JP3655905B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP3655905B2
JP3655905B2 JP2002321195A JP2002321195A JP3655905B2 JP 3655905 B2 JP3655905 B2 JP 3655905B2 JP 2002321195 A JP2002321195 A JP 2002321195A JP 2002321195 A JP2002321195 A JP 2002321195A JP 3655905 B2 JP3655905 B2 JP 3655905B2
Authority
JP
Japan
Prior art keywords
nozzle
fuel
valve body
central axis
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002321195A
Other languages
Japanese (ja)
Other versions
JP2004156479A (en
Inventor
慶太 細山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002321195A priority Critical patent/JP3655905B2/en
Publication of JP2004156479A publication Critical patent/JP2004156479A/en
Application granted granted Critical
Publication of JP3655905B2 publication Critical patent/JP3655905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えば筒内噴射用に用いられる燃料噴射弁、およびその製造方法に関するものである。
【0002】
【従来の技術】
従来、円板状の噴口プレートに、燃料出口側の面積が燃料入口側の面積よりも大きくなるテーパ形状で、かつ燃料入口側の中心よりも燃料出口側の中心が外周側に位置するように、両中心を結ぶ噴口軸線が傾斜した噴口が複数設けられた燃料噴射弁が知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−221128号公報(図2(c))
【0004】
【発明が解決しようとする課題】
この燃料噴射弁では、均一の厚さの円板状の噴口プレートに、テーパ形状で噴口軸線が傾斜した噴口が設けられており、各噴口毎に噴口軸線と噴口入口端面とのなす噴口角度が異なるとともに、噴口長さも異なる。
そのため、各噴口角度が大きく異なると、それだけ各噴口内壁面での燃料の液膜状態は大きく異なり、各噴口から噴射される燃料の噴霧状態が各噴口で異なり、シリンダ内での均一な微粒化が図れないという問題点があった。
【0005】
この発明は、かかる問題点を解決することを課題とするものであって、簡単な構成でシリンダ内での噴霧の均一な微粒化を図ることができる燃料噴射弁を得ることを目的とするものである。
【0007】
【課題を解決するための手段】
この発明に係る燃料噴射弁は、噴口プレートは、各噴口において前記噴口の燃料入口側の中心と燃料出口側の中心とを結ぶ噴口軸線と噴口入口端面とのなす噴口角度がそれぞれ同一になるように弁座側に突出した突出部を有しており、かつ均一厚さであり、
また、前記弁本体の先端部には、前記噴口プレート側に向かって末拡がり形状のキャビティが形成されており、
さらに、前記弁体の中心軸線と前記キャビティの表面の前記中心軸線に向かって延びたキャビティ延長線とが交差する前記噴口プレート側の角度(δ)は、前記中心軸線と前記突出部の表面から前記中心軸線に向かって延びた各突出延長線とが交差する前記噴口プレート側の角度のうちの最小角度(η)よりもさらに小さい。
【0009】
【発明の実施の形態】
以下、この発明の実施の形態について説明するが、同一、同等部材、部位については同一符号を付して説明する。
実施の形態1.
図1はこの発明の筒内噴射用燃料噴射弁1(以下、燃料噴射弁と略称する)の全体構成を示す断面図、図2は図1の弁装置3の要部拡大図である。
この燃料噴射弁1は、ハウジング2と、このハウジング2の内側端部に設けられた弁装置3と、ハウジング2の内側中間部に設けられたソレノイド装置4とを備えている。
【0010】
前記弁装置3は、段付き円筒形で弁座19に形成された穴6及びキャビティ7を有する弁本体5と、キャビティ7に溶接接合され複数の噴口8を有する噴口プレート9と、弁本体5の中心軸線I上を上下動し穴6を開閉する弁体11と、この弁体11の移動の上限を定めたストッパプレート10と、弁体11の上端部で溶接接合された可動鉄心12とを備えている。
