JP3655830B2 - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
JP3655830B2
JP3655830B2 JP2001032432A JP2001032432A JP3655830B2 JP 3655830 B2 JP3655830 B2 JP 3655830B2 JP 2001032432 A JP2001032432 A JP 2001032432A JP 2001032432 A JP2001032432 A JP 2001032432A JP 3655830 B2 JP3655830 B2 JP 3655830B2
Authority
JP
Japan
Prior art keywords
statistic
diagnostic apparatus
ultrasonic diagnostic
image
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001032432A
Other languages
English (en)
Other versions
JP2002233527A (ja
Inventor
紘一 伊東
信行 谷口
景文 曹
健二 隈崎
貴司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2001032432A priority Critical patent/JP3655830B2/ja
Publication of JP2002233527A publication Critical patent/JP2002233527A/ja
Application granted granted Critical
Publication of JP3655830B2 publication Critical patent/JP3655830B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エコーデータに基づく統計量を診断に供する超音波診断装置に関する。
【0002】
【従来の技術】
生体組織内での超音波の散乱については十分には解明されていないが、肝臓、脾臓、心筋などの正常組織に対しては、微小散乱体が数多くランダムに分布するという均一散乱媒質としてモデル化されることが多い。この場合、超音波のエコー信号は、ランダムな位相で干渉し合う散乱波の累積加算の結果として得られ、その振幅の確率密度関数は平均値0、分散αの正規分布関数になり、また、そのエコー信号の包絡振幅Aの確率密度関数(輝度ヒストグラム)P(A)は、次式のRayleigh分布に従うことが知られている。なお、ここでA≧0であり、またαはA2の平均値(Aの平均強度)に等しい。
【0003】
P(A) = (2A/α)・exp(−A2/α) ………(1)
Rayleigh分布は、Aの平均値と標準偏差との比で定義される信号対雑音比SNR、Aの平均値周りの3次モーメントと標準偏差の3乗との比で定義される歪度(Skewness)、及びAの平均値周りの4次モーメントと標準偏差との4乗の比で定義される尖度(Kurtosis)の3統計量が、送信パワーやシステムのゲインに依存するαによらず一定値となる特徴を有する。ちなみにSNR=1.913、Skewness=0.631、Kurtosis=3.245となる。
【0004】
ところが、病変などによる組織の変化、例えば、脂肪肝に見られる脂肪の沈着、梗塞心筋や肝硬変に見られるコラーゲンの沈着などが生じると、正常組織を表す均一な微小散乱体に加えて、コラーゲン繊維や脂肪沈着などの構造体が混在することになる。そのため、上述の散乱モデルが当てはまらなくなり、Aの確率密度関数は非Rayleigh分布となって、上記3統計量が一定値ではなくなる。このことを利用し、Bモード断層画像に表されるエコーデータに関する統計解析から組織性状を定量化して、病変を鑑別する組織性状診断が従来より行われている。
【0005】
しかし、輝度ヒストグラムは組織の減衰特性などの影響を受ける。そのため、診断対象とする関心領域(ROI:Region of Interest)の超音波ビーム方向、すなわち深さ方向の拡がりが大きくなると、当該ROI内が均一散乱媒質であってもRayleigh分布は得られなくなり、上述の組織性状診断が困難になる。
【0006】
これに対し、日本超音波医学会講演論文集51−PE−15(1987年)に示される従来技術が存在する。図5は、この従来技術を説明するものであり、Bモード断層画像におけるROIの設定を示す模式図である。図には、超音波振動子2により形成されるBモード断層画像4が示されている。この技術では、Bモード断層画像4において設定されるROI6全体(深さ方向の幅Z)を、それぞれRayleigh分布が成立するとみなし得るような薄い層領域8(すなわち深さ方向の幅ΔZが微小な領域)に分割し、各層領域8についてそれぞれ上述のSNRなどの統計量を算出する。そして、これら各層領域8の統計量を層領域8全部について平均し、その平均値がROI6全体の統計量とされる。このように定義されたROI6全体の統計量は、ROI6内の組織が正常であれば、Rayleigh分布における一定値となり、一方、ROI6内に病変による組織不均一化が生じると層領域8における輝度ヒストグラムの非Rayleigh分布化を反映して、当該一定値から変動する。よって、上述のように定義されたROI6全体の統計量を用いて、組織性状診断を行うことが可能である。
【0007】
【発明が解決しようとする課題】
上述の従来技術では、統計量に関してはROI6全体についての単一定量値が用いられ、断層面上での統計量の画像化は行われていなかった。そのため、従来は、検査者がROI全体についての統計量とBモード断層画像とに基づいて、病変の様子を判断しており、この判断には経験を要していた。
【0008】
ここで、SNRなどの統計量を用いて臓器内部の組織の不均一性を画像化することができれば、関心領域又は組織全域に渡る組織不均一性の定量値の分布が一目瞭然のように視覚的に認識でき、定量画像診断を行えることとなる。このような定量画像診断においては、客観的な評価ができ、経験の少ない検査者でも判断が容易になる。
【0009】
しかし、従来は層領域8ごとの統計処理に基づいて深さ方向に関する一次元的な統計量分布は得ることはできても、二次元的な統計量分布を得ることができないという問題があった。これは、統計対象領域の面積を縮小すると、それに含まれるサンプル数が減少して、統計精度が低下するからである。すなわち、ROIを深さ方向のみならず、これと直交する方向にも分割して、統計量の画像化を図ると、各画素の統計量の誤差が大きくなり非実用的となるからである。
【0010】
本発明は上記問題点を解消するためになされたものであり、SNRなどの統計量を用いて臓器内部の組織の不均一性を画像化することができ、病変の鑑別が容易な超音波診断装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明に係る超音波診断装置は、超音波ビームの走査により三次元エコーデータ空間を形成する送受波手段と、前記三次元エコーデータ空間に対して、複数のサンプル空間を設定するサンプル空間設定手段と、前記各サンプル空間ごとに、各サンプル空間内の複数のエコーデータを用いて生体組織の性状を指標する統計量を演算する統計演算手段と、前記各サンプル空間ごとの前記統計量を二次元マッピングして統計量マッピング画像を形成する統計量画像形成手段とを有するものである。
【0012】
本発明によれば、超音波ビームの走査により、三次元空間内の各サンプルポイントにてエコーデータが取得される。エコーデータが取得された三次元空間には複数のサンプル空間が定義される。各サンプル空間には複数のサンプルポイントが含まれ、それら複数のサンプルポイントでのエコーデータを統計サンプルとして、各サンプル空間ごとに統計処理が行われる。この統計処理により、生体組織の性状を指標する所定の統計量が算出される。各サンプル空間ごとに算出された統計量は、三次元エコーデータ空間に設定される視線方向に対して投影され、当該視線方向から見た統計量の二次元分布、すなわち統計量マッピング画像が生成される。統計量マッピング画像の解像度は、視線方向への投影によって異なる位置に投影されるサンプル空間の数に依存する。つまり、視線方向へのサンプル空間の投影像が小さいほど、解像度は良くなり得る。サンプリング空間は三次元エコーデータ空間内で定義されるので、投影像の大きさとは独立に投影方向の奥行きを与えることができる。すなわち、投影像を小さくして統計量マッピング画像の解像度を得る一方で、奥行きを大きくしてサンプル空間に包含されるエコーデータ数を確保し、統計量マッピング画像の各画素に表される統計量を良好な精度で得ることができる。サンプル空間は、三次元エコーデータ空間を重なり無く分割して形成したものでもよいし、また隣接するサンプル空間同士が部分的に重複するように定義することもできる。サンプル空間は、視線方向から見て二次元的に分布していればよく、奥行き方向の分布は問わない。一つのサンプル空間が奥行き方向に延びている場合には、そのサンプル空間から求まる統計量が統計量マッピング画像に投影される。一方、奥行き方向に複数のサンプル空間が重なり合っている場合には、それら各サンプル空間から求まる統計量に対して、さらに平均を求める等の適当な統計処理が行われ、その結果値が統計量マッピング画像に投影される。
【0013】
他の本発明に係る超音波診断装置は、前記各サンプル空間が、超音波ビーム方向に沿った深さ位置が一定である細長形状を有することを特徴とするものである。
【0014】
超音波の送受波距離、すなわち深さが異なるエコーデータは、超音波の減衰などの特性の影響が異なる。本発明によれば、サンプル空間は深さが一定のラインに沿って配置され、またサンプル空間の深さ方向の厚みは薄く設定されるので、減衰等の深さ依存特性のサンプル空間内での差異を無視することが可能となる。これにより例えば、生体の正常組織に採られたサンプル空間内のエコーデータについての輝度ヒストグラムをRayleigh分布とみなすことが可能となる。当該分布では分散によらずSNR、歪度、及び尖度といった統計量が一定値となる。よって、サンプル空間ごとに得られるこれらの統計量を生体組織の性状を指標する統計量として用い、生体の病変の有無を鑑別することが可能となる。サンプル空間は細長形状であり、サンプル空間の細い断面を画素として統計量マッピング画像を形成することができる。また画素が小さい分、サンプル空間は奥行き方向に長さを有し、サンプル空間内のエコーデータから求められる統計量の精度が確保される。
【0015】
本発明の好適な態様は、前記送受波手段が、第1方向の第1走査により形成される走査面を第2走査により第2方向に複数配列して前記三次元エコーデータ空間を形成し、前記サンプル空間設定手段が、前記各走査面上に二次元配列される複数のサンプル領域を定め、前記複数の走査面相互間で同じ面内位置にある複数の前記サンプル領域からなる集合を前記サンプル空間とし、前記統計量画像形成手段が、前記各サンプル空間ごとの前記統計量を前記第2方向に交差する投影面にマッピングして前記統計量マッピング画像を形成する超音波診断装置である。
【0016】
本態様では、例えば、第1走査として第1方向にアレイ振動子の電子走査を行って、一つの走査面が形成され、第1方向と直交する第2方向に第2走査として走査アレイ振動子のメカニカル走査を行って、複数の走査面が形成される。このように形成された多層構造の走査面群が三次元エコーデータ空間を構成する。また統計量マッピング画像は、第2方向に交差する面、例えば走査面に平行な面に投影されて形成される統計量の二次元分布である。走査面上にはサンプル領域が配置される。サンプル領域は第1方向及び深さ方向のいずれについても走査面よりも小さい幅に形成され、走査面上に二次元的に配列されて、これらがそれぞれ統計量マッピング画像の画素に対応付けられる。各走査面の面内位置が同じであるサンプル領域、すなわち第1方向の位置及び深さ方向の位置が同じであるサンプル領域が組み合わされて、そのサンプル領域の組が一つのサンプル空間を構成する。サンプル空間を構成する各サンプル領域はそれぞれ同じ深さ位置を有し、また、その深さ方向の幅は、その幅内での減衰等の深さ依存特性の差異を無視し得るように定めることができる。統計処理には一つの走査面のサンプル領域だけでなく、複数の走査面のサンプル領域が用いられるため、サンプル領域の面積は比較的小さくても、統計精度を確保することができる。
【0017】
他の本発明の好適な態様は、前記送受波手段が、第1方向の第1走査により形成される走査面を第2走査により第2方向に複数配列して前記三次元エコーデータ空間を形成し、前記サンプル空間設定手段が、前記各走査面上において超音波ビーム方向に沿った深さが一定である細長領域を前記サンプル空間とし、前記統計量画像形成手段が、前記各サンプル空間ごとの前記統計量を前記第1方向に交差する投影面にマッピングして前記統計量マッピング画像を形成する超音波診断装置である。
【0018】
本態様では、統計量マッピング画像は、第1方向に交差する面、例えば走査面に直交する面に投影されて形成される統計量の二次元分布である。走査面上の深さ一定の位置に比較的小さな深さ幅で、かつ第1方向に延びる細長領域がサンプル空間とされる。各走査面には、深さ方向に複数のサンプル空間が配列される。また、走査面は第2方向に複数配列されるので、サンプル空間は第2方向及び深さ方向に関し二次元配列を構成する。これらサンプル空間は、第1方向に交差する投影面上に投影され、それぞれ統計量マッピング画像の画素に対応付けられる。各サンプル空間の深さ方向の幅は、その幅内での減衰等の深さ依存特性の差異を無視し得るように定めることができる。サンプル空間が投影面から見て奥行き方向である第1方向に長く定められるため、投影面から見たサンプル空間相互の間隔は比較的小さくても、各サンプル空間は各画素の統計量の精度を確保するのに必要なエコーデータ数を包含し得る。
【0019】
別の本発明に係る超音波診断装置は、前記統計量画像形成手段が、前記統計量マッピング画像の各画素にマッピングされる前記統計量の大きさに応じた表示属性を、前記各画素それぞれに付与する表示属性付与手段とを有するものである。
【0020】
本発明によれば、統計演算手段により求められた統計量を画素値とする画像が形成され、各画素の表示属性は統計量の大きさに応じて定められる。
【0021】
本発明の好適な態様は、前記表示属性付与手段が、前記統計量の大きさに応じた輝度情報を前記画素に付与する超音波診断装置である。これにより、例えば、求めた統計量の大小に応じた輝度値を有する白黒画像が形成される。
【0022】
本発明の他の好適な態様は、前記表示属性付与手段が、前記統計量の大きさに応じた色情報を前記画素に付与する超音波診断装置である。これにより、例えば、求めた統計量が大きくなるにつれて、画素の色を濃くしたり、色相を変えたカラー画像が形成される。
【0023】
さらに別の本発明に係る超音波診断装置は、前記統計量画像形成手段が、前記統計量マッピング画像の各画素にマッピングされる前記統計量を所定の閾値と比較する比較手段と、前記比較手段による比較結果に応じた表示属性を前記各画素それぞれに付与する表示属性付与手段とを有するものである。
【0024】
本発明によれば、統計演算手段により求められた統計量を画素値とする画像が形成され、各画素の表示属性は閾値との比較により統計量の大きさに応じて定められる。閾値は一又は複数設定され、統計量は2つ又は3つ以上のレンジに区分される。
【0025】
本発明の好適な態様は、前記表示属性付与手段が、前記統計量が生体組織の性状に関する正常値であるか異常値であるかに応じて、対応画素を白黒表示とするかカラー表示とするかを切り換える超音波診断装置である。
【0026】
例えば、統計量としてエコーデータについてのSNR、歪度、又は尖度を求めた場合、生体組織が正常であれば、ヒストグラムはRayleigh分布で近似され、上記統計量は所定値(正常値)となる。一方、病変組織では非Rayleigh分布となり、上記統計量は所定値から外れた異常値となる。そこで、統計量について正常値範囲と異常値範囲とを定めることができ、求めた統計量が異常値範囲に属する画素についてのみがカラー表示される。これにより、統計量マッピング画像上での病変領域の認識を容易とすることができる。
【0027】
さらに別の本発明に係る超音波診断装置は、前記統計量画像形成手段が、エコー強度を輝度情報として表示するBモード断層画像を前記統計量マッピング画像に対応して形成するBモード画像形成手段と、前記統計量マッピング画像の各画素にマッピングされる前記統計量を所定の閾値と比較する比較手段と、前記比較手段による比較結果に応じた表示属性を、前記統計量マッピング画像の各画素に対応する前記Bモード断層画像の各画素それぞれに付与する表示属性付与手段とを有するものである。
【0028】
本発明によれば、エコー強度を輝度情報として表示するBモード断層画像の各画素の表示属性が統計量に応じて定められる。ここでも、閾値は一つである必要はない。
【0029】
本発明の好適な態様は、前記表示属性付与手段が、前記統計量が生体組織の性状に関する異常値である場合に、対応する前記Bモード断層画像の画素をカラー表示する超音波診断装置である。これにより、Bモード断層画像上で病変組織とみなされる領域が着色されて表示され、Bモード断層画像上での病変領域の認識を容易とすることができる。
【0030】
また、本発明のさらに好適な態様は、前記表示属性付与手段が、前記統計量の大きさに応じた色情報を、前記Bモード断層画像の画素に付与する超音波診断装置である。これにより、例えば、求めた統計量と正常値との差が大きくなるにつれて、画素の色を濃くしたり、色相を変えた画像が形成される。
【0031】
【発明の実施の形態】
次に、本発明の実施形態について図面を参照して説明する。
【0032】
図1は、本発明の実施の形態に係る超音波診断装置の構成を示す概略のブロック図である。図1において、プローブ10は、超音波パルスの送波及びエコーの受波を行う超音波探触子であり、検査者によって被検者の診断部位に当接される。このプローブ10は振動子アレイを有しており、その振動子アレイの電子走査によって超音波ビームが電子的に走査される。この電子走査によって一つの走査面が形成され、この走査面から1フレームの情報が取得される。その電子走査方式としては例えば電子リニア走査や電子セクタ走査などを挙げることができる。またプローブ10は、図示しないメカニカル走査機構によって電子走査と直交する方向に揺動され、複数の揺動位置において走査面が形成される。これにより、三次元空間の情報が複数フレームのエコーデータとして取得される。なお、メカニカル走査機構を用いずに、検査者が手でプローブ10の向きを変える等の操作を行ってもよい。
【0033】
送信ビームフォーマー12はシステム制御部14による制御に従って、振動子アレイの各チャネルごとに遅延された送信パルスを送信駆動回路16に供給する。送信駆動回路16は送信パルスを入力されると、対応するチャネルの振動子を励振駆動するための駆動パルスをプローブ10へ出力する。振動子ごとの遅延量は、送波される超音波がビームを形成するように、また、送波ビームの方向に応じて制御される。
【0034】
プローブ10は、送信駆動回路16からの駆動パルスにより駆動されて、被検体へ超音波ビームを送波すると共に、被検体からのエコーを受波する。プローブ10は、振動子アレイの各チャネルごとに受信信号を出力する。チャネルごとの受信信号は受信増幅器20で増幅された後、受信ビームフォーマー22に入力される。受信ビームフォーマー22は、チャネル間の受信信号の位相差を調整して互いに加算する整相加算処理を行って受信ビームを形成する。
【0035】
この受信ビームフォーマー22の出力は、受信ビーム処理回路24に入力される。受信ビーム処理回路24は各種の受信信号処理を行い得る。例えば、受信ビーム処理回路24は、エコー信号の包絡振幅を抽出する検波処理や、包絡振幅信号の対数圧縮処理などを行い得る。また、バンドパスフィルタ(BPF)を用いてエコー信号中の基本波成分又は二次高調波成分のいずれかを選択する処理を行うように構成することができ、検波処理は選択された成分信号の包絡振幅を抽出するように構成することができる。検査者は、対数圧縮処理を行うか否かや、いずれの成分信号について検波を行うかを選択することができる。
【0036】
フレームメモリ26は、受信ビーム処理回路24で生成された情報をフレームごとに格納する。また、後段での必要に応じて、検波処理前のエコーデータを格納する。
【0037】
統計処理部28は、フレームメモリ26に格納された複数フレームのエコー信号の振幅に基づいて統計量を計算する。この統計量は、三次元空間内に設定される所望の観察断面上の各点に対応して求められる。統計処理部28の処理については、さらに後述する。
【0038】
画像形成回路30は、統計処理部28で求められた統計量に基づいて、観察断面に対応した統計量マッピング画像を形成することができる。また画像形成回路30はフレームメモリ26に格納されたエコーデータに基づいて、観察断面でのBモード断層画像を形成することもできる。画像形成回路30の処理についても、さらに後述する。
【0039】
表示器32は、画像形成回路30で形成された画像などの情報を画面上に表示し、検査者はこの画面表示された情報に基づいて診断を行う。
【0040】
図2は、統計処理部28及び画像形成回路30の処理を説明するための図であり、フレームメモリ26内のデータ構造を示す模式図である。この模式図は、フレームメモリ26に格納されたデータを、それが得られた三次元空間での構造に対応付けて表したものであり、三次元エコーデータ空間を表している。三次元エコーデータ空間は、複数のフレーム50から構成される。各フレーム50はそれぞれ電子走査の走査面上のデータに対応し、図ではフレーム50の縦方向が超音波ビームの送受波距離、すなわち深さに対応し、横方向が電子走査における走査方向に対応する。図2に示す例では、観察断面は、いずれかの走査面に一致して設定される。例えばフレーム50Aが観察断面に設定される。観察断面の一部又は全部が検査者によってROI52Aに設定される。統計処理部28は、ROI52Aを縦方向及び横方向それぞれについて細分し、複数の窓(サンプル領域)54Aを設定する。さらに統計処理部28は、他のフレーム50Bに、フレーム50Aと同じ位置、形状のROI52B及び窓54Bを設定する。
【0041】
統計処理部28は、各フレーム50内の位置(すなわち深さ及び走査方向における位置)が同じ窓54を一つのグループ(サンプル空間)として取り扱う。例えば、各フレーム50の窓56の集合が一つのサンプル空間を構成する。統計処理部28は各グループに含まれる複数のエコーデータを対象として、サンプル空間ごとに所定の統計処理を行う。ここで、複数フレームの窓をグループにすることにより、一つのサンプル空間に包含されるサンプル数を増やすことができるので、窓の大きさを比較的小さくしても、統計量の精度を確保することができる。あるサンプル空間について求められた統計量はそのサンプル空間に含まれる窓54Aに対応付けられる。これにより、観察断面のROI52Aの各窓54Aについてそれぞれ良好な精度で統計量が求められ、統計量のROI52A上での二次元分布情報が得られる。
【0042】
次に統計処理部28での統計処理の具体的な例を説明する。まず、窓54の深さ方向の幅は、その幅内での減衰等の深さ依存特性の差異を無視し得るように定められる。これにより、減衰の影響が除去され、窓54の座標に依らない不偏な統計量を求めることができ、その統計量に基づいて組織の正常/異常の鑑別が可能となる。
【0043】
第1の統計処理方法は、従来技術で述べたものであり、エコー信号の包絡振幅のヒストグラムのSNR、歪度、尖度を、生体組織の性状を指標する統計量として算出して鑑別に利用する。上述したように、正常組織は均一散乱媒質として扱うことができ、その包絡振幅のヒストグラムはRayleigh分布関数になり、上記3統計量が所定値となる。一方、病変により組織が不均一化すると、ヒストグラムは非Rayleigh分布化する。よって、ヒストグラムが非Rayleigh分布へ移行する程度を表す定量的なパラメータとして上記統計量を利用し、非Rayleigh分布化の程度に基づいて病変を判断することができる。
【0044】
第2の統計処理方法は、対数圧縮後の振幅を用いるものである。通常の診断装置では、エコー信号の包絡振幅Aを対数増幅器によって圧縮した振幅Bを用いて、Bモード像を形成して表示している。対数増幅器の特性を(2)式に示す理想の対数変換とすると、振幅AがRayleigh分布に従う場合、振幅Bの分散値Varは(3)式で与えられ、一定値となる。
【0045】
B≡a・log(c・A) , (a,c:定数) ………(2)
Var =(a・π)2/24 ………(3)
よって、対数圧縮後の振幅を用いてBモード像を形成するような場合には、組織の病変の程度を定量化するための統計量として、振幅Bの分散値Var又は標準偏差値を利用することが可能である。
【0046】
第3の統計処理方法は、エコー信号の包絡振幅のピーク値に着目したものである。Rayleigh分布に従うエコー信号の包絡振幅Aのピーク値の平均値と標準偏差との比で定義された信号雑音比SNRpを求めると、一定値の2.4となる。よって、SNRpを非Rayleigh分布化を表す定量パラメータとして用い、これに基づいて病変を判断することができる。
【0047】
第4〜第6の統計処理方法は、非Rayleigh分布関数をモデル化してそのパラメータを統計量として用いるものである。非Rayleigh分布は図3に示すように、pre-Rayleigh分布とpost-Rayleigh分布とに大別される。pre-Rayleigh分布の典型がK分布であり、post-Rayleigh分布の典型がRician分布である。また、pre-Rayleigh分布から、post-Rayleighまでを記述できる一般化したモデルとしてNakagami分布がある。以下、これらについて述べる。
【0048】
まず第4の方法はK分布を用いるものである。K分布は散乱体の数が少ないモデルに基づいて導かれたものである。数多くの均一散乱体の中に、散乱振幅の強い散乱体(例えば、肝硬変における繊維の塊)が粗く混在していると、数が少ない強い散乱体が支配的になるため、エコー信号の包絡振幅Aの確率密度関数は次式のK分布で記述できる。
【0049】
P(A)=2b・(bA/2)M・KM-1(bA)/Γ(M) ………(4)
b≡2・(M/<A2>)1/2 ………(5)
ここに、Mは装置分解能セル内の散乱体の有効数を表し、KM-1(ξ)は(M−1)次の第2種変形ベッセル関数、Γ(ξ)はガンマ関数である(なお、ξは引数である)。また<ξ>はξの平均値(期待値)を意味する。(4)式及び(5)式から、Mが分かればK分布が定まることが理解される。Mは次のように、振幅Aから求められる。
【0050】
M=2/〔(<A4>/<A22)−2〕 ………(6)
Mが大きいほど(約12以上)、K分布はRayleigh分布に近くなる。K分布のSNR(≦1.913)などの上記3統計量はMだけに依存している。Mが小さいほど、SNRが低下し、歪度と尖度が増加する。よって、SNRなどの統計量の代りに、(6)式のMを利用することができる。
【0051】
第5の方法はRician分布を用いるものである。数の多い微小散乱体の中に、装置分解能セルに相当するサイズ又はそれ以下のサイズの散乱体がおおよそ周期的に混在している場合(例えば、脂肪肝における脂肪の沈着)には、エコー信号の包絡振幅Aの確率密度関数は(1)式のRayleigh分布から次式のRician分布に変化する。
【0052】
P(A)=(2A/α)・exp〔−(A2+R2)/α〕・I0(2AR/α) ………(7)
ここに、I0(ξ)は0次の第1種変形ベッセル関数である。微小散乱体の散乱波の平均強度をαにすれば、R2は上記周期性を持つ散乱体の散乱波の平均強度を表す。(7)式よりAの平均強度<A2>を求めると、<A2>=α+R2となる。(7)式は、R=0の場合にはRayleigh分布関数になり、R2≫αの場合には平均値R、分散α/2の正規分布関数に近くなる。強度比R2/αをhと表す。hは次のように、Aから求められる。
【0053】
r≡<A4>/<A22 ………(8)
h≡R2/α =〔2−r+(2−r)1/2〕/(r−1) ………(9)
hが分かれば、Rician分布が定まる。Rician分布のSNR(≧1.913)などの3統計量はhだけに依存し、hが大きいほど、SNRが増加し、歪度と尖度が低下する。よって、SNRなどの統計量の代りに、(9)式の強度比hを利用することができる。
【0054】
第6の方法はNakagami分布を用いるものである。Nakagami分布は次式で表される。
【0055】
P(A)=2mm・A2m-1・exp(−mA2/α)/(Γ(m)・αm) ………(10)
ここに、αはA2の平均値<A2>で、パラメータmは、エコー信号の包絡振幅Aから次式により求められる。
【0056】
m=α2/<(A2−α)2> ………(11)
Nakagami分布のSNRなどの3統計量はmだけに依存する。Nakagami分布は、m=1の場合にはRayleigh分布になり、m<1の場合には、pre-Rayleigh分布(mが小さいほどSNRが低下し、また歪度及び尖度が増加する)になり、逆に、m>1の場合には、post-Rayleigh分布 (mが大きいほどSNRが増加し、また歪度及び尖度が低下する)になる。よって、SNRなどの統計量の代りに、(11)式のmを利用することができる。
【0057】
最後に第7の統計処理方法は、包絡検波前のエコー信号の振幅についての統計量を求めるものである。従来技術にて述べたように、均一散乱媒質のエコー信号自体の振幅の確率密度関数は平均値0、分散αの正規分布関数になる。正規分布の特徴つけの統計量としては、尖度が一定値の3になることが知られている。よって、エコー信号の包絡振幅ではなく、エコー信号自体の振幅について、尖度を求め、これを定量値に用いることもできる。
【0058】
統計処理部28は以上のような統計処理を行い、サンプル空間ごとに生体組織の性状を指標する定量値となる統計量を算出する。そして、各サンプル空間について求められた統計量は上述したように、当該サンプル空間に含まれる窓54Aに対応付けられ、観察断面のROI52A上での統計量の二次元分布情報が得られる。
【0059】
画像形成回路30は統計処理部28で得られた統計量の二次元分布情報を用いた画像を形成する。例えば、画像形成回路30は、統計量が色情報としてマッピングされたBモード断層画像データを生成し、表示器32に表示させる。この画像では、各画素の輝度情報が、観察断面の各点でのエコー強度で定義され、色情報が、各画素に対応する位置の窓54Aの統計量で定義される。具体的には例えば、画像形成回路30は、所定の閾値を用いて、生体組織が正常とみなされる統計量範囲か異常とみなされる統計量範囲かを判別し、例えば、統計量が正常値より大きい異常範囲にある画素に赤色、正常値より小さい異常値範囲にある画素に青色の表示属性をそれぞれ付与し、一方、正常範囲にある画素は無彩色とする。これにより、Bモード断層画像に形状が表される組織のどの部分が病変しているかが画像表示され、診断が容易となる。さらに異常範囲を多段階に区分し、例えば、統計量の正常値からのずれが大きいほど、その画素の色を濃くしたり、また色相を黄色から赤色や青色に段々と変えることにより、病変の程度についての情報を画像上に表現することができる。
【0060】
また、画像形成回路30は、統計量そのものを画素の輝度情報とした白黒画像を形成してもよいし、統計量そのものを画素の色相情報や色の濃さの情報に変換したカラー画像を形成してもよい。検査者は、その画像の明暗、または色相や色の濃さに基づいて組織の病変の有無の鑑別を行うことができる。また、統計量に応じた輝度で表された白黒画像をベースとして、統計量が異常範囲となった画像領域を着色すれば、病変の有無が一目瞭然となる。
【0061】
なお、図2に示す上述の例では、観察断面は走査面に一致して設定された。しかし、観察断面は、三次元エコーデータ空間において任意に設定することができる。例えば、図4は、観察断面が走査面に直交するように設定された場合のフレームメモリ26内のデータ構造を示す模式図である。この模式図は、図2と同様、フレームメモリ26に格納されたデータを、それが得られた三次元空間での構造に対応付けて表したものであり、三次元エコーデータ空間を表している。この例では、三次元エコーデータ空間を構成する複数のフレーム50に直交するように観察断面70が設定され、その全部がROIに設定されている。
【0062】
統計処理部28は、各フレーム50を、それぞれRayleigh分布が成立すると見なし得るような薄い層領域72(すなわち深さ方向の幅ΔZが微小で、かつ走査方向に延びた細長領域)に分割する。この層領域72がそれぞれサンプル空間とされる。すなわち、統計処理部28は、各サンプル空間ごとに、それに包含されるエコーデータに対して上述の統計処理方法を用い、生体組織の性状を示す定量値となるSNRなどの統計量を算出する。
【0063】
各層領域72について算出された統計量は、観察断面70に投影される。一つのフレーム50から投影される複数の統計量は、観察断面70の深さ方向に並ぶ画素群74を構成する。複数のフレーム50それぞれに対応する画素群74は、観察断面70の水平方向(フレーム方向に対応)に配列される。すなわち、観察断面70上には統計量が二次元的にマッピングされ、統計量マッピング画像が形成される。ちなみに、各サンプル空間を観察断面に垂直な方向、つまり走査方向に長く設定したことにより、各サンプル空間に包含されるサンプル数が増え、観察断面70の画素ごとの統計量の精度が確保される。
【0064】
観察断面70上での統計量マッピング画像は、上述の例と同様、画像形成回路30で処理される。例えば、統計量マッピング画像はそのまま表示器32に白黒表示することもできるし、各画素の統計量をBモード断層画像の色情報として表示器32上で表現することもできる。
【0065】
【発明の効果】
本発明の超音波診断装置によれば、生体の断層面に対応して、生体の性状を示す定量値である統計量の二次元情報を得ることができる。これにより、生体の病変の位置、形状を画像表示することができ、病変の鑑別が容易となる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る超音波診断装置の構成を示す概略のブロック図である。
【図2】 観察断面を走査面に一致させた場合の本装置の処理を説明するためのフレームメモリ内のデータ構造を示す模式図である。
【図3】 pre-Rayleigh分布及びpost-Rayleigh分布の分布曲線をRayleigh分布に対比して示した説明図である。
【図4】 観察断面を走査面に直交するように設定した場合の本装置の処理を説明するためのフレームメモリ内のデータ構造を示す模式図である。
【図5】 従来技術における統計量計算のためのROI設定を示す模式図である。
【符号の説明】
10 プローブ、12 送信ビームフォーマー、14 システム制御部、16送信駆動回路、20 受信増幅器、22 受信ビームフォーマー、24 受信ビーム処理回路、26 フレームメモリ、28 統計処理部、30 画像形成回路、32 表示器、50 フレーム、52 ROI、54 窓。

Claims (12)

  1. 超音波ビームの走査により三次元エコーデータ空間を形成する送受波手段と、
    前記三次元エコーデータ空間に対して、複数のサンプル空間を設定するサンプル空間設定手段と、
    前記各サンプル空間ごとに、各サンプル空間内の複数のエコーデータを用いて生体組織の性状を指標する統計量を演算する統計演算手段と、
    前記各サンプル空間ごとの前記統計量を二次元マッピングして統計量マッピング画像を形成する統計量画像形成手段と、
    を有することを特徴とする超音波診断装置。
  2. 請求項1記載の超音波診断装置において、
    前記各サンプル空間は、超音波ビーム方向に沿った深さ位置が一定である細長形状を有すること、を特徴とする超音波診断装置。
  3. 請求項1記載の超音波診断装置において、
    前記送受波手段は、第1方向の第1走査により形成される走査面を第2走査により第2方向に複数配列して前記三次元エコーデータ空間を形成し、
    前記サンプル空間設定手段は、前記各走査面上に二次元配列される複数のサンプル領域を定め、前記複数の走査面相互間で同じ面内位置にある複数の前記サンプル領域からなる集合を前記サンプル空間とし、
    前記統計量画像形成手段は、前記各サンプル空間ごとの前記統計量を前記第2方向に交差する投影面にマッピングして前記統計量マッピング画像を形成すること、
    を特徴とする超音波診断装置。
  4. 請求項1記載の超音波診断装置において、
    前記送受波手段は、第1方向の第1走査により形成される走査面を第2走査により第2方向に複数配列して前記三次元エコーデータ空間を形成し、
    前記サンプル空間設定手段は、前記各走査面上において超音波ビーム方向に沿った深さが一定である細長領域を前記サンプル空間とし、
    前記統計量画像形成手段は、前記各サンプル空間ごとの前記統計量を前記第1方向に交差する投影面にマッピングして前記統計量マッピング画像を形成すること、
    を特徴とする超音波診断装置。
  5. 請求項1から請求項4のいずれかに記載の超音波診断装置において、
    前記統計量画像形成手段は、
    前記統計量マッピング画像の各画素にマッピングされる前記統計量の大きさに応じた表示属性を、前記各画素それぞれに付与する表示属性付与手段と、
    を有することを特徴とする超音波診断装置。
  6. 請求項5記載の超音波診断装置において、
    前記表示属性付与手段は、前記統計量の大きさに応じた輝度情報を前記画素に付与することを特徴とする超音波診断装置。
  7. 請求項5記載の超音波診断装置において、
    前記表示属性付与手段は、前記統計量の大きさに応じた色情報を前記画素に付与することを特徴とする超音波診断装置。
  8. 請求項1から請求項4のいずれかに記載の超音波診断装置において、
    前記統計量画像形成手段は、
    前記統計量マッピング画像の各画素にマッピングされる前記統計量を所定の閾値と比較する比較手段と、
    前記比較手段による比較結果に応じた表示属性を前記各画素それぞれに付与する表示属性付与手段と、
    を有することを特徴とする超音波診断装置。
  9. 請求項8記載の超音波診断装置において、
    前記表示属性付与手段は、
    前記統計量が生体組織の性状に関する正常値であるか異常値であるかに応じて、対応画素を白黒表示とするかカラー表示とするかを切り換えること、
    を特徴とする超音波診断装置。
  10. 請求項1から請求項4のいずれかに記載の超音波診断装置において、
    前記統計量画像形成手段は、
    エコー強度を輝度情報として表示するBモード断層画像を前記統計量マッピング画像に対応して形成するBモード画像形成手段と、
    前記統計量マッピング画像の各画素にマッピングされる前記統計量を所定の閾値と比較する比較手段と、
    前記比較手段による比較結果に応じた表示属性を、前記統計量マッピング画像の各画素に対応する前記Bモード断層画像の各画素それぞれに付与する表示属性付与手段と、
    を有することを特徴とする超音波診断装置。
  11. 請求項10記載の超音波診断装置において、
    前記表示属性付与手段は、
    前記統計量が生体組織の性状に関する異常値である場合に、対応する前記Bモード断層画像の画素をカラー表示すること、
    を特徴とする超音波診断装置。
  12. 請求項11記載の超音波診断装置において、
    前記表示属性付与手段は、
    前記統計量の大きさに応じた色情報を、前記Bモード断層画像の画素に付与すること、
    を特徴とする超音波診断装置。
JP2001032432A 2001-02-08 2001-02-08 超音波診断装置 Expired - Fee Related JP3655830B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001032432A JP3655830B2 (ja) 2001-02-08 2001-02-08 超音波診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001032432A JP3655830B2 (ja) 2001-02-08 2001-02-08 超音波診断装置

Publications (2)

Publication Number Publication Date
JP2002233527A JP2002233527A (ja) 2002-08-20
JP3655830B2 true JP3655830B2 (ja) 2005-06-02

Family

ID=18896364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001032432A Expired - Fee Related JP3655830B2 (ja) 2001-02-08 2001-02-08 超音波診断装置

Country Status (1)

Country Link
JP (1) JP3655830B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960013B2 (ja) * 2006-05-25 2012-06-27 株式会社東芝 超音波診断装置およびその画像処理プログラム
JP5060141B2 (ja) * 2007-03-08 2012-10-31 株式会社東芝 超音波診断装置
US20100256493A1 (en) * 2007-11-09 2010-10-07 Tomoaki Chono Ultrasonic diagostic apparatus, operation method thereof, and ultrasonic diagnostic program
JP5113548B2 (ja) * 2008-02-19 2013-01-09 日立アロカメディカル株式会社 超音波画像処理装置
US9358857B2 (en) 2012-06-26 2016-06-07 Hanon Systems Infrared sensor assembly for measuring temperature inside vehicle
US9470780B2 (en) 2012-12-10 2016-10-18 Fujitsu Technology Solutions Intellectual Property Gmbh Sensor device for a computer system, computer system with a sensor device and operating method for a sensor device
CN108765438B (zh) 2014-10-21 2020-10-30 无锡海斯凯尔医学技术有限公司 一种肝脏边界的识别方法及系统
KR102325346B1 (ko) * 2014-12-15 2021-11-11 삼성전자주식회사 의료 영상 진단 장치 및 방법
JP6521761B2 (ja) * 2015-06-23 2019-05-29 キヤノン株式会社 情報処理装置および表示制御方法

Also Published As

Publication number Publication date
JP2002233527A (ja) 2002-08-20

Similar Documents

Publication Publication Date Title
US8926512B2 (en) Ultrasonic imaging apparatus and ultrasonic velocity optimization method
EP1614387B1 (en) Ultrasonic diagnostic apparatus, image processing apparatus and image processing method
US10959704B2 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image processing method
US10918355B2 (en) Ultrasound diagnostic device and ultrasound diagnostic method
US20230144314A1 (en) Analysis apparatus
US10874375B2 (en) Ultrasound diagnostic device and ultrasound diagnostic method
JP4921826B2 (ja) 超音波診断装置及びその制御方法
EP1715360A2 (en) Ultrasound diagnostic apparatus and ultrasound image processing program
KR20120044267A (ko) 초음파 진단 장치 및 조직 움직임 추적 방법
JP4575737B2 (ja) 超音波撮像装置
US10631822B2 (en) Ultrasound diagnostic device, ultrasound diagnostic method and ultrasound diagnostic program storage medium
JP3655830B2 (ja) 超音波診断装置
JP6008580B2 (ja) 超音波診断装置、超音波診断装置の制御方法、及び超音波診断プログラム
JP2006122666A (ja) 超音波撮像装置
Hall et al. Ultrasound contrast‐detail analysis: a comparison of low‐contrast detectability among scanhead designs
US10105123B2 (en) Analysis methods of ultrasound echo signals based on statistics of scatterer distributions
JP2006223737A (ja) 超音波診断装置
JP2006314807A (ja) 超音波診断装置
US9259207B2 (en) Ultrasound diagnostic apparatus and ultrasound signal analyzing method
RU2253370C1 (ru) Способ обработки и отображения эхо-сигналов для дифференциации биологических тканей в ультразвуковых диагностических сканерах
JPH11146879A (ja) 超音波診断装置
JPH058373B2 (ja)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees