JP3655926B2 - Hot water mixing controller - Google Patents

Hot water mixing controller Download PDF

Info

Publication number
JP3655926B2
JP3655926B2 JP00879393A JP879393A JP3655926B2 JP 3655926 B2 JP3655926 B2 JP 3655926B2 JP 00879393 A JP00879393 A JP 00879393A JP 879393 A JP879393 A JP 879393A JP 3655926 B2 JP3655926 B2 JP 3655926B2
Authority
JP
Japan
Prior art keywords
valve
hot water
mixing
control
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00879393A
Other languages
Japanese (ja)
Other versions
JPH06222842A (en
Inventor
文一 芝
行夫 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP00879393A priority Critical patent/JP3655926B2/en
Publication of JPH06222842A publication Critical patent/JPH06222842A/en
Application granted granted Critical
Publication of JP3655926B2 publication Critical patent/JP3655926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Control Of Temperature (AREA)

Description

【0001】
【産業上の利用分野】
本発明は湯と水の混合比率を調整し最適な混合湯温を得る湯水混合制御装置に関するものである。
【0002】
【従来の技術】
従来この種の湯水混合装置には図5に示すようなものがあった。(例えば、特開平1−312279号公報)図5において、1は湯流路、2は水流路であり、各流路に関連して自動調圧弁3が設けられている。自動調圧弁3は、湯流路1の1次圧力PH1を減圧する湯側弁体4、湯側弁座5と、水流路2の1次圧力PC1を減圧する水側弁体6及び水側弁座7と、湯側弁体4と水側弁体6とを連結する弁軸8と、湯と水の減圧後の1次圧PH1及びPC1の圧力差で動作するピストン9とで構成されている。そして、湯または水の圧力が急変してもその圧力で自動調圧弁3が移動し、湯と水の2次圧PH2とPC2とが常に等しく保たれるように作用する。さらに弁軸8にバイアス手段10が設けられ、バイアス手段10は弁軸8の端部に結合され、ボビン11とそのボビン11上に巻回され絶縁されたコイル12およびコイル12をはさむように設けられた永久磁石13を有し、コイル12は可撓部14を介して制御手段18に接続されている。
【0003】
制御手段18からコイル12に電流を流すと、その電流は永久磁石13によって発生している磁界を横切るのでフレミングの法則によって弁軸8にバイアス力が付与される。このためバイアス力の分だけ自動調圧点がずれ、例えば湯と水の2次圧PH2とPC2とが2:1の点で常に調圧されるようになり、結果的に出湯温度が高くなる。このようにコイル12への電流を変化することにより混合湯温を変える。制御手段18はコイル12に電流を流す際に微少交流信号を重畳している。これはバイアス手段10の磁気回路のヒステリシス特性や駆動開始時の摺動抵抗を軽減するためである。19は湯と水の混合部であり、混合後は流量調節開閉弁20を介して出湯されるが、その温度は混合湯温検出手段(例えばサーミスタ)15によって、またその流量は流量検出手段16によって検出され、設定手段17の値に一致させるべく制御手段18がバイアス手段10と流量調節開閉弁駆動手段21を付勢し温度調節を行なう。
【0004】
【発明が解決しようとする課題】
しかしながら上記のような構成では、流量調節開閉弁の開閉機能がパイロット式の電磁弁のような場合、流量調節開閉弁駆動手段が閉止信号を送出してもパイロット弁が閉止するまでは時間がかかっていた。このため、出湯停止時、バイアス手段の駆動量をすぐに無くしてしまうと自動調圧弁は水側弁体と水側弁座の間が大きくなり停止信号を送出して実際にパイロット弁が閉止するまでの間に混合部19に水が流入してしまう。したがって、次回出湯を開始する際はこの水が最初に吐出されることになりシャワー等を使用している場合は大変不快であった。
【0005】
本発明はかかる従来の課題を解消するもので出湯停止動作時は流量調節開閉弁駆動手段の信号が一定値以下になった後止水するまでの間は混合弁の駆動量を維持し混合室内の湯温を大きく変化させない。そして次回出湯開始時の混合湯温の安定性を良くすることを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明の湯水混合制御装置は、混合弁駆動手段を介して湯流路および水流路の流量を調節するようにした混合弁と、前記混合弁より下流側に接続したダイヤフラムをもつ止水弁、およびこの止水弁のさらに下流側に接続され、流量調節開閉弁駆動手段により駆動される流量制御弁体を有する流量調節開閉弁と、前記混合弁駆動手段と流量調節開閉弁駆動手段の駆動量をそれぞれ制御する制御手段と、流量を設定する設定手段とを具備し、前記流量制御弁体の2次側圧力をこの流量制御弁体の背圧部並びに止水弁のダイヤフラム背圧部に導くように構成し、前記設定手段からの出湯停止の信号入力時、流量制御弁体の駆動量が所定値以下になり、前記ダイヤフラムの一次側と背圧室の圧力差が止水弁を閉止する値になるまでの所定時間、前記制御手段は、混合弁駆動手段が混合弁の駆動量を停止動作途中の位置で保持するようにしたものである。
【0007】
【作用】
本発明は上記した構成により、出湯停止時に混合弁の駆動量を一定時間維持することにより混合室内の温度を大きく変化させず、次回出湯開始時の混合湯温の安定性をよくするものである。
【0008】
【実施例】
以下、本発明の一実施例を図面を用いて説明する。図1は湯水混合制御装置の断面図で、従来例の図8と同一部分には同一符合を付して詳細な説明を省略する。
【0009】
図1において、22は付勢手段で、自動調圧弁3と付勢手段22で混合弁23を形成する。24は付勢手段22の力と対向して可変バイアス力を混合弁23に付与する混合弁駆動手段である。混合弁駆動手段24は、磁性体からなる第1のプランジャ25と、第1のプランジャ25の周りに防水および絶縁された第1のコイル26を有し、第1のコイル26は制御手段18に接続されている。混合湯温は混合湯温検出手段15によって検出する。
【0010】
流量は混合部19より下流において流量調節開閉弁20により調節する。流量調節開閉弁20には弁きょう体27と、この弁きょう体27内に流量を調節する円錐状の流量制御弁体28とそれに対応する弁座29を設けている。流量制御弁体28と流体の1次圧(混合部19の圧力)とバランスをとるため、可撓性受圧体としての溝付第1のダイヤフラム30を流量制御弁体28と弁きょう体27の間に連結しており、さらに溝30aを深くして、流量制御弁体28のリフト量にかかわらず、有効受圧面積が前記弁座29の口径と常に等しくなるように構成している。第1のダイヤフラム30で1次側と完全に仕切られた第1の背圧室31と流量制御弁体28の2次側とは、連通孔32により連通している。
【0011】
第1の背圧室31と連通孔45で連通した第2の背圧室42には止水弁40があり、その構成は第2のダイヤフラム41を設け、第2のダイヤフラムがその1次側と微少に連通しながら仕切られ背圧室42との圧力差により第1の弁座43に直接当接したり離脱したりするもので、第2のダイヤフラム41が止水弁40となっている。第2のダイヤフラム41には第1の弁座43に当接する方向に付勢する第1のスプリング44を設けている。止水弁40を開閉するために、連通孔45を開閉するパイロット弁46があり、このパイロット弁46はシャフト38を介して第2のプランジャ37と連結している。
【0012】
流量制御弁体28は、付勢手段としてのスプリング34により、弁座29に当接する方向に付勢されている。また、第2のコイル35と、一方の端面を密閉したパイプ36があり、第2のコイル35への通電量により駆動される第2のプランジャ37がパイプ36内を摺動する。第2のプランジャ37はシャフト38を介して流量制御弁体28と連動する構成となっている。第2のコイル35、パイプ36および第2のプランジャ37で流量調節開閉弁駆動手段21を形成している。上記構成において、制御手段18は第2のコイル35への通電量を制御することにより流量を調節するもので、出湯を停止するには、制御手段18は第2のコイル35への通電を切ることで、スプリング34により付勢された流量制御弁体28は弁座29に当接し、流体は流れなくなる。同時にパイロット弁46が連通孔45を閉成する。それにより第2のダイヤフラム40を挟む1次側と、第2の背圧室42の圧力差がなくなり、受圧面積の差で止水弁40が閉じるものである。第2のコイル35に通電すると、第2のプランジャ37を吸引あるいは押しだし、パイロット弁46が連通孔45を開成する。そして、第2のダイヤフラム41を挟む1次側と第2の背圧室42の圧力差により、第1のスプリング44に抗して第2のダイヤフラム41、つまり止水弁40がリフトして出湯が開始される。さらに第2のコイル35への電流を増加するとスプリング34の付勢力に対抗して、流量制御弁体28をリフトし、流体(混合湯)が流れ始める。つまり、制御手段18は第2のコイル35への通電量を変えることにより、流量制御弁体28を任意のリフト量に調節し、流量を制御する。
【0013】
図2は制御手段18の例である。50は混合湯温検出手段15と設定手段17の信号を入力し混合弁23の駆動量を演算する混合弁制御手段、51は混合弁制御手段50の信号により混合弁駆動手段(第1のコイル)26の駆動量を設定する第1の駆動量設定手段、52は設定手段17の信号を入力し流量調節開閉弁20の駆動量を演算する流量調節開閉弁制御手段、53は前記流量調節開閉弁制御手段52の信号により流量調節開閉弁駆動手段21の駆動量を設定する第2の駆動量設定手段、54は第2の駆動量設定手段53の信号があらかじめ定めた値以下になると時間計測を開始するタイマ手段である。
【0014】
次に本発明の構成の動作を説明する。温度調節を行なう場合、制御手段18から第1のコイル26に電流を流すと、磁性体からなる第1のプランジャ25はフレミングの法則により弁軸8にバイアス力を付与する。このバイアス力と付勢手段22の付勢力がつりあったところで自動調圧弁3はバランスする。したがって、第1のコイル26に流す電流を変化することにより自動調圧弁3のバランス点を移動することができる。例えば、電流の小さい場合は付勢手段22の力の方が強いため湯側弁体4より水側弁体6の方が大きく開き、混合湯温が低くなる。電流を大きくすると付勢手段22の力に対向してプランジャ25を押し出すことにより湯側弁体4が開きだし結果的に混合湯温が高くなる。このようにして、制御手段18は混合湯温検出手段15の信号と設定手段17の信号を入力することにより混合湯温が設定温度になるように混合弁制御手段40、第1の駆動量設定手段41により第1のコイル26に流す電流を可変し混合弁23を調節する。
【0015】
通常の出湯を行っている場合は以上のような方法で特に問題は生じないが、設定手段17により出湯を停止する場合は流量調節開閉弁20を閉止していくと流量制御弁体28は弁座29に当接し、流体は流れなくなる。しかし混合部19の圧力などにより流量制御弁体28と弁座29の間より混合湯が少しもれている。ここでパイロット弁46が連通孔45を閉成し第2のダイヤフラム40を挟む1次側と、第2の背圧室42の圧力差がなくなり、受圧面積の差で止水弁40が閉じるものである。止水弁40が閉止してはじめて流体が流れなくなる。この場合第2の背圧室42の圧力が圧力差がなくなるまでは完全に閉止しないため流量調節開閉弁20からのもれが継続している。
【0016】
したがって、第2のコイルへの駆動電流を切ってすぐに混合弁制御手段50が第1のコイルへの通電を停止すると、混合弁は付勢手段22により水側弁体6と水側弁座7の間が広がり混合室19はほぼ水温近くまで低下してしまう。この状態で次に出湯する際は混合部19付近に残留している低温の湯が出湯してしまう。
【0017】
そこで本発明は上記の現象を防ぐために次のような手段を講じている。通常の出湯時においてはあらかじめ設定された温度(もしくは設定手段17により設定した温度:以下設定温度とする)に混合湯温検出手段15により検出した温度が一致するように混合弁制御手段50は駆動量を設定して第1の駆動量設定手段51を介して第1のコイル26を流れる電流を調節している。これを図3のフローチャートと図4の出力特性図を用いて説明する。図3においてステップ100の温度制御ではまずステップ102において設定温度と混合湯温検出手段15の信号の差を求めてこれを偏差Eとする。この偏差Eを用いて制御量f(E)をステップ103で演算する。ここでf(E)はよく知られているPID制御やファジィ制御等どれを用いてもよく制御別の種類は特に限定するものではない。停止処理を行なわない場合、混合弁制御手段50はこのf(E)を用いて第1の駆動量設定手段51に信号を出し第1のコイル26に流す電流を設定し駆動を行なう。この温度制御は一定のサンプリング周期で繰り返し行なっている。
【0018】
停止時は設定手段17より出湯を停止する信号を制御手段18が入力すると(図4における時刻t1)、流量調節開閉弁制御手段52は第2の駆動量設定手段53を介して第2のコイル35に流れる電流を下げ流量調節開閉弁20を閉止する。この時、混合弁制御手段50も設定手段17の停止信号を入力し停止時の温度制御に入る。これをフローチャートを用いて説明する。図3においてステップ100の温度制御で停止処理を設定手段17からの信号により判断すると(ステップ104)、この停止処理が1回目かの判断を行なう。もしステップ105の1回目であればまだ停止処理に入っていないためこの状態の駆動量f(E)を記憶(M)(ステップ106)する。そしてステップ107で流量調節開閉弁の駆動量を第2の駆動量設定手段53の信号から入力し流量調節開閉弁の駆動量(QIとおく)がほぼ閉止する駆動量としてあらかじめ定めた値xになっているか否かを調べる。駆動量が大きい場合はステップ108の温度偏差を求めるステップ109の制御量f(E)を演算し、混合弁制御手段50はこの制御量f(E)を用いて第1の」駆動量設定手段51に信号を出し第1のコイル26に流す電流を設定し駆動を行なう。時刻t2において第2のコイルへの電流QIがx以下になるとタイマ手段54を介して混合弁制御手段50はそれを検出し混合弁23の駆動量を一定に保持し温度制御を行わない。そして、時刻t3においてステップ110で流量調節開閉弁の駆動量QIが0になり流量制御弁 28 は弁座29に当接しほぼ混合湯が流れなくなることでステップ111でタイマ手段54は時間計測を開始する。ステップ112で時間がパイロット弁46が連通孔45を閉成し閉止弁40が閉止するのに必要な時間としてあらかじめ定めた値T以上になると(時刻t5)タイマ手段54が混合弁制御手段50に信号を出力する。パイロット弁46が閉成することにより止水0000弁40が閉止し流体が完全に流れなくなるため混合弁制御手段50はこの信号により混合弁23の制御量f(E)を0とし、第1のコイルの駆動量を0とする。この結果流量制御弁 28 は弁座29に当接して流量が少なくなるまで混合湯温を制御し、さらにパイロット弁46が閉成することにより止水弁40が閉止するまでの時間(図4においてt3からt4)は最低混合弁駆動量を維持することにより流量制御弁28からの微小な漏れによる 混合湯の流出時間内はほぼ温度制御を行えている位置に混合弁23を止めておける。したがって、時刻t3において流量調節開閉弁の駆動量を図4(e)のように0にするのと同時に混合弁駆動量を図4(d)の破線のように0にしてしまうと流量制御弁28からのもれにより混合部19内の温度が図4(b)の破線のように極端に水温近くまで下がってしまうが、混合弁駆動量をt5まで維持するとこの現象は防止される。混合湯温検出手段15による湯温も図4(a)のようにほぼ設定温度近傍に維持できる。
【0019】
出湯を停止した後、再度出湯を開始する信号を設定手段17から制御手段18へ入力すると(図4時刻t6)混合弁制御手段50は温度制御においてステップ114の出湯開始の判断を行い、ステップ115において出湯開始の最初に混合弁駆動手段24の駆動量を前回停止処理を行なう流量が多量のときの駆動量に設定する。そして混合弁3に駆動量が伝達されてから流量調節開閉弁20を開く。
【0020】
最初押し出されてくる混合部の温度が設定温度近くのため出湯直後の温度の不快感はない。さらに出湯を開始した直後は混合部19の流速が遅く混合湯温検出手段15の応答もなまっているため混合湯温検出手段15の応答速度を加味し出湯を開始した後一定時間は混合弁23の駆動量を停止処理を行なう前の値で固定しておく。そしてステップ101であらかじめ設定した時間を経過した後は通常の温度制御を行なえばよい。これにより混合湯温検出手段15が安定してから温度制御に入るため出湯温度がハンチング等を生じることが無く安全な出湯を開始できる。さらに停止時には第1のコイル26に通電しないためコイルの発熱をおさえ、節電もできる。
【0021】
以上の処理を行なわないと混合湯温等は図4の破線で示すようになる。まず出湯停止時において時刻t3において流量調節開閉弁の駆動量が0になるとすぐに図4(c)のように混合弁駆動量を0とする。ここで図4(c)に示すように閉止弁40がまだ完全に閉止していないため流量がわずかながら存在している。この状態で混合弁23の駆動量を無くしてしまうと、付勢手段22により水側の開度が大きくなり時刻t4までの間は混合部に流れ込むのはほとんど水となる。したがって混合部19の温度は図4(b)のように低温になってしまう。混合湯温検出手段15は混合部19の下流にあるため図4(a)のように一見ほぼ設定温度を維持しているように見える。しかし、この状態で再度出湯を開始する信号を設定手段17から制御手段18へ入力すると流量調節開閉弁20が開成し、図4(a)のように混合部19に滞留していたほぼ水温に近い湯が押し出されて吐出する。吐出された混合湯温が低温で不快なだけでなく、この温度を混合湯温検出手段15が検出し混合弁制御手段50において設定温度になるよう第1のコイルの駆動量を演算して出力する。したがって温度を上げるよう駆動量を増加してしまうため実際には図4(a)のようにオーバーシュートを発生してしまう。
【0022】
【発明の効果】
以上のように本発明の湯水混合制御装置によれば、出湯停止時に止水弁が閉止するまでの時間は混合弁の駆動量を停止動作途中の位置で保持しておくため、すぐに混合弁駆動量を0にしてしまう場合に比べて混合部が水温近くまで低下することがなくなる。このため次回に出湯を開始した場合でも低温の湯が出ることがなくなり、設定温度近傍の湯を最初から得ることができる。
【0023】
したがって流量の停止・出湯をひんぱんに行うシャワー等に用いても不快な温度を感じることが無く、かつ安全な混合湯温の供給を可能とするため安心して器具を使用することができる。
【図面の簡単な説明】
【図1】本発明の一実施例における湯水混合制御装置の断面図
【図2】同装置の制御ブロック図
【図3】同装置の制御ブロックのフローチャート
【図4】(a)同装置における出湯停止および開始時の混合湯温の図
(b)同装置における出湯停止および開始時の混合室温度の図
(c)同装置における出湯停止および開始時の混合弁駆動量の図
(d)同装置における出湯停止および開始時の流量調節開閉弁駆動量の図
(e)同装置における出湯停止および開始時の流量の図
【図5】従来の湯水混合制御装置の断面図
【符号の説明】
1 湯流路
2 水流路
17 設定手段
18 制御手段
20 流量調節開閉弁
21 流量調節開閉弁駆動手段
24 混合弁駆動手段
[0001]
[Industrial application fields]
The present invention relates to a hot and cold water mixing control device that adjusts the mixing ratio of hot water and water to obtain an optimal mixed hot water temperature.
[0002]
[Prior art]
Conventionally, this type of hot and cold water mixing apparatus has been shown in FIG. (For example, JP-A-1-31279) In FIG. 5, 1 is a hot water channel, 2 is a water channel, and an automatic pressure regulating valve 3 is provided in relation to each channel. The automatic pressure regulating valve 3 includes a hot water side valve body 4 and a hot water side valve seat 5 for reducing the primary pressure PH1 of the hot water flow path 1, a water side valve body 6 and a water side for reducing the primary pressure PC1 of the water flow path 2. It comprises a valve seat 7, a valve shaft 8 that connects the hot water side valve body 4 and the water side valve body 6, and a piston 9 that operates with a pressure difference between the primary pressure PH1 and the PC1 after decompression of hot water and water. ing. And even if the pressure of hot water or water changes suddenly, the automatic pressure regulating valve 3 moves at that pressure, so that the secondary pressures PH2 and PC2 of hot water and water are always kept equal. Further, a bias means 10 is provided on the valve shaft 8, and the bias means 10 is coupled to the end of the valve shaft 8 and is provided so as to sandwich the bobbin 11 and the coil 12 wound around the bobbin 11 and insulated. The coil 12 is connected to the control means 18 through the flexible portion 14.
[0003]
When a current is passed from the control means 18 to the coil 12, the current crosses the magnetic field generated by the permanent magnet 13, so that a bias force is applied to the valve shaft 8 by Fleming's law. For this reason, the automatic pressure adjustment point is shifted by the amount of the bias force. For example, the secondary pressures PH2 and PC2 of hot water and water are always regulated at a point of 2: 1, and as a result, the hot water temperature increases. . Thus, the mixed hot water temperature is changed by changing the current to the coil 12. The control means 18 superimposes a minute AC signal when a current is passed through the coil 12. This is to reduce the hysteresis characteristic of the magnetic circuit of the bias means 10 and the sliding resistance at the start of driving. 19 is a mixing section of hot water and water, and after mixing, the hot water is discharged through the flow rate control on / off valve 20. The temperature of the hot water is detected by the mixed hot water temperature detecting means (for example, thermistor) 15 and the flow rate is determined by the flow rate detecting means 16. The control means 18 urges the bias means 10 and the flow rate adjusting on / off valve driving means 21 to adjust the temperature so as to match the value of the setting means 17.
[0004]
[Problems to be solved by the invention]
However, in the configuration as described above, when the opening / closing function of the flow control on / off valve is a pilot type solenoid valve, it takes time until the pilot valve closes even if the flow control on / off valve driving means sends a close signal. It was. For this reason, if the driving amount of the biasing means is immediately lost when the hot water is stopped, the automatic pressure regulating valve becomes large between the water side valve element and the water side valve seat, and sends a stop signal to actually close the pilot valve. In the meantime, water flows into the mixing section 19. Therefore, when starting the next hot water, this water is discharged first, which is very uncomfortable when using a shower or the like.
[0005]
The present invention solves such a conventional problem, and during the hot water stop operation, the drive amount of the mixing valve is maintained until the water is stopped after the signal of the flow rate adjusting on / off valve driving means becomes equal to or less than a certain value, and the mixing chamber is maintained. Do not change the temperature of the bath. And it aims at improving the stability of the mixed hot water temperature at the start of the next hot water supply.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a hot and cold water mixing control device of the present invention is connected to a downstream side of the mixing valve and a mixing valve that adjusts the flow rates of the hot water channel and the water channel via a mixing valve driving means. A water stop valve having a diaphragm, a flow control on / off valve connected to a further downstream side of the water stop valve, and having a flow control valve body driven by a flow control on / off valve drive means, the mixing valve drive means and the flow control Control means for controlling the driving amount of the on-off valve driving means, and setting means for setting the flow rate, and the secondary pressure of the flow control valve body is set to the back pressure portion of the flow control valve body and the water stop valve. The flow control valve element drive amount becomes a predetermined value or less when a signal for stopping the hot water from the setting means is input, and the pressure difference between the primary side of the diaphragm and the back pressure chamber Is the value to close the stop valve. Predetermined time to, the control means is for mixing valve driving means a driving amount of the mixing valve and to hold at the stop operation halfway position.
[0007]
[Action]
According to the present invention, by maintaining the drive amount of the mixing valve for a certain period of time when the hot water is stopped, the temperature in the mixing chamber is not greatly changed, and the stability of the hot water temperature at the start of the next hot water is improved. .
[0008]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a hot and cold water mixing control device, and the same parts as those in FIG.
[0009]
In FIG. 1, reference numeral 22 denotes an urging means, and the automatic pressure regulating valve 3 and the urging means 22 form a mixing valve 23. Reference numeral 24 denotes mixing valve driving means for applying a variable bias force to the mixing valve 23 in opposition to the force of the urging means 22. The mixing valve driving means 24 has a first plunger 25 made of a magnetic material, and a first coil 26 that is waterproof and insulated around the first plunger 25, and the first coil 26 is connected to the control means 18. It is connected. The mixed hot water temperature is detected by the mixed hot water temperature detecting means 15.
[0010]
The flow rate is adjusted by a flow rate adjusting on / off valve 20 downstream from the mixing unit 19. The flow rate adjusting on / off valve 20 is provided with a valve body 27, a conical flow control valve body 28 for adjusting the flow rate in the valve body 27, and a corresponding valve seat 29. In order to balance the flow control valve body 28 and the primary pressure of the fluid (pressure of the mixing unit 19), the grooved first diaphragm 30 as a flexible pressure receiving body is connected to the flow control valve body 28 and the valve housing 27. The groove 30a is further deepened so that the effective pressure receiving area is always equal to the diameter of the valve seat 29 regardless of the lift amount of the flow control valve body 28. The first back pressure chamber 31 completely separated from the primary side by the first diaphragm 30 and the secondary side of the flow control valve body 28 are communicated with each other through a communication hole 32.
[0011]
The second back pressure chamber 42 communicated with the first back pressure chamber 31 through the communication hole 45 has a water stop valve 40, which has a second diaphragm 41, and the second diaphragm is the primary side thereof. The second diaphragm 41 serves as a water stop valve 40. The second diaphragm 41 is separated from the first pressure seat 43 due to a pressure difference with the back pressure chamber 42 while communicating slightly. The second diaphragm 41 is provided with a first spring 44 that urges the second diaphragm 41 in a direction to contact the first valve seat 43. In order to open and close the water stop valve 40, there is a pilot valve 46 that opens and closes the communication hole 45, and this pilot valve 46 is connected to the second plunger 37 via the shaft 38.
[0012]
The flow control valve body 28 is urged in a direction to contact the valve seat 29 by a spring 34 as urging means. In addition, there is a second coil 35 and a pipe 36 whose one end face is sealed, and a second plunger 37 driven by the amount of current supplied to the second coil 35 slides inside the pipe 36. The second plunger 37 is configured to be interlocked with the flow control valve body 28 via a shaft 38. The second coil 35, the pipe 36 and the second plunger 37 form the flow rate adjusting on / off valve driving means 21. In the above configuration, the control means 18 adjusts the flow rate by controlling the energization amount to the second coil 35, and the control means 18 cuts off the energization to the second coil 35 in order to stop the hot water. As a result, the flow control valve body 28 urged by the spring 34 comes into contact with the valve seat 29 and the fluid does not flow. At the same time, the pilot valve 46 closes the communication hole 45. Thereby, the pressure difference between the primary side sandwiching the second diaphragm 40 and the second back pressure chamber 42 is eliminated, and the water stop valve 40 is closed by the difference in pressure receiving area. When the second coil 35 is energized, the second plunger 37 is sucked or pushed out, and the pilot valve 46 opens the communication hole 45. Then, due to the pressure difference between the primary side sandwiching the second diaphragm 41 and the second back pressure chamber 42, the second diaphragm 41, that is, the water stop valve 40 is lifted against the first spring 44, and the hot water is discharged. Is started. When the current to the second coil 35 is further increased, the flow control valve body 28 is lifted against the urging force of the spring 34, and fluid (mixed hot water) starts to flow. That is, the control means 18 adjusts the flow control valve body 28 to an arbitrary lift amount by changing the energization amount to the second coil 35, and controls the flow rate.
[0013]
FIG. 2 shows an example of the control means 18. 50 is a mixing valve control means for calculating the driving amount of the mixing valve 23 by inputting signals from the mixed hot water temperature detection means 15 and the setting means 17, and 51 is a mixing valve driving means (first coil) according to the signal from the mixing valve control means 50 ) First driving amount setting means for setting the driving amount of 26, 52 is a flow rate adjusting on / off valve control means for calculating the driving amount of the flow rate adjusting on / off valve 20 by inputting the signal of the setting means 17, and 53 is the above-mentioned flow rate adjusting on / off Second drive amount setting means for setting the drive amount of the flow rate adjusting on / off valve drive means 21 based on the signal of the valve control means 52, 54 is a time measurement when the signal of the second drive amount setting means 53 is below a predetermined value. It is a timer means to start.
[0014]
Next, the operation of the configuration of the present invention will be described. When adjusting the temperature, when a current is passed from the control means 18 to the first coil 26, the first plunger 25 made of a magnetic material applies a bias force to the valve shaft 8 according to Fleming's law. The automatic pressure regulating valve 3 balances when the bias force and the biasing force of the biasing means 22 are balanced. Therefore, the balance point of the automatic pressure regulating valve 3 can be moved by changing the current flowing through the first coil 26. For example, when the current is small, the force of the biasing means 22 is stronger, so that the water side valve body 6 opens more than the hot water side valve body 4, and the mixed hot water temperature is lowered. When the current is increased, the plunger 25 is pushed out in opposition to the force of the urging means 22 to open the hot water side valve body 4, and as a result, the mixed hot water temperature becomes high. In this way, the control means 18 inputs the signal of the mixed hot water temperature detecting means 15 and the signal of the setting means 17 so that the mixed hot water temperature becomes the set temperature so that the mixed hot water temperature becomes the set temperature. The current flowing through the first coil 26 is varied by means 41 to adjust the mixing valve 23.
[0015]
In the case of performing normal hot water supply, there is no particular problem with the above method. However, when the hot water is stopped by the setting means 17, the flow rate control valve body 28 is controlled by closing the flow rate control on / off valve 20. The fluid abuts against the seat 29 and no longer flows. However, a little amount of mixed hot water is leaking between the flow control valve body 28 and the valve seat 29 due to the pressure of the mixing portion 19 or the like. Here, the pilot valve 46 closes the communication hole 45 so that the pressure difference between the primary side sandwiching the second diaphragm 40 and the second back pressure chamber 42 disappears, and the water stop valve 40 closes due to the pressure receiving area difference. It is. The fluid does not flow until the water stop valve 40 is closed. In this case, since the pressure in the second back pressure chamber 42 is not completely closed until the pressure difference disappears, the leakage from the flow rate adjusting on / off valve 20 continues.
[0016]
Therefore, as soon as the mixing valve control means 50 stops energizing the first coil after the drive current to the second coil is cut off, the mixing valve is urged by the urging means 22 so that the water side valve element 6 and the water side valve seat are 7 spreads and the mixing chamber 19 falls to near the water temperature. When the hot water is next discharged in this state, the low-temperature hot water remaining in the vicinity of the mixing unit 19 is discharged.
[0017]
Therefore, the present invention takes the following means to prevent the above phenomenon. During normal hot water supply, the mixing valve control means 50 is driven so that the temperature detected by the mixed hot water temperature detecting means 15 coincides with a preset temperature (or a temperature set by the setting means 17: hereinafter referred to as a set temperature). An amount is set and the current flowing through the first coil 26 is adjusted via the first drive amount setting means 51. This will be described with reference to the flowchart of FIG. 3 and the output characteristic diagram of FIG. In the temperature control in step 100 in FIG. A control amount f (E) is calculated in step 103 using this deviation E. Here, f (E) may use any of well-known PID control and fuzzy control, and the type of control is not particularly limited. When the stop process is not performed, the mixing valve control means 50 uses this f (E) to send a signal to the first drive amount setting means 51 to set the current to be passed through the first coil 26 and drive it. This temperature control is repeated at a constant sampling period.
[0018]
When the control means 18 inputs a signal to stop the hot water from the setting means 17 at the time of stop (time t1 in FIG. 4), the flow rate adjusting on-off valve control means 52 is connected to the second coil via the second drive amount setting means 53. The electric current which flows into 35 is lowered | hung, and the flow regulating valve 20 is closed. At this time, the mixing valve control means 50 also inputs the stop signal of the setting means 17 and enters the temperature control at the time of stop. This will be described using a flowchart. In FIG. 3, when the stop process is determined by the signal from the setting means 17 in the temperature control in step 100 (step 104), it is determined whether this stop process is the first time. If it is the first time in step 105, stop processing has not yet been entered, and the drive amount f (E) in this state is stored (M) (step 106). Then, in step 107, the driving amount of the flow rate adjusting on / off valve is input from the signal of the second driving amount setting means 53, and the driving amount of the flow rate adjusting on / off valve (denoted as QI) is set to a predetermined value x as the driving amount that is almost closed. Check whether it is. If the drive amount is large, the control amount f (E) of step 109 for obtaining the temperature deviation of step 108 is calculated, and the mixing valve control means 50 uses the control amount f (E) to obtain the first “drive amount setting means. A signal is output to 51 to set a current to flow through the first coil 26 and drive. When the current QI to the second coil becomes less than or equal to x at time t2, the mixing valve control means 50 detects this via the timer means 54, keeps the driving amount of the mixing valve 23 constant, and does not perform temperature control. Then, the contact time measuring timer means 54 at step 111 by not substantially mixed hot water flows in the flow control valve 28 is a valve seat 29 Ri Do the driving amount QI is zero flow regulating shutoff valve at step 110 at time t3 Start. In step 112, when the time exceeds the predetermined value T as the time required for the pilot valve 46 to close the communication hole 45 and the closing valve 40 to close (time t5), the timer means 54 sends the mixing valve control means 50 to the mixing valve control means 50. Output a signal. When the pilot valve 46 is closed, the water stop 0000 valve 40 is closed and the fluid does not flow completely. Therefore, the mixing valve control means 50 sets the control amount f (E) of the mixing valve 23 to 0 by this signal, and the first valve The driving amount of the coil is set to zero. As a result, the flow rate control valve 28 abuts against the valve seat 29 to control the temperature of the hot water until the flow rate decreases, and further, the time until the water stop valve 40 is closed by closing the pilot valve 46 (in FIG. 4). From t3 to t4), by maintaining the minimum mixing valve drive amount, the mixing valve 23 can be stopped at a position where the temperature can be controlled almost during the outflow time of the mixed hot water due to minute leakage from the flow control valve 28 . Therefore, if the drive amount of the flow rate adjusting on / off valve is set to 0 as shown in FIG. 4E at the time t3 and the mixing valve drive amount is set to 0 as shown by the broken line in FIG. The temperature in the mixing unit 19 drops extremely close to the water temperature as shown by the broken line in FIG. 4B due to the leakage from 28, but this phenomenon is prevented if the mixing valve drive amount is maintained up to t5 . The hot water temperature by the mixed hot water temperature detection means 15 can also be maintained near the set temperature as shown in FIG.
[0019]
After stopping the hot water supply, when a signal for starting the hot water supply is input again from the setting means 17 to the control means 18 (time t6 in FIG. 4), the mixing valve control means 50 determines the start of the hot water in step 114 in the temperature control. At the beginning of the hot water supply, the drive amount of the mixing valve drive means 24 is set to the drive amount when the flow rate for the previous stop process is large. Then, after the driving amount is transmitted to the mixing valve 3, the flow rate adjusting on / off valve 20 is opened.
[0020]
Since the temperature of the mixing part extruded first is close to the set temperature, there is no discomfort of the temperature immediately after the hot water. Further, immediately after the start of pouring, the flow rate of the mixing unit 19 is slow and the response of the mixed hot water temperature detecting means 15 is also lost. Is fixed at a value before the stop process is performed. Then, after the time set in advance in step 101 has elapsed, normal temperature control may be performed. As a result, temperature control is started after the mixed hot water temperature detecting means 15 is stabilized, so that the hot water temperature can be started without causing hunting or the like in the hot water temperature. Furthermore, since the first coil 26 is not energized at the time of stopping, heat generation of the coil can be suppressed and power can be saved.
[0021]
If the above processing is not performed, the mixed hot water temperature and the like are as indicated by broken lines in FIG. First, when the driving amount of the flow rate adjusting on / off valve becomes zero at time t3 when the hot water is stopped, the mixing valve driving amount is set to zero as shown in FIG. Here, as shown in FIG. 4 (c), the flow rate is slightly present because the stop valve 40 is not yet completely closed. If the driving amount of the mixing valve 23 is lost in this state, the opening degree on the water side is increased by the urging means 22, and most of the water flows into the mixing section until time t4. Therefore, the temperature of the mixing unit 19 becomes low as shown in FIG. Since the mixed hot water temperature detection means 15 is downstream of the mixing section 19, it seems that the set temperature is maintained substantially as shown in FIG. However, when a signal for starting the hot water discharge again is input from the setting means 17 to the control means 18 in this state, the flow rate adjusting on / off valve 20 is opened, and the water temperature staying in the mixing portion 19 as shown in FIG. Near hot water is pushed out and discharged. Not only is the discharged hot water temperature uncomfortable at a low temperature, but also the hot water temperature detecting means 15 detects this temperature and the mixing valve control means 50 calculates the drive amount of the first coil so as to reach the set temperature and outputs it. To do. Accordingly, since the drive amount is increased to raise the temperature, an overshoot actually occurs as shown in FIG.
[0022]
【The invention's effect】
As described above, according to the hot and cold water mixing control apparatus of the present invention, the amount of time until the water stop valve closes when the hot water is stopped keeps the drive amount of the mixing valve at a position in the middle of the stop operation. Compared with the case where the drive amount is set to 0, the mixing portion does not decrease to near the water temperature. For this reason, even when starting hot water next time, low temperature hot water does not come out, and hot water near the set temperature can be obtained from the beginning.
[0023]
Therefore, even if it is used for a shower or the like where frequent flow stop and hot water are used, an uncomfortable temperature is not felt, and a safe mixed hot water temperature can be supplied, so that the appliance can be used with peace of mind.
[Brief description of the drawings]
FIG. 1 is a sectional view of a hot and cold water mixing control apparatus according to an embodiment of the present invention. FIG. 2 is a control block diagram of the apparatus. FIG. 3 is a control block flowchart of the apparatus. (B) Diagram of mixed hot water temperature at the time of stopping and starting (b) Diagram of mixing chamber temperature at the time of stopping and starting hot water in the device (c) Diagram of driving amount of mixing valve at the time of stopping and starting hot water in the device (d) Fig. 5 (e) is a view of the flow rate at the time of hot water stop and start in the apparatus. Fig. 5 is a cross-sectional view of a conventional hot water mixing control device.
DESCRIPTION OF SYMBOLS 1 Hot water flow path 2 Water flow path 17 Setting means 18 Control means 20 Flow rate adjustment on-off valve 21 Flow rate adjustment on-off valve drive means 24 Mixing valve drive means

Claims (1)

混合弁駆動手段を介して湯流路および水流路の流量を調節するようにした混合弁と、前記混合弁より下流側に接続したダイヤフラムをもつ止水弁、およびこの止水弁のさらに下流側に接続され、流量調節開閉弁駆動手段により駆動される流量制御弁体を有する流量調節開閉弁と、前記混合弁駆動手段と流量調節開閉弁駆動手段の駆動量をそれぞれ制御する制御手段と、流量を設定する設定手段とを具備し、前記流量制御弁体の2次側圧力をこの流量制御弁体の背圧部並びに止水弁のダイヤフラム背圧部に導くように構成し、前記設定手段からの出湯停止の信号入力時、流量制御弁体の駆動量が所定値以下になり、前記ダイヤフラムの一次側と背圧室の圧力差が止水弁を閉止する値になるまでの所定時間、前記制御手段は、混合弁駆動手段が混合弁の駆動量を停止動作途中の位置で保持するようにしたことを特徴とする湯水混合制御装置。 A mixing valve that adjusts the flow rate of the hot water channel and the water channel via the mixing valve driving means, a water stop valve having a diaphragm connected to the downstream side of the mixing valve, and a further downstream side of the water stop valve A flow control valve having a flow control valve body driven by the flow control open / close valve drive means, a control means for controlling the drive amounts of the mixing valve drive means and the flow control open / close valve drive means, And setting means for setting the secondary pressure of the flow rate control valve body to the back pressure portion of the flow rate control valve body and the diaphragm back pressure portion of the water stop valve. When the signal for stopping the hot water supply is input, the driving amount of the flow control valve element becomes a predetermined value or less, and the predetermined time until the pressure difference between the primary side of the diaphragm and the back pressure chamber becomes a value for closing the water stop valve, The control means is a mixing valve drive means. Hot and cold water mixing control apparatus is characterized in that so as to retain the drive amount of the valve at the stop operation halfway position.
JP00879393A 1993-01-22 1993-01-22 Hot water mixing controller Expired - Fee Related JP3655926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00879393A JP3655926B2 (en) 1993-01-22 1993-01-22 Hot water mixing controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00879393A JP3655926B2 (en) 1993-01-22 1993-01-22 Hot water mixing controller

Publications (2)

Publication Number Publication Date
JPH06222842A JPH06222842A (en) 1994-08-12
JP3655926B2 true JP3655926B2 (en) 2005-06-02

Family

ID=11702751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00879393A Expired - Fee Related JP3655926B2 (en) 1993-01-22 1993-01-22 Hot water mixing controller

Country Status (1)

Country Link
JP (1) JP3655926B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590883B (en) * 2024-01-16 2024-03-29 中北大学 Sensing measurement and control system for monitoring motor temperature

Also Published As

Publication number Publication date
JPH06222842A (en) 1994-08-12

Similar Documents

Publication Publication Date Title
JP3655926B2 (en) Hot water mixing controller
JP2841930B2 (en) Hot water mixing control device
JP3097304B2 (en) Hot water mixing control device
JP2833300B2 (en) Hot water mixing control device
JPH04372004A (en) Water/hot water mixing controller
JP2842007B2 (en) Hot water mixing control device
JP2811959B2 (en) Hot water temperature control device
JP2962043B2 (en) Hot water mixing control device
JP3451444B2 (en) Hot water mixing control device and hot water supply control device
JP2676885B2 (en) Hot water mixing equipment
JP2817381B2 (en) Proportional control valve
JP2653162B2 (en) Hot water mixing control device
JP2817315B2 (en) Hot water mixing control device
JP2811935B2 (en) Hot water mixing control device
JP2661261B2 (en) Hot water mixing control device
JP2956400B2 (en) Hot water mixing control device
JP2762529B2 (en) Hot water mixing control device
JP2817306B2 (en) Hot water mixing equipment
JP2822657B2 (en) Flow control valve
JP2661271B2 (en) Hot water mixing control device
JP2661278B2 (en) Hot water mixing control device
JP3064477B2 (en) Hot water mixing control device
JP2887909B2 (en) Hot water mixing control device
JP2827571B2 (en) Hot water mixing control device
JP2663609B2 (en) Hot water mixing equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees