である。[0001]
[Industrial application fields]
The present invention relates to a method for producing a colored titanium material having excellent color adhesion and excellent adhesion of an oxide film used for building materials and decorative articles.
[0002]
[Prior art]
In recent years, colored titanium has been used not only as roofing and exterior materials in areas with severe corrosive environments, but also as interior panels that emphasize design and aesthetics, and as accessories and tie pins that emphasize luxury and fashion. Has attracted attention.
[0003]
Conventionally known atmospheric oxidation methods, anodizing methods, and chemical conversion treatment methods are known as titanium coloring methods. Among these coloring methods, the anodic oxidation method is capable of developing not only intermediate colors but also various colors and is an extremely effective method. However, since the adhesion last name of the oxide film is inferior, it is various in order to improve the adhesion last name. Research has been done.
[0004]
For example, Japanese Patent Application Laid-Open No. 62-86197 discloses titanium whose surface has been cleaned by alkaline degreasing, primary pickling with hydrofluoric acid, and secondary pickling in a hydrofluoric acid-hydrogen peroxide mixed aqueous solution. It is disclosed that the adhesion of the oxide film can be improved by forming an oxide film from the material and the titanium alloy material by an anodic oxidation method, followed by heat treatment at a temperature of 175 ° C. to 375 ° C. for 3 seconds to 20 minutes. Yes. However, the titanium material and the titanium alloy material must be subjected to a plurality of cleaning treatments, and after anodizing the titanium material and the titanium alloy material, it is taken out from the electrolytic bath and put into a heating furnace. Since a complicated work process is required, the production efficiency is poor and the manufacturing cost is high.
[0005]
JP-A-63-18099 discloses titanium whose surface has been cleaned by alkaline degreasing, primary pickling with hydrofluoric acid, and secondary pickling with a hydrofluoric acid-hydrogen peroxide mixed aqueous solution. After forming the oxide film by heat-treating the material and the titanium alloy material at a temperature of 100 ° C. to 350 ° C. for 3 seconds or more, the applied voltage is set to 3 V to 180 V, and then the adhesion of the oxide film is performed. Is disclosed to be enhanced. However, the titanium material and the titanium alloy material must be subjected to a plurality of cleaning treatments, and the titanium material is taken out of the heating furnace and put into an electrolytic bath, so that production efficiency is also improved. It is bad and the manufacturing cost is high.
[0006]
Furthermore, Japanese Patent Laid-Open No. 4-221099 discloses that a titanium material and a titanium alloy material, which have not been subjected to the cleaning process by pickling, are mixed with 0.02 to 0.5 A / liter in a sulfuric acid-chromic acid mixed bath having a predetermined concentration. It is disclosed that the adhesion of the oxide film can be improved by performing constant current alternating electrolysis at a dm 2 anode and cathode current density and a repetition rate of 0.01 to 1.0 Hz. However, in addition to anodizing by a complicated electrolysis method, chromic acid is used as the electrolytic solution, so that waste liquid treatment is required.
[0007]
Further, JP-A-3-236696 discloses a titanium material and titanium whose surfaces are cleaned by primary pickling with hydrofluoric acid and secondary pickling with a hydrofluoric acid-hydrogen peroxide mixed aqueous solution. It is disclosed that the adhesion of the oxide film can be improved by anodic oxidation after pre-electrolysis (DC electrolysis, AC electrolysis, pulse electrolysis, etc.) using carbon as a counter electrode after immersing the alloy material in the electrolytic bath. ing. This preliminary electrolysis is performed in order to electrically remove an anionic component that inhibits the adhesion of the oxide film adsorbed on the surfaces of the titanium material and the titanium alloy material. However, since a plurality of cleaning treatments are performed on the titanium material and the titanium alloy material and preliminary electrolysis is required before the anodizing treatment, the production efficiency is poor and the manufacturing cost is increased.
[0008]
As described above, the techniques for improving the adhesion of the oxide film in the conventional methods for producing colored titanium materials and colored titanium alloy materials by the anodic oxidation method are as follows: (1) Titanium materials that have been subjected to a plurality of cleaning treatments. And anodic oxidation treatment and heat treatment of titanium alloy material, (2) constant current alternating electrolysis, (3) after pre-electrolysis on titanium material and titanium alloy material subjected to multiple cleaning treatments , Based on anodizing. Therefore, in order to obtain a colored titanium material and a colored titanium alloy material with excellent adhesion of the oxide film based on the prior art, it is necessary to perform a complicated work process or a complicated electrolytic method.
[0009]
[Problems to be solved by the invention]
In view of the current state of the technology, the present invention does not require a complicated work process and a complicated electrolysis method, and a method for producing a colored titanium material and a colored titanium alloy material excellent in adhesion of an oxide film by an anodic oxidation method In particular, an object of the present invention is to improve the adhesion of an oxide film of a titanium material and a titanium alloy material by an anodic oxidation method.
[0010]
[Means for Solving the Problems]
In order to improve the adhesion of the oxide film of the titanium material and the titanium alloy material by the anodic oxidation method in a simple and small number of steps, the present inventor has the relationship between the voltage pattern and the adhesion of the oxide film, the voltage pattern and the electrolytic current value As a result of conducting research on the relationship between oxide film adhesion and the relationship between anodization conditions and oxide film adhesion,
(1) In the manufacturing method of color developing titanium material and color developing titanium alloy material by anodic oxidation, polarization is performed from the natural immersion state until reaching a predetermined voltage in the anode polarization direction, and the titanium material and the titanium alloy material are determined at a predetermined voltage. After voltage anodization, when the voltage is polarized from the predetermined voltage to the cathode polarization direction and returned to 0V, a pulsed anode current flows in the range of (predetermined anodization voltage (V)) × 0.5 ± 25V,
(2) The pulsed anode current that flows at this (predetermined anodic oxidation voltage (V)) × 0.5 ± 25 V significantly improves the adhesion of the oxide film,
(3) After anodizing with a predetermined electrolytic voltage, the electrode is polarized in the cathode polarization direction within the range of (predetermined anodizing voltage (V)) × 0.5 ± 25 V, That the adhesion of
(4) After anodizing at a predetermined electrolytic voltage, after holding a constant potential in the range of (predetermined anodizing voltage (V)) × 0.5 ± 25 V, when energization is stopped, the oxide film That adhesion is significantly improved,
(5) The knowledge of (1) to (4) is economically superior because it can be reproduced with titanium materials and titanium alloy materials that have only been cleaned by degreasing and does not require multiple cleaning steps. about,
I got a completely new knowledge.
[0011]
The present invention has been made based on the above findings, and the gist thereof is as follows.
1) In a method for producing a colored titanium material and a colored titanium alloy material by an anodic oxidation method, the material is polarized from the natural immersion state in the anode polarization direction at a sweep rate of 5 V / min or more until a predetermined voltage is reached, and the titanium material and titanium alloy After the material is anodized at a constant voltage at a predetermined voltage, it is polarized at a sweep rate of 5 V / min to 100 V / min in the direction of cathode polarization from the predetermined voltage, and returned to 0 V. For producing color-free titanium material and titanium alloy material with no carbon black.
2) In the manufacturing method of the coloring titanium material and the coloring titanium alloy material by the anodic oxidation method, the titanium material and the titanium alloy are polarized from the natural immersion state to the anode polarization direction until reaching a predetermined voltage at a sweep rate of 5 V / min or more. After the material is subjected to constant voltage anodization at a predetermined voltage and before stopping energization, the voltage range of (predetermined anodization voltage (V)) × 0.5 ± 25 V is swept in the cathode direction from 5 V / min to 100 V / min. A method for producing a colored titanium material and a colored titanium alloy material having excellent oxide film adhesion and having no color unevenness, characterized in that it is polarized at a constant voltage or held at a constant potential in this voltage range for 5 seconds to 2 minutes.
[0012]
[Action]
Hereinafter, the reason for limiting the voltage pattern and various electrolysis conditions of the present invention will be described in detail.
(1) Reason for performing polarization in the cathode polarization direction after constant voltage anodization at a predetermined voltage When this operation is performed, the anode current is pulsed in the range of (predetermined anodization voltage (V)) × 0.5 ± 25V. As a result of experiments by the present inventor, it was found that the adhesion of the oxide film was greatly improved compared to the conventional one.
[0013]
FIG. 1 shows a relationship between a predetermined anodic oxidation voltage and a voltage (referred to herein as a stabilization voltage) at which a pulsed anode current (referred to herein as a stabilization current) appears. From FIG. 1, it was found that the stabilization voltage is in the range of (predetermined anodic oxidation voltage (V)) × 0.5 ± 25V. Further, it was found that the adhesiveness was not improved when the current supply was stopped instantaneously after the constant voltage anodization at a predetermined voltage.
[0014]
The reason for limiting the sweep speed to 5 V / min to 100 V / min is that at higher sweep speeds, the stabilized current becomes smaller and the adhesion is not improved, and at slower sweep speeds, the film is used in the adhesion evaluation test. This is because of peeling off in a cloudy state. Of these, 10 V / min to 90 V / min is preferable because adhesion is most improved.
From the above knowledge, after performing constant voltage anodization at a predetermined voltage, polarization was performed in the cathode polarization direction at a sweep rate of 5 V / min to 100 V / min.
[0015]
(2) Reason for performing polarization in the anodic polarization direction from the natural soaking state until reaching the predetermined voltage before the constant voltage anodization at a predetermined voltage. The improvement of the adhesion of the oxide film is observed when the constant voltage anodization is performed at a predetermined voltage after polarization is performed in the anodic polarization direction from the natural immersion state until reaching a predetermined voltage at a sweep rate of 5 V / min or more. I found out that
The reason for limiting the sweep speed to 5 V / min or more is that at a slower sweep speed, the stabilization current becomes smaller and no improvement in adhesion was observed. Among these, 10 V / min or more is preferable because adhesion is most improved.
From the above knowledge, before constant voltage anodization with a predetermined voltage, polarization was performed from the natural immersion state in the anodic polarization direction until reaching the predetermined voltage at a sweep rate of 5 V / min or more.
[0016]
(3) After the constant voltage anodization at a predetermined voltage and before stopping energization, the voltage range of (predetermined anodization voltage (V)) × 0.5 ± 25 V is polarized in the cathode polarization direction, or within this voltage range The reason for constant voltage electrolysis The inventor of the present invention is that even when the polarization voltage is polarized in the cathode polarization direction only within the voltage range of the stabilization voltage (predetermined anodic oxidation voltage (V)) × 0.5 ± 25 V. An experiment was conducted to confirm whether the adhesion was improved. As a result, when the range of (predetermined anodic oxidation voltage (V)) × 0.5 ± 25 V is polarized in the cathode polarization direction at a sweep rate of 5 V / min to 100 V / min, the adhesion of the oxide film can be improved. I understood.
When polarization was performed outside the voltage range specified here, no improvement in the adhesion of the oxide film was observed. Further, the reason for limiting the sweep speed to 5 V / min to 100 V / min is that no improvement in adhesion is observed at a higher sweep speed, and the film is cloudy in the adhesion evaluation test at a slower sweep speed. It is for peeling.
[0017]
Similarly, the present inventor has found that the oxide film is formed even when the constant voltage electrolysis is performed for 5 seconds to 2 minutes in a voltage range where a stabilizing voltage appears (predetermined anodic oxidation voltage (V)) × 0.5 ± 25 V. As a result of confirming whether or not the adhesion of the oxide film was improved, it was found that the adhesion of the oxide film was improved.
When constant voltage electrolysis was performed outside the voltage range specified here, no improvement in the adhesion of the oxide film was observed. The reason for limiting the constant-voltage electrolysis time to 5 seconds to 2 minutes is that no improvement in adhesion is observed when the electrolysis time is shorter than this, and the coating peels off in a long time in the adhesion evaluation test. It is to do.
The electrolysis voltage is preferably on the graph of FIG. 1 for a predetermined anodic oxidation voltage.
[0018]
From the above knowledge, after the constant voltage anodization at a predetermined voltage and before stopping energization, a voltage range of (predetermined anodization voltage (V)) × 0.5 ± 25 V is swept in the cathode polarization direction at 5 V / min. Polarization was performed at ˜100 V / min, or constant voltage electrolysis was performed in this voltage range for 5 seconds to 2 minutes.
[0019]
From the above experimental results, three voltage patterns can be employed as a method for improving the adhesion of the oxidized titanium material and the oxidized titanium alloy material. These are shown in FIG. A color-forming titanium material and a color-forming titanium alloy material having excellent adhesion can be produced by any of the patterns A, B, and C. However, in terms of the ability to produce a color developing material having excellent adhesion with a simple voltage pattern, A The voltage pattern is most preferable.
Adhesiveness can be sufficiently obtained in a general sulfuric acid bath, sulfuric acid-phosphoric acid mixed bath, or sulfuric acid-phosphoric acid-hydrogen peroxide mixed bath.
[0020]
【Example】
(Example 1)
The present invention will be described in detail based on examples.
As a sample, a pure titanium plate (100 mm × 50 mm × 0.5 mmt) cleaned by degreasing was used. The electrolytic solution was stirred with a pump.
Table 1 shows polarization in a 10 g / l sulfuric acid bath at a bath temperature of 20 ° C. to 21 ° C. with the voltage pattern shown in FIG. 2 (A) until reaching a predetermined voltage at various sweep rates in the anodic polarization direction from the natural immersion state. Then, after the pure titanium material is anodized at a predetermined voltage for 1 minute, it is polarized at various sweep speeds from the predetermined voltage in the cathode polarization direction, and is returned to 0V. The adhesion evaluation test results are shown.
[0021]
The adhesion evaluation was performed by a flat cello tape test, a 90 ° folded cello tape test, and a 180 ° folded cello tape test. The “planar cello tape test” is an evaluation in which the cello tape is strongly adhered to the surface of the colored film, then peeled off at a speed as fast as possible, and the film is peeled off. The “90 ° folded cello tape test” is an evaluation in which the test tape is peeled off at a speed as fast as possible after the cello tape is strongly attached to the corner where the test material is bent at 90 °, and the peeled film state is evaluated. The “180 ° folded cello tape test” is an evaluation in which the test tape is peeled off at a speed as fast as possible after the cello tape is strongly adhered to the corner of the test material folded at 180 °, and the peeled film state is evaluated.
The evaluation criteria for these tests were: x ... completely peeled, Δ ... slightly discolored, ◯ ... no peeling, ◎ ... no peeling at all.
[0022]
[Table 1]
Figure 0003655932
[0023]
Table 2 shows the results of an adhesion evaluation test of a colored titanium material that was anodized under the same conditions in a 10 g / l sulfuric acid-10 g / l phosphoric acid mixed aqueous solution having a bath temperature of 20 ° C. to 21 ° C.
[Table 2]
Figure 0003655932
[0024]
Table 3 shows an adhesion evaluation test for a color titanium material that was anodized under the same conditions in a 10 g / l sulfuric acid-10 g / l phosphoric acid-5 g / l hydrogen peroxide mixed aqueous solution at a bath temperature of 20 ° C. to 21 ° C. Results are shown.
[Table 3]
Figure 0003655932
[0025]
Table 4 shows the results of an adhesion evaluation test of a color developing titanium material produced by an anodic oxidation method applying a square wave, which is a conventional method.
[Table 4]
Figure 0003655932
[0026]
From these results, it can be seen that those produced by the method of the present invention show higher adhesion and improved adhesion as compared with the color developing titanium material produced by the conventional method. Therefore, it can be said that the method of the present invention is an extremely effective means for improving the film adhesion of the colored titanium material without color unevenness.
[0027]
(Example 2)
Table 5 shows polarization in a 10 g / l sulfuric acid bath at a bath temperature of 20 ° C. to 21 ° C. with the voltage pattern shown in FIG. Then, after anodizing a pure titanium material at a predetermined voltage for 1 minute, the range of (predetermined anodic oxidation voltage (V)) × 0.5 ± 25 V is within the range specified in the claim in the cathode polarization direction. The adhesion evaluation test result of the color development titanium material produced with the manufacturing method (method of Claim 2) which stops electricity supply after polarization | polarized-light with the sweep speed of this is shown.
In the voltage range defined in claim 2, the adhesion in the cathode polarization direction was improved.
[Table 5]
Figure 0003655932
[0028]
(Example 3)
Table 6 shows that in a 10 g / l sulfuric acid bath having a bath temperature of 20 ° C. to 21 ° C., the voltage pattern shown in FIG. 2C reaches a predetermined voltage at the sweep rate specified in the claims from the natural immersion state to the anodic polarization direction. And then anodizing the pure titanium plate at a predetermined voltage for 1 minute, and then performing constant voltage electrolysis for 1 minute at a voltage within and outside the range of (predetermined anodic oxidation voltage (V)) × 0.5 ± 25V. Then, as a result of the adhesion evaluation test of the coloring titanium material produced by the production method (method of claim 3) for stopping energization, and (predetermined anodic oxidation voltage (V)) × 0.5 ± 25V The adhesion evaluation test result of what was produced by performing constant-time electrolysis at various times with voltage is shown.
In the voltage range specified in claim 3, the adhesiveness improved by constant voltage electrolysis for 5 seconds to 2 minutes.
[Table 6]
Figure 0003655932
[0029]
【The invention's effect】
As described above, according to the method for producing titanium having excellent adhesion of the colored film of the present invention, the colored film having various colors can be provided with excellent adhesion without changing the color of the anodized film. Titanium material can be produced, and it can be expected to be widely used as an optimal material for building materials, accessories, and decorations.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a voltage (stabilized voltage) at which a pulsed anode current appears and an anodic oxidation voltage.
FIGS. 2A, 2B, and 2C are schematic diagrams of voltage patterns according to the first to third methods of the present invention.

Claims (3)

陽極酸化法による発色チタン材及び発色チタン合金材の製造方法に於いて、自然浸漬状態からアノード分極方向に掃引速度5V/min以上で所定電圧に到達するまで分極し、チタン材及びチタン合金材を所定電圧で定電圧陽極酸化した後、所定電圧からカソード分極方向に掃引速度5V/min〜100V/minで分極し、0Vに戻すことを特徴とする酸化皮膜の密着性に優れ、色ムラのない発色チタン材及び発色チタン合金材の製造方法。In the manufacturing method of the coloring titanium material and the coloring titanium alloy material by the anodic oxidation method, the titanium material and the titanium alloy material are polarized from the natural immersion state to the anode polarization direction until reaching a predetermined voltage at a sweep speed of 5 V / min or more. After the constant voltage anodization at a predetermined voltage, it is polarized at a sweep rate of 5 V / min to 100 V / min in the cathode polarization direction from the predetermined voltage and returned to 0 V. Method for producing colored titanium material and colored titanium alloy material. 陽極酸化法による発色チタン材及び発色チタン合金材の製造方法に於いて、自然浸漬状態からアノード分極方向に掃引速度5V/min以上で所定電圧に到達するまで分極し、チタン材及びチタン合金材を所定電圧で定電圧陽極酸化した後、通電を止める前に、(所定の陽極酸化電圧(V))×0.5±25Vの範囲をカソード分極方向に掃引速度5V/min〜100V/minで分極する処理を行うことを特徴とする酸化皮膜の密着性に優れ、色ムラのない発色チタン材及び発色チタン合金材の製造方法。In the manufacturing method of the coloring titanium material and the coloring titanium alloy material by the anodic oxidation method, the titanium material and the titanium alloy material are polarized from the natural immersion state to the anode polarization direction until reaching a predetermined voltage at a sweep speed of 5 V / min or more. After constant voltage anodization at a predetermined voltage and before stopping energization, the range of (predetermined anodization voltage (V)) × 0.5 ± 25 V is polarized in the cathode polarization direction at a sweep rate of 5 V / min to 100 V / min. A method for producing a colored titanium material and a colored titanium alloy material that is excellent in adhesion of an oxide film and has no color unevenness. 陽極酸化法による発色チタン材及び発色チタン合金材の製造方法に於いて、自然浸漬状態からアノード分極方向に掃引速度5V/min以上で所定電圧に到達するまで分極し、チタン材及びチタン合金材を所定電圧で定電圧陽極酸化した後、通電を止める前に、(所定の陽極酸化電圧(V))×0.5±25Vの範囲内の電圧で5秒〜2分間定電圧電解することを特徴とする酸化皮膜の密着性に優れ、色ムラのない発色チタン材及び発色チタン合金材の製造方法。In the manufacturing method of the coloring titanium material and the coloring titanium alloy material by the anodic oxidation method, the titanium material and the titanium alloy material are polarized from the natural immersion state to the anode polarization direction until reaching a predetermined voltage at a sweep speed of 5 V / min or more. After performing constant voltage anodization at a predetermined voltage and before stopping energization, constant voltage electrolysis is performed at a voltage within a range of (predetermined anodization voltage (V)) × 0.5 ± 25 V for 5 seconds to 2 minutes. The manufacturing method of the coloring titanium material and coloring titanium alloy material which are excellent in the adhesiveness of the oxide film and which do not have a color nonuniformity.
JP09272494A 1994-04-28 1994-04-28 Method for producing colored titanium material with excellent adhesion of oxide film Expired - Lifetime JP3655932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09272494A JP3655932B2 (en) 1994-04-28 1994-04-28 Method for producing colored titanium material with excellent adhesion of oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09272494A JP3655932B2 (en) 1994-04-28 1994-04-28 Method for producing colored titanium material with excellent adhesion of oxide film

Publications (2)

Publication Number Publication Date
JPH07300697A JPH07300697A (en) 1995-11-14
JP3655932B2 true JP3655932B2 (en) 2005-06-02

Family

ID=14062401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09272494A Expired - Lifetime JP3655932B2 (en) 1994-04-28 1994-04-28 Method for producing colored titanium material with excellent adhesion of oxide film

Country Status (1)

Country Link
JP (1) JP3655932B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2365023B (en) 2000-07-18 2002-08-21 Ionex Ltd A process for improving an electrode

Also Published As

Publication number Publication date
JPH07300697A (en) 1995-11-14

Similar Documents

Publication Publication Date Title
US4681668A (en) Anodic aluminium oxide film and method of forming it
US3213004A (en) Surface preparation of platinum group metals for electrodeposition
CN85103365A (en) The aluminum or aluminum alloy method to produce white film on surface
JP3655932B2 (en) Method for producing colored titanium material with excellent adhesion of oxide film
GB1069168A (en) Composite coated aluminium articles
JP4253716B2 (en) Surface treatment method for magnesium material products
JP3673477B2 (en) Method for forming a film of magnesium alloy
JPS5839237B2 (en) Electrolytic coloring of anodized aluminum
JP2000355795A (en) Surface treatment of aluminum and aluminum alloy
EP0015279B1 (en) Coating system
JPS63199894A (en) Method for electrolytically developing color on titanium and titanium alloy
JPH1112762A (en) Surface-treated aluminum material for two-piece can and production of surface-treated aluminum material for two-piece can
JPS62161993A (en) Production of colored titanium material having superior adhesion
JP3633308B2 (en) Method for electrolytic coloring of aluminum and aluminum alloys
JPH05302195A (en) Electroplating method for titanium and titanium alloy
JPS6345398A (en) Method for electrolytically coloring aluminum or aluminum alloy
JPH09324298A (en) Treatment of surface of aluminum or aluminum alloy
JP3633307B2 (en) Method for electrolytic coloring of aluminum and aluminum alloys
JP2001199725A (en) Method for producing titanium oxide
JPH01240696A (en) Anodic oxidation for titanium or titanium alloy
JPH0535236B2 (en)
JPH11335893A (en) Preparation of pigmented aluminum material
JPH11269696A (en) Production of electrode deposition coated aluminum material
JPH11335892A (en) Preparation of aluminum material having composite coating film composed of translucent or opaque anodically oxidized film and coating film
JPH02125897A (en) Electrolytic solution used to electrolytic oxidation of titanium and titanium alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term