【0011】
前記ハウジング2は、燃料噴射弁1をシリンダヘッド(図示せず)に取り付けるためのフランジ13aを有するヨーク13と、ヨーク13の一端に連結されたハウジング部14とを備えている。ヨーク13の先端部にはかしめ部13bが形成されており、このかしめ部13bで弁本体5とヨーク13とは結合されている。
【0012】
前記ソレノイド装置4は、導線が巻回されたコイル15と、このコイル15が装着されたボビン16と、このボビン16の内周部に取り付けられた円筒形状の固定鉄心17と、この固定鉄心17の内部に固定されたスリーブ18と、このスリーブ18の端部と弁体11の端部との間に縮設され弁体11を弁座19に付勢した圧縮ばね20と、コイル15の導線が接続された端子21とを備えている。なお、スリーブ18内の通路18a、弁本体5と弁体11との間に形成された隙間により燃料通路が形成されている。
【0013】
前記噴口プレート9には複数の噴口8が形成されている。この噴口8は、燃料出口側の面積が燃料入口側の面積よりも大きいテ−パ形状をしている。また、図3(a)に示すように、噴口8の燃料入口側の中心と燃料出口側の中心とを結ぶ噴口軸線Aと噴口入口端面Bとのなす角度αが各噴口8とも同一になるように、噴口プレート9は穴6側に突出した突出部9aを有している。また、各噴口8とも噴口軸線Aに沿った各噴口8の長さが同一となるようにするために、噴口プレート9の厚みは均一である。
【0014】
この噴口プレート9は、均一厚さの円板プレ−トに各噴口8を形成した後、このプレートを湾曲変形して突出部9aを形成することで簡単に製造される。
【0015】
次に、上記構成の燃料噴射弁1の動作について説明する。
エンジンのマイコンにより燃料噴射弁1の駆動回路に動作信号が送られると、外部から端子21を通じてソレノイド装置4のコイル15に通電され、可動鉄心12、固定鉄心17及びヨーク13による磁気通路に磁束が発生し、可動鉄心12は圧縮ばね20の弾性力に抗して固定鉄心17側に吸引される。そして、可動鉄心12と一体の弁体11は、その弁体11のフランジ上面11aがストッパプレート10に当接する位置まで上動する。
【0016】
弁体11の上動に伴い、弁体11の先端部が弁座19から離れてその先端部と弁座19との間には間隙が形成される。この結果、ハウジング2内の2MPa以上の高圧燃料は、スリーブ18内の通路18a、弁本体5と弁体11との間に形成された隙間、穴6、キャビティ7を経て、噴口プレート9の噴口8からシリンダ内に噴射される。
【0017】
次に、エンジンのマイコンより燃料噴射弁1の駆動回路に動作の停止信号が送られると、コイル15の電流の通電が停止し、磁気回路中の磁束が消失して弁体11を閉弁方向に押している圧縮ばね20により弁座19での隙間は閉じた状態となり、燃料噴射は終了する。
【0018】
以下、本願発明の特徴である噴口プレート9の作用について、前述の従来の燃料噴射弁と比較して述べる。
従来のものは、図4(a)に示すように、厚さ均一の噴口プレート50に、燃料出口側の面積が燃料入口側の面積よりも大きくなるテーパ形状の噴口51、52が設けられ、各噴口51、52では、噴口51、52の燃料入口側の中心と燃料出口側の中心とを結ぶ噴口軸線C、Dと噴口入口端面Eとのなす噴口角度β、γがそれぞれ異なっている。そのため、噴口軸線C、Dに沿った噴口51、52の長さもそれぞれ異なっている。
【0019】
このものの場合、燃料は、噴口プレート50に対して垂直に衝突するが、噴口軸線C、Dが傾斜しているために、噴口51、52の内壁面の片側に片寄って流れるが、それぞれの噴口軸線C、Dの傾斜角度、および噴口51、52の長さが異なっているので、図4(b)に示すように、燃料出口側の面積が燃料入口側の面積よりも大きい噴口51、52では、その燃料出口で燃料の断面形状が三日月状となり、またその形状、液膜厚さが各噴口51,52でそれぞれ大きく異なり、その結果、シリンダ内での均一な微粒化が図れない。
【0020】
一方、この実施の形態の噴口プレート9では、噴口プレート9は湾曲変形した突出部9aを有しており、噴口軸線Aと噴口入口端面Bとのなす角度αが各噴口8とも同一で、かつ噴口プレート9の厚みは均一であり、各噴口8とも噴口軸線Aに沿った各噴口8の長さが同一となるようになっている。
このものの場合、燃料は、噴口プレート9に対して垂直に衝突するが、噴口軸線Aが傾斜しているために、噴口8の内壁面の片側に片寄って流れるが、それぞれの噴口軸線Aと噴口入口端面Bとのなす噴口角度αおよび噴口8の長さが同じであるので、図3(b)に示すように、それぞれの噴口8の燃料出口での燃料の断面形状は、ほぼ同じ三日月形状であり、液膜の厚さに大きな差は無く、その結果、従来のものと比較して燃料はシリンダ内でより均一に微粒化される。
【0021】
実施の形態2.
図5はこの発明の実施の形態2の燃料噴射弁1の要部断面図である。
この実施の形態2では、弁本体30の先端部に、噴口プレート9側に向かって末拡がり形状のキャビティ31が形成されている。
また、弁体11の中心軸線Iとキャビティ31の表面の中心軸線Iに向かって延びたキャビティ延長線とが交差する噴口プレート9側の角度(δ)は、中心軸線Iと突出部9aの表面から中心軸線Iに向かって延びた各突出延長線とが交差する噴口プレート9側の角度のうちの最小角度(η)よりもさらに小さくなっている。
突出延長線は突出部9aの接線であるが、この実施の形態2の場合、最小角度(η)は、湾曲状に隆起した突出部9aの立ち上がり点からの接線と中心軸線Iとが公差する角度のときである。
その他の構成は実施の形態1と同様である。
【0022】
実施の形態1では、キャビティ7の内部空間は同一径寸法であり、燃料が穴6からキャビティ7内に噴射されたときに、燃料の流路断面積が急激に大きく変化し、キャビティ7内の上流側の隅部で渦流等が生じてそれだけ流体エネルギが損失する。
これに対して、この実施の形態2の場合には、燃料が穴6からキャビティ7内に噴射されたときに、燃料の流路断面積が漸次拡大するので、流体エネルギの損失につながる渦流等が生じにくくなり、それだけ燃料の微粒化が向上する。
【0023】
また、弁体11の中心軸線Iとキャビティ延長線とが交差する角度(δ)は、中心軸線Iと各突出延長線とが交差する角度のうちの最小角度(η)よりもさらに小さくなっているので、キャビティ31内での流路断面積が急激に増大するのを抑え、それだけキャビティ31の下流側で断面積が急激に増大する部分での渦流の発生、燃料の滞留といった、流体エネルギの損失、ひいては燃料の微粒化に悪影響を与える不都合の発生を抑制することができる。
【0024】
実施の形態3.
図6はこの発明の実施の形態3の噴口プレート40の部分断面図であり、この実施の形態では、噴口プレート40は直線状に、かつ斜め上方に突出した突出部40aを有している。
その他の構成は実施の形態2と同様である。
【0025】
この実施の形態でも、弁体11の中心軸線Iとキャビティ延長線とが交差する噴口プレート40側の角度(δ)は、中心軸線Iと突出部40aの表面から中心軸線Iに向かって延びた突出延長線とが交差する噴口プレート40側の角度(η)よりも小さくなっているので、キャビティ31内での下流に従って燃料の流路断面積が急激に増大するのが抑えられ、その結果実施の形態2と同様な効果を得ることができる。
【0026】
実施の形態4.
図7はこの発明の実施の形態4の噴口プレート41の部分断面図であり、この実施の形態では、噴口プレート41は中間部で折曲した突出部42を有している。この突出部42は、第1の突出子42aと第2の突出子42bとから構成されている。中心軸線Iと第1の突出子42aの表面から中心軸線Iに向かって延びた突出延長線とが交差する噴口プレート41側の角度(η)は、中心軸線Iと第2の突出子42bの中心軸線Iに向かって延びた突出延長線とが交差する噴口プレート41側の角度よりも小さい。また、弁体11の中心軸線Iとキャビティ延長線とが交差する角度(δ)は、この角度(η)よりも小さい。
その他の構成は実施の形態3と同様である。
【0027】
この実施の形態でも、弁体11の中心軸線Iとキャビティ延長線とが交差する角度(δ)は、中心軸線Iと第1の突出子42aの中心軸線Iに向かって延びた突出延長線とが交差する角度(η)よりも小さくなっているので、キャビティ31内での下流に従って燃料の流路断面積が急激に増大するのが抑えられ、その結果実施の形態2と同様の効果を得ることができる。
なお、この突出部は途中一カ所で折曲されているが、複数折曲されていてもよい。
【0028】
なお、上記各実施の形態では、筒内噴射用燃料噴射弁について説明したが、この発明は、勿論このものに限定されるものではなく、吸気管内に突出するように取り付けられ、吸気管内に燃料を噴射して空気との混合気を生成する燃料噴射弁にも適用できる。
【0029】
【発明の効果】
以上説明したように、この発明に係る燃料噴射弁によれば、噴口プレートは、各噴口において前記噴口の燃料入口側の中心と燃料出口側の中心とを結ぶ噴口軸線と噴口入口端面とのなす噴口角度がそれぞれ同一になるように弁座側に突出した突出部を有しており、かつ均一厚さであるので、それぞれの噴口の燃料出口での燃料の断面形状は、ほぼ同じ形状であり、液膜の厚さに大きな差は無く、燃料の均一な微粒化を図ることができる。
また、弁体の中心軸線とキャビティ延長線とが交差する角度(δ)は、中心軸線と各突出延長線とが交差する角度のうちの最小角度(η)よりもさらに小さくなっているので、キャビティ内での流路断面積が急激に増大するのを抑え、それだけキャビティの下流側で断面積が急激に増大する部分での渦流の発生、燃料の滞留といった、流体エネルギの損失、ひいては燃料の微粒化に悪影響を与える不都合の発生を抑制することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1の筒内噴射用燃料噴射弁の断面図である。
【図2】 図1の筒内噴射用燃料噴射弁の要部拡大図である。
【図3】 図1の噴口プレートの噴口内での燃料分布を示す図である。
【図4】 従来の噴口プレートの噴口内での燃料分布を示す図である。
【図5】 この発明の実施の形態2の筒内噴射用燃料噴射弁の要部断面図である。
【図6】 この発明の実施の形態3の筒内噴射用燃料噴射弁の要部断面図である。
【図7】 この発明の実施の形態4の筒内噴射用燃料噴射弁の要部断面図である。
【符号の説明】
1 筒内噴射用燃料噴射弁、5,30 弁本体、6 穴、7,31 キャビティ、8 噴口、9,40,41 噴口プレート、9a,40a,42 突出部、11 弁体、19 弁座、42a 第1の突出子、42b 第2の突出子、A 噴口軸線、B 噴口入口端面。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection valve used for in-cylinder injection, for example, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, the disk-shaped nozzle plate has a tapered shape in which the area on the fuel outlet side is larger than the area on the fuel inlet side, and the center on the fuel outlet side is located on the outer peripheral side with respect to the center on the fuel inlet side. There is known a fuel injection valve provided with a plurality of nozzle holes with inclined nozzle axes connecting both centers (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-221128 (FIG. 2C)
[0004]
[Problems to be solved by the invention]
In this fuel injection valve, a disc-shaped nozzle hole plate having a uniform thickness is provided with a nozzle hole having a tapered shape and an inclined nozzle axis, and the nozzle angle formed by the nozzle axis and the nozzle inlet end surface is different for each nozzle. As well as being different, the nozzle length is also different.
Therefore, if the nozzle angles differ greatly, the liquid film state of the fuel on the inner wall of each nozzle will differ greatly, and the spray state of the fuel injected from each nozzle will differ at each nozzle, resulting in uniform atomization in the cylinder. There was a problem that could not be achieved.
[0005]
An object of the present invention is to provide a fuel injection valve capable of achieving uniform atomization of a spray in a cylinder with a simple configuration. It is.
[0007]
[Means for Solving the Problems]
In the fuel injection valve according to the present invention, the injection hole plate has the same injection hole angle formed by the injection hole axis line connecting the center on the fuel inlet side of the injection hole and the center on the fuel outlet side at each injection hole and the injection hole end face. has a protrusion protruding on the valve seat side, and Ri uniform thickness Sadea,
Further, a tip-shaped cavity is formed at the tip of the valve body toward the nozzle plate side,
Furthermore, the angle (δ) on the nozzle plate side at which the central axis of the valve body and the cavity extension line extending toward the central axis of the surface of the cavity intersect is determined from the central axis and the surface of the protrusion. It is further smaller than the minimum angle (η) of the angles on the nozzle plate side at which the projecting extension lines extending toward the central axis intersect.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the same, equivalent members, and parts will be described with the same reference numerals.
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the overall configuration of an in-cylinder fuel injection valve 1 (hereinafter abbreviated as a fuel injection valve) of the present invention, and FIG. 2 is an enlarged view of a main part of the valve device 3 of FIG.
The fuel injection valve 1 includes a housing 2, a valve device 3 provided at an inner end of the housing 2, and a solenoid device 4 provided at an inner intermediate portion of the housing 2.
[0010]
The valve device 3 has a stepped cylindrical shape with a valve body 5 having a hole 6 and a cavity 7 formed in a valve seat 19, a nozzle plate 9 having a plurality of nozzle holes 8 welded to the cavity 7, and a valve body 5. A valve body 11 that moves up and down on the central axis I of the valve body 11 to open and close the hole 6, a stopper plate 10 that defines the upper limit of movement of the valve body 11, and a movable iron core 12 that is welded and joined at the upper end of the valve body 11; It has.
[0011]
The housing 2 includes a yoke 13 having a flange 13 a for attaching the fuel injection valve 1 to a cylinder head (not shown), and a housing portion 14 connected to one end of the yoke 13. A caulking portion 13b is formed at the tip of the yoke 13, and the valve main body 5 and the yoke 13 are coupled to each other by the caulking portion 13b.
[0012]
The solenoid device 4 includes a coil 15 around which a conductive wire is wound, a bobbin 16 on which the coil 15 is mounted, a cylindrical fixed iron core 17 attached to an inner peripheral portion of the bobbin 16, and the fixed iron core 17. A sleeve 18 fixed inside, a compression spring 20 which is contracted between the end of the sleeve 18 and the end of the valve body 11 and urges the valve body 11 against the valve seat 19, and a conductor of the coil 15. Are connected to the terminal 21. A fuel passage is formed by a passage 18 a in the sleeve 18 and a gap formed between the valve body 5 and the valve body 11.
[0013]
A plurality of nozzle holes 8 are formed in the nozzle plate 9. The nozzle hole 8 has a taper shape in which the area on the fuel outlet side is larger than the area on the fuel inlet side. Further, as shown in FIG. 3A, the angle α formed by the nozzle axis A connecting the center of the fuel inlet side of the nozzle hole 8 and the center of the fuel outlet side and the nozzle inlet end surface B is the same for each nozzle hole 8. Thus, the nozzle hole plate 9 has a protruding portion 9a protruding toward the hole 6 side. Moreover, in order to make the length of each nozzle hole 8 along the nozzle axis A the same for each nozzle hole 8, the thickness of the nozzle plate 9 is uniform.
[0014]
The nozzle plate 9 is easily manufactured by forming the nozzle holes 8 in a disk plate having a uniform thickness, and then bending the plate to form the protrusions 9a.
[0015]
Next, the operation of the fuel injection valve 1 configured as described above will be described.
When an operation signal is sent to the drive circuit of the fuel injection valve 1 by the microcomputer of the engine, the coil 15 of the solenoid device 4 is energized from the outside through the terminal 21, and magnetic flux is generated in the magnetic path formed by the movable iron core 12, the fixed iron core 17 and the yoke 13. As a result, the movable iron core 12 is attracted toward the fixed iron core 17 against the elastic force of the compression spring 20. Then, the valve body 11 integrated with the movable iron core 12 moves up to a position where the flange upper surface 11 a of the valve body 11 contacts the stopper plate 10.
[0016]
With the upward movement of the valve body 11, the distal end portion of the valve body 11 is separated from the valve seat 19, and a gap is formed between the distal end portion and the valve seat 19. As a result, the high pressure fuel of 2 MPa or more in the housing 2 passes through the passage 18a in the sleeve 18, the gap formed between the valve body 5 and the valve body 11, the hole 6 and the cavity 7, and the nozzle hole of the nozzle plate 9 8 is injected into the cylinder.
[0017]
Next, when an operation stop signal is sent from the microcomputer of the engine to the drive circuit of the fuel injection valve 1, the energization of the coil 15 is stopped, the magnetic flux in the magnetic circuit disappears, and the valve body 11 is closed. The gap at the valve seat 19 is closed by the compression spring 20 that is pushed to the end, and the fuel injection ends.
[0018]
Hereinafter, the operation of the nozzle plate 9 which is a feature of the present invention will be described in comparison with the above-described conventional fuel injection valve.
As shown in FIG. 4 (a), the conventional one is provided with nozzle holes 51, 52 having tapered shapes in which the area on the fuel outlet side is larger than the area on the fuel inlet side, on the nozzle plate 50 of uniform thickness. In each of the nozzle holes 51 and 52, the nozzle angles β and γ formed by the nozzle axis axes C and D connecting the center of the fuel inlet side of the nozzle holes 51 and 52 and the center of the fuel outlet side and the nozzle inlet end face E are different. Therefore, the lengths of the nozzle holes 51 and 52 along the nozzle axis axes C and D are also different.
[0019]
In this case, the fuel collides vertically with the nozzle plate 50, but the nozzle axes C and D are inclined, so that the fuel flows toward one side of the inner wall surface of the nozzles 51 and 52. Since the inclination angles of the axes C and D and the lengths of the nozzle holes 51 and 52 are different, as shown in FIG. 4B, the nozzle holes 51 and 52 whose area on the fuel outlet side is larger than the area on the fuel inlet side. Then, the cross-sectional shape of the fuel becomes a crescent shape at the fuel outlet, and the shape and the liquid film thickness are greatly different at the nozzle holes 51 and 52 respectively. As a result, uniform atomization in the cylinder cannot be achieved.
[0020]
On the other hand, in the nozzle hole plate 9 of this embodiment, the nozzle hole plate 9 has a projecting portion 9a that is curved and deformed, and the angle α formed between the nozzle hole axis A and the nozzle hole inlet end surface B is the same for each nozzle hole 8, and The thickness of the nozzle hole plate 9 is uniform, and the length of each nozzle hole 8 along the nozzle axis A is the same for each nozzle hole 8.
In this case, the fuel collides perpendicularly with the nozzle plate 9 but flows toward one side of the inner wall surface of the nozzle 8 because the nozzle axis A is inclined. Since the nozzle angle α formed with the inlet end face B and the length of the nozzle 8 are the same, as shown in FIG. 3B, the cross-sectional shape of the fuel at the fuel outlet of each nozzle 8 is substantially the same crescent shape. Therefore, there is no great difference in the thickness of the liquid film, and as a result, the fuel is atomized more uniformly in the cylinder as compared with the conventional one.
[0021]
Embodiment 2. FIG.
FIG. 5 is a cross-sectional view of the main part of the fuel injection valve 1 according to Embodiment 2 of the present invention.
In the second embodiment, a cavity 31 having a diverging shape toward the nozzle hole plate 9 is formed at the tip of the valve body 30.
Further, the angle (δ) on the nozzle plate 9 side where the central axis I of the valve body 11 intersects with the cavity extension line extending toward the central axis I of the surface of the cavity 31 is the surface of the central axis I and the protruding portion 9a. Is smaller than the minimum angle (η) of the angles on the side of the nozzle hole plate 9 at which the respective projecting extension lines extending toward the central axis I intersect.
The projecting extension line is a tangent line of the projecting portion 9a, but in the case of the second embodiment, the minimum angle (η) is a tolerance between the tangent line from the rising point of the projecting portion 9a protruding in a curved shape and the central axis I. It is an angle.
Other configurations are the same as those in the first embodiment.
[0022]
In the first embodiment, the internal space of the cavity 7 has the same diameter, and when the fuel is injected into the cavity 7 from the hole 6, the flow path cross-sectional area of the fuel changes drastically and the inside of the cavity 7 A vortex or the like is generated in the upstream corner, and fluid energy is lost accordingly.
On the other hand, in the case of the second embodiment, when the fuel is injected from the hole 6 into the cavity 7, the flow passage cross-sectional area of the fuel gradually expands. Is less likely to occur and fuel atomization is improved accordingly.
[0023]
Further, the angle (δ) at which the central axis I of the valve body 11 intersects with the cavity extension line is further smaller than the minimum angle (η) of the angles at which the central axis I intersects with the respective projecting extension lines. Therefore, the flow path cross-sectional area in the cavity 31 is prevented from rapidly increasing, and fluid energy such as vortex generation and fuel stagnation is generated at the portion where the cross-sectional area increases rapidly on the downstream side of the cavity 31. It is possible to suppress the occurrence of inconveniences that adversely affect the loss and consequently the atomization of the fuel.
[0024]
Embodiment 3 FIG.
FIG. 6 is a partial cross-sectional view of the nozzle plate 40 according to Embodiment 3 of the present invention. In this embodiment, the nozzle plate 40 has a protruding portion 40a that protrudes linearly and obliquely upward.
Other configurations are the same as those of the second embodiment.
[0025]
Also in this embodiment, the angle (δ) on the nozzle plate 40 side where the central axis I of the valve body 11 intersects the cavity extension line extends from the surface of the central axis I and the protrusion 40a toward the central axis I. Since the angle is smaller than the angle (η) on the nozzle hole plate 40 side where the projecting extension line intersects, it is possible to suppress a rapid increase in the cross-sectional area of the fuel flow path in the downstream in the cavity 31, and as a result The effect similar to the form 2 of this can be acquired.
[0026]
Embodiment 4 FIG.
FIG. 7 is a partial cross-sectional view of a nozzle plate 41 according to Embodiment 4 of the present invention. In this embodiment, the nozzle plate 41 has a protruding portion 42 bent at an intermediate portion. The projecting portion 42 includes a first projecting element 42a and a second projecting element 42b. The angle (η) on the nozzle plate 41 side where the central axis I intersects with the projecting extension line extending from the surface of the first projecting element 42a toward the central axis I is such that the central axis I and the second projecting element 42b The angle is smaller than the angle on the nozzle plate 41 side where the projecting extension line extending toward the central axis I intersects. Further, the angle (δ) at which the central axis I of the valve body 11 and the cavity extension line intersect is smaller than this angle (η).
Other configurations are the same as those of the third embodiment.
[0027]
Also in this embodiment, the angle (δ) at which the central axis I of the valve body 11 intersects the cavity extension line is the central axis I and the protruding extension line extending toward the central axis I of the first protrusion 42a. Is smaller than the crossing angle (η), it is possible to suppress a rapid increase in the cross-sectional area of the fuel flow path in the downstream in the cavity 31, and as a result, the same effect as in the second embodiment can be obtained. be able to.
In addition, although this protrusion part is bent in one place on the way, it may be bent in multiple numbers.
[0028]
In each of the above embodiments, the fuel injection valve for in-cylinder injection has been described. However, the present invention is of course not limited to this, and is attached so as to protrude into the intake pipe, and the fuel is injected into the intake pipe. It is applicable also to the fuel injection valve which injects and produces | generates the air-fuel mixture with air.
[0029]
【The invention's effect】
As described above, according to the fuel injection valve of the present invention, the nozzle plate is formed by the nozzle axis connecting the fuel inlet side center of the nozzle hole and the fuel outlet side center of each nozzle hole and the nozzle inlet end surface. Since it has a protrusion that protrudes toward the valve seat so that the nozzle angles are the same, and has a uniform thickness, the cross-sectional shape of the fuel at the fuel outlet of each nozzle is almost the same. There is no great difference in the thickness of the liquid film, and uniform atomization of the fuel can be achieved.
Further, the angle (δ) at which the central axis of the valve body and the cavity extension line intersect is further smaller than the minimum angle (η) of the angles at which the center axis and each projecting extension line intersect. The flow cross-sectional area in the cavity is prevented from abruptly increasing, and the loss of fluid energy such as vortex generation and fuel stagnation in the area where the cross-sectional area increases rapidly on the downstream side of the cavity. The occurrence of inconvenience that adversely affects atomization can be suppressed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a fuel injection valve for in-cylinder injection according to Embodiment 1 of the present invention.
2 is an enlarged view of a main part of the in-cylinder fuel injection valve of FIG. 1. FIG.
FIG. 3 is a view showing fuel distribution in the nozzle hole of the nozzle plate of FIG. 1;
FIG. 4 is a view showing a fuel distribution in a nozzle hole of a conventional nozzle plate.
FIG. 5 is a cross-sectional view of a main part of a fuel injection valve for in-cylinder injection according to Embodiment 2 of the present invention.
FIG. 6 is a cross-sectional view of a main part of a fuel injection valve for in-cylinder injection according to Embodiment 3 of the present invention.
FIG. 7 is a cross-sectional view of a main part of a fuel injection valve for in-cylinder injection according to Embodiment 4 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel injection valve for cylinder injection, 5,30 Valve main body, 6 holes, 7,31 cavity, 8 injection hole, 9,40,41 injection hole plate, 9a, 40a, 42 protrusion part, 11 valve body, 19 valve seat, 42a 1st protrusion, 42b 2nd protrusion, A nozzle hole axis line, B nozzle inlet end surface.

Claims (1)

内部に燃料通路を有するとともに端部に弁座が形成された弁本体と、前記弁座に着座することで前記燃料通路を閉塞し、前記弁座から離座することで前記燃料通路を解放する弁体と、前記弁本体の先端部に設けられ、前記弁体の開弁時に前記燃料通路から流出する燃料を噴射する、燃料出口側の面積が燃料入口側の面積よりも大きいテ−パ形状の噴口を複数有する噴口プレートとを備えた燃料噴射弁であって、
前記噴口プレートは、各前記噴口において前記噴口の燃料入口側の中心と燃料出口側の中心とを結ぶ噴口軸線と噴口入口端面とのなす噴口角度がそれぞれ同一となるように前記弁座側に突出した突出部を有しており、かつ均一厚さであり、
また、前記弁本体の先端部には、前記噴口プレート側に向かって末拡がり形状のキャビティが形成されており、
さらに、前記弁体の中心軸線と前記キャビティの表面の前記中心軸線に向かって延びたキャビティ延長線とが交差する前記噴口プレート側の角度(δ)は、前記中心軸線と前記突出部の表面から前記中心軸線に向かって延びた各突出延長線とが交差する前記噴口プレート側の角度のうちの最小角度(η)よりもさらに小さい燃料噴射弁。
A valve body having a fuel passage therein and having a valve seat formed at an end thereof, the fuel passage is closed by being seated on the valve seat, and the fuel passage is released by being separated from the valve seat. A valve body and a taper shape provided at the tip of the valve body and injecting fuel flowing out of the fuel passage when the valve body is opened, having a fuel outlet side area larger than a fuel inlet side area A fuel injection valve comprising a nozzle plate having a plurality of nozzle holes,
The nozzle plate protrudes toward the valve seat so that the nozzle angle formed by the nozzle axis connecting the fuel inlet side center of the nozzle and the fuel outlet side center and the nozzle inlet end surface is the same at each nozzle hole. has a protruding portion that, and Ri uniform thickness Sadea,
Further, a tip-shaped cavity is formed at the tip of the valve body toward the nozzle plate side,
Furthermore, the angle (δ) on the nozzle plate side at which the central axis of the valve body and the cavity extension line extending toward the central axis of the surface of the cavity intersect is determined from the central axis and the surface of the protrusion. A fuel injection valve that is smaller than a minimum angle (η) of angles on the nozzle plate side at which the respective projecting extension lines extending toward the central axis intersect .
JP2002321195A 2002-11-05 2002-11-05 Fuel injection valve Expired - Fee Related JP3655905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321195A JP3655905B2 (en) 2002-11-05 2002-11-05 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321195A JP3655905B2 (en) 2002-11-05 2002-11-05 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2004156479A JP2004156479A (en) 2004-06-03
JP3655905B2 true JP3655905B2 (en) 2005-06-02

Family

ID=32801824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321195A Expired - Fee Related JP3655905B2 (en) 2002-11-05 2002-11-05 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP3655905B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013165A1 (en) 2005-07-29 2007-02-01 Mitsubishi Denki Kabushiki Kaisha Fuel injection valve
JP2015078603A (en) * 2013-10-15 2015-04-23 三菱電機株式会社 Fuel injection valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4123384B2 (en) 2004-09-13 2008-07-23 株式会社デンソー Fuel injection valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013165A1 (en) 2005-07-29 2007-02-01 Mitsubishi Denki Kabushiki Kaisha Fuel injection valve
JP2015078603A (en) * 2013-10-15 2015-04-23 三菱電機株式会社 Fuel injection valve

Also Published As

Publication number Publication date
JP2004156479A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US6921022B2 (en) Spray pattern control with non-angled orifices formed on dimpled fuel injection metering disc having a sac volume reducer
JP4315115B2 (en) Fuel injection valve
US8313048B2 (en) Fuel injector
JP2002039036A (en) Fuel injection valve
JPH0343465B2 (en)
JP2004510913A (en) Fuel injection valve
US20060208108A1 (en) Fuel injection valve
JP3977728B2 (en) Fuel injection valve
KR20060053179A (en) Fuel injection valve
JP4097056B2 (en) Fuel injection valve
JP3655905B2 (en) Fuel injection valve
JP4209803B2 (en) Fuel injection valve
JP4127703B2 (en) Fuel injection device
JP2009250122A (en) Fuel injection valve
US7080796B2 (en) Fuel injection valve
JP2002115628A (en) Fuel injection valve and internal combustion engine
JP2009162239A (en) Fuel injection valve and internal combustion engine
JP2011127486A (en) Fuel injection valve
JP4305858B2 (en) Fuel injection valve
JP3930012B2 (en) Fuel injection valve
CN111989480B (en) Fuel injection valve
JP3915347B2 (en) Fuel injection valve
JP6834707B2 (en) Actuator
JP2002081359A (en) Fuel injection valve
JP6658019B2 (en) Fuel injection valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees