JP3655794B2 - Ultrasonic transducer - Google Patents

Ultrasonic transducer Download PDF

Info

Publication number
JP3655794B2
JP3655794B2 JP37127799A JP37127799A JP3655794B2 JP 3655794 B2 JP3655794 B2 JP 3655794B2 JP 37127799 A JP37127799 A JP 37127799A JP 37127799 A JP37127799 A JP 37127799A JP 3655794 B2 JP3655794 B2 JP 3655794B2
Authority
JP
Japan
Prior art keywords
acoustic
lens
piezoelectric body
ultrasonic transducer
composite piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37127799A
Other languages
Japanese (ja)
Other versions
JP2001178719A (en
Inventor
正由 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP37127799A priority Critical patent/JP3655794B2/en
Publication of JP2001178719A publication Critical patent/JP2001178719A/en
Application granted granted Critical
Publication of JP3655794B2 publication Critical patent/JP3655794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超音波のエコーを利用して生体内の断層を画像化する超音波内視鏡に主に用いられる超音波振動子に関する。
【0002】
【従来の技術】
近年、超音波を生体に照射し、生体における音響インピーダンスの変化部分で反射された反射超音波を受信して電気信号に変換し、画像化することにより、超音波断層像を得る超音波診断装置が広く用いられるようになった。
【0003】
そして、体腔内に挿入可能な内視鏡挿入部の先端に超音波振動子を設け、この超音波振動子によって超音波断層画像を得られるようにした超音波内視鏡が実用化されている。
【0004】
超音波内視鏡で使用される超音波振動子の圧電体は、例えばチタン酸ジルコン酸鉛(PZT),チタン酸鉛(PbTiO3) 等の圧電材料で形成されており、この圧電体の音響インピーダンスは約30X106 Kg/m2 ・sと大きかった。このため、音響インピーダンスを約4〜5X106 Kg/m2 ・sに最適化させた音響整合層を兼ねた凹面型音響レンズを圧電体に配置した場合でも、図10(a)の実線で表した7.5MHz圧電体の帯域特性で示すようにゲイン−6dBにおける比帯域は約40%であった。このため、音響レンズの厚み寸法を連続的に変化させた凹面型音響レンズを用いることによる広帯域化への効果がほとんどなかった。
【0005】
なお、前記−6dB比帯域とは、ゲイン−6dBにおける高い方の周波数fhと低い方の周波数flとの差と、この周波数fhと周波数flとの中心周波数fcとの商の関係であり、以下の式で表せる。
【0006】
−6dB比帯域=(周波数fh−周波数fl)/中心周波数fc
中心周波数fc=(周波数fh+周波数fl)/2 である。
【0007】
また、前記PZT,PbTiO3 等で形成した圧電体の比帯域を広げるため、圧電体に音響インピーダンスが8〜10X106 Kg/m2 ・sの第1整合層及び音響インピーダンスが2〜3X106 Kg/m2 ・sの第2整合層と前記音響レンズを設けて広帯域化を図る構成もある。しかし、この構成であっても−6dBにおける比帯域は約60〜70パーセントであった。
【0008】
なお、整合層を3層構造にすることにより、比帯域が約90パーセントになることが知られているが整合層を貼り合わせる手間が多大である等、不具合が多いことも知られている。
【0009】
このため、前記超音波内視鏡では広帯域化を図って体腔表面から深部までの観察を可能にするため、同図(b)に示すようにため、超音波内視鏡90の挿入部先端部91に配置される先端キャップ92内に深部を観察する目的で周波数7.5MHz(前記図10(a)の実線に示す帯域特性のもの)固定焦点タイプの遠距離観察用超音波振動子93と、体腔表面近くを観察する目的で周波数12MHz(前記図10(a)の破線に示す帯域特性のもの)又は20MHzの固定焦点タイプの近距離観察用超音波振動子94とを貼り合わせたものを配置して観察を行うようにしていた。
【0010】
【発明が解決しようとする課題】
しかしながら、前述したように挿入部先端部に、遠距離観察用超音波振動子と近距離観察用超音波振動子とを貼り合わせて配置したことにより、超音波内視鏡の先端部が太径になって挿入性を悪化させる要因になっていた。
【0011】
本発明は、上記事情に鑑みてなされたものであり、感度低下を起こすことなく、体腔表面から深部までの観察を行え、超音波内視鏡の挿入部の細径化を図れる超広帯域化(多周波化)した超音波振動子を提供することを目的にしている。
【0012】
【課題を解決するための手段】
本発明による超音波振動子は、複数の柱状圧電体及びこれら柱状圧電体の隙間に充填される有機物で形成され、音響インピーダンスが7〜15×10 kg/m ・sとなるように前記柱状圧電体の体積充填率を20〜45%に設定した複合圧電体と、この複合圧電体の音響放射面側に配置され、音響インピーダンスを前記複合圧電体の音響インピーダンスより小さい所定範囲の値とし、前記複合圧電体の音響放射面から所定の厚みで設定された単一の層を含む音響整合層と、前記音響整合層の音響放射面側に形成配置され、中央部の厚み寸法が前記音響整合層の前記所定の厚み位置での音響放射面に対し零に設定されると共に、この中央部から周辺方向に向かって厚さ寸法が連続的に大きくなるように変化する球面形状に形成された前記音響整合層と同じ音響インピーダンスで、音速条件が水より速い速度に設定された音響レンズと、を具備することを特徴とする。
【0013】
この構成によれば、感度低下することなく、複合圧電体から音響レンズを通して例えば7.5MHz、12MHz又は20MHz等、広範囲の周波数帯域に渡る超音波が放射される。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図1ないし図4は本発明の第1実施形態に係り、図1は超音波振動子の概略構成を示す図、図2は複合圧電体の構成を説明する図、図3は周波数及びゲインによる超音波振動子の特性を示す図、図4は超音波振動子を配置した超音波内視鏡の先端部を説明する図である。
【0015】
なお、図1(a)は超音波振動子の構成を説明する斜視図、図1(b)は図1(a)のA−A線断面図ある。
【0016】
図1(a),(b)及び図2に示すように本実施形態の超音波振動子1は、角柱或いは円柱形状の柱状圧電体2a,…,2aを多数配置し、その柱状圧電体2a,…,2aの隙間及び周囲にポリウレタン、エポキシ等の樹脂部材2bを充填して所定形状に形成した複合圧電体2と、この複合圧電体2の超音波を放射する或いは超音波を送受する超音波放射面或いは超音波送受面(単に前面とも記す)に金をスパッタによって形成した前面電極3a及びこの複合圧電体2の超音波放射面とは反対側の面(前面に対して後面と記す)に金をスパッタによって形成した後面電極3bと、前記複合圧電体2の前面電極3aを介して積層された前記複合圧電体2の音響インピーダンスと生体の音響インピーダンスとの間の隔たりをなくすように音の効率を上げるとともに前記複合圧電体2から放射された超音波を超音波振動子1の中心軸に集束させて超音波ビームを出射させる集束手段となる音響レンズ4aを設けた音響整合層4と、前記複合圧電体2の後面電極3bを介して設けることによって複合圧電体後方側へ放射される超音波を減衰させるフェライト入りゴムなどで形成したバッキング材5(音響インピーダンスは5〜6X106 Kg/m2 ・s)と、前記複合圧電体2,前面電極3a,後面電極3b,音響整合層4,音響レンズ4aの表面及びバッキング材5の一部の表面を覆う耐水性、耐薬品性に優れたパリレン(ポリパラキシリレン)等で形成された保護膜6とで主に構成されている。
【0017】
なお、前記中心軸は複合圧電体2の実効面中心軸すなわち超音波の音軸になっている。また、前記前面電極3aにはアース線7が電気的に接続され、前記後面電極3bには信号線8が電気的に接続されている。そして、これら電線7,8はリード線9としてまとめられて延出して、図示しない観測装置の信号端子及びアース端子にそれぞれ接続される。
【0018】
図2に示すように前記複合圧電体2は、複数の柱状圧電体2a,…、2aと、音響インピーダンスが2〜5X106 Kg/m2 ・sの樹脂部材2bとで形成されており、前記柱状圧電体2a,…、2aの体積充填率を20〜45%に設定している。このことにより、複合圧電体2の音響インピーダンスを7〜15X106 Kg/m2 ・sにして、生体インピーダンスに近づけている。
【0019】
前記音響整合層4は、音響インピーダンスが2〜4.5X106 Kg/m2 ・sである前記複合圧電体2の音響インピーダンスより低いエポキシ樹脂で、音響レンズ4a部分を除いた厚み寸法をλ/4(λは超音波の中心周波数の波長、以下同様)にした円柱形状に形成されている。
【0020】
前記音響整合層4に設けられる音響レンズ4aは、所定の厚み寸法に形成された音響整合層4に対して形成配置されるものであり、この音響整合層4と同部材のエポキシ樹脂を音響整合層4の超音波放射面に積層して例えば中央部から周方向にいくにしたがって連続的に厚み寸法が大きくなるように変化する凹んだ曲面形状に形成されている。
【0021】
なお、本実施形態においては音響レンズ4aの中央部の厚み寸法を、前記音響整合層4の超音波放射面に対して零に設定している。つまり、音響レンズ4aの中央部と音響整合層4の超音波放射面とは一致している。また、この音響レンズ4aの音速条件を水(生体)より速く設定している。
【0022】
上述のように構成した超音波振動子1の複合圧電体2を駆動させて超音波を放射させると、図3に示すような超広範な帯域特性が得られる。このとき、ゲイン−6dBにおける高い方の周波数fhが20MHzであり、低い方の周波数flが3MHzであるので、
−6dB比帯域=(周波数fh−周波数fl)/中心周波数fc
中心周波数fc=(周波数fh+周波数fl)/2 である。
【0023】
前記式に周波数fh=20MHz、及び周波数fl=3MHzを代入することによって、−6dBにおける比帯域は約150%と超広帯域であることが求められる。
【0024】
つまり、この超音波振動子1は、周波数7.5MHzの固定焦点タイプの遠距離観察用超音波振動子及び周波数12MHz又は20MHzの固定焦点タイプの近距離観察用超音波振動子の機能を有する。
【0025】
このことにより、図4に示すように挿入部先端部11の先端キャップ12内に前記超音波振動子1を1つだけ配置することによって、前記挿入部先端部11が細径で体腔表面から深部までの観察を行える超音波内視鏡10が構成される。このとき、超音波振動子1から延出するリード線9も当然1本だけになる。
【0026】
このように、音響インピーダンスが生体のインピーダンスに近づくように、つまり音響インピーダンスが小さな値となるように柱状圧電体を所定の体積充填率にして形成した複合圧電体の超音波放射面側に、厚さ寸法が中央部から周方向にいくにしたがって連続的に大きくなる形状で音響インピーダンスが複合圧電体の音響インピーダンスより小さな音響レンズを兼ねた音響整合層を配置することによって−6dBにおける比帯域を約150%と超広帯域化させて焦域の長い超音波振動子を構成することができる。したがって、この超音波振動子1つで、多周波振動子の機能を有することになる。
【0027】
また、この超音波振動子を挿入部先端部に配置することによって、挿入部の細径化を図って、体腔表面から深部までの観察を行える超音波内視鏡を構成することができる。
【0028】
なお、図5(a)の斜視図及び同図(b)の断面図に示すように複合圧電体2の前面に形成する前面電極3aの一部を複合圧電体2の側面に露出する廻り込み電極31として設け、この廻り込み電極31に前記アース線7を接続して超音波振動子1Aを構成するようにしてもよい。
【0029】
このことによって、前面電極3aと音響整合層4との接合面にアース線7を配置させることなく、複合圧電体2と音響整合層4との接合を行えるので、接合作業性を向上させることができるとともに、複合圧電体2と音響整合層4との接合を高精度に行うことができる。
【0030】
図6及び図7は本発明の第2実施形態にかかり、図6は超音波振動子の構成を説明する図、図7は超音波振動子の作用を説明する図である。
なお、図6(a)は超音波振動子の斜視図、図6(b)は図6(b)のB−B線断面図、図6(c)は後面電極の構成を説明する図、図7(a)は小さな振動子開口を形成して超音波を放射する状態を示す図、図7(b)は大きな振動子開口を形成して超音波を放射する状態を示す図である。
【0031】
本実施形態においては前記第1実施形態の超音波振動子1と後面電極3aとの構成が異なっている。
【0032】
図6(c)に示すように本実施形態の超音波振動子1Bを構成する後面電極3bは、中央部に配置される円板形状で小径な第1電極32と、この第1電極32の外周に配置される略ドーナツ板形状の第2電極33とで構成されている。そして、前記後面電極3bを構成する第1電極32には第1リード線9aの信号線8が接続され、第2電極33には第2リード線9bの信号線8が接続され、それぞれのリード線9a,9bのアース線7は前記前面電極3aに接続されている。
【0033】
したがって、前記複合圧電体2は、第1電極32と、第2電極33とによって駆動される。その他の構成は前記第1実施形態と同様であり同部材には同符合を付して説明を省略する。
【0034】
上述のように超音波振動子1Bを構成したことにより、前記第1電極32によって前記複合圧電体2を駆動させると、図7(a)に示すように振動子開口を小さくして焦点位置を近距離に設定した、ビーム幅の細い超音波が音響レンズ4aから放射される。
【0035】
一方、前記第1電極32及び第2電極33によって前記複合圧電体2を駆動させると、図7(b)に示すように振動子開口を大きくして焦点位置を遠距離に設定した、ビーム幅の細い超音波が音響レンズ4aから放射される。
【0036】
このように、後面電極を小径な第1電極と、この第1電極の外周に配置するドーナツ形状の第2電極とで構成し、それぞれの電極を単独或いは組み合わせて複合圧電体を駆動させることによって、ビーム幅の細い超音波の焦点位置を近距離、又は遠距離に変化させて放射することを可能にし、或いは組み合わせることで近距離から遠距離まで焦域が長い超音波振動子を提供することができる。その他の作用及び効果は前記第1実施実施形態と同様である。
【0037】
なお、本実施形態においては後面電極を2つ電極で構成しているが、後面電極をそれ以上の電極で構成するようにしてもよい。
【0038】
また、本実施形態において前記複合圧電体2を駆動させる際の周波数に対する説明を省略していたが、前記第1電極32に高周波f1 をかけて前記複合圧電体2を駆動させることによって、図8(a)に示すように小さな振動子開口から焦点位置を近距離に設定して高分解能の超音波を音響レンズ4aから放射させることができる。
【0039】
さらに、前記第1電極32及び第2電極33に低周波f0をかけて前記複合圧電体2を駆動させることによって、図8(b)に示すように大きな振動子開口から焦点位置を遠距離に設定して深速度を向上させた超音波を音響レンズ4aから放射させることができる。
【0040】
つまり、図8(c)の感度及び周波数の関係を表す特性図に示すように、周波数の切り換えを行って高感度な特性を有する超音波振動子を得ることができる。
【0041】
このように、後面電極を小径な第1電極と、この第1電極の外周に配置するドーナツ形状の第2電極とで構成し、それぞれの電極を単独或いは組み合わせて複合圧電体を駆動させる際、さらに周波数を適宜切り換え設定することにより、焦点位置を近距離、又は遠距離に変化させることが可能で、かつ高感度の超音波を放射することを可能にした超音波振動子を提供することができる。その他の作用及び効果は上述した実施実施形態と同様である。
【0042】
図9は第3実施形態に係る超音波振動子の構成を説明す図である。なお、図9(a)は超音波振動子の構成を説明する斜視図、図9(b)は図9(a)のC−C線断面図ある。
【0043】
本実施形態においては前記第1実施形態の超音波振動子1と音響整合層4に設ける音響レンズ4bの構成が異なっている。
【0044】
図9(a),(b)に示すように本実施形態の超音波振動子1Cを構成する所定の厚み寸法に形成した音響整合層4の超音波放射面側には異なる部材を用いて異なる曲率に形成した第1レンズ部41及び第2レンズ部42を備えた音響レンズ4bが形成配置されている。
【0045】
前記第1レンズ部41は、中央部に配置されるいわゆる中央レンズであり、中央部から周方向にいくにしたがって連続的に厚み寸法が大きくなるように所定のレンズ曲率半径(R1 )で変化する凹んだ曲面形状に形成してある。そして、中央部の厚み寸法を、第1実施形態の音響レンズ4aと同様、超音波放射面に対して零に設定している。なお、第1レンズ部41の音速条件を水(生体)音速V0 より速い音速V1 に設定している。
【0046】
一方、前記第2レンズ部42は、前記第1レンズ部41の周囲に配置される略ドーナツ形状のいわゆる周辺部レンズであり、内周面から外周面にいくにしたがって連続的に厚み寸法が大きくなるように前記第1レンズ部41のレンズ曲率半径R1 より大きなレンズ曲率半径(R2 )で変化する凹んだ曲面形状に形成してある。なお、第2レンズ部42の音速条件は水(生体)の音速V0 より速く、そして前記第1レンズ部41の音速V1 より小さい音速V2 に設定している。
【0047】
つまり、前記音速V0 、V1 、V2 と前記レンズ曲率半径R1 、R2 との間にはV0 <V2 ≦V1 ,R1 <R2 の関係になっている。その他の構成は前記第1実施形態と同様であり同部材には同符合を付して説明を省略する。
【0048】
上述のように超音波振動子1Cを構成したことにより、前記複合圧電体2を駆動させると、同図(b)に示すように開口の小さな第1レンズ部41から焦点位置を近距離に設定した、ビーム幅の細い超音波が放射される一方、開口の大きな第2レンズ部42から焦点位置を遠距離に設定した、ビーム幅の細い超音波が放射される。
【0049】
このように、音響整合層に設ける音響レンズを、レンズ曲率半径の異なる中央部に配置する第1レンズ部とこの第1レンズ部の周囲に配置する第2レンズ部とで構成し、それぞれのレンズ部の間にV0 <V2 ≦V1 ,R1 <R2 の関係を設定したことにより、焦点位置が近距離と遠距離との2種類を備えることで焦域を長くでき、かつ近距離と遠距離とで駆動周波数を切り換えることで高感度(深速度のある)の超音波を放射することを可能にした超音波振動子を提供することができる。その他の作用及び効果は上述した実施形態と同様である。
【0050】
なお、本実施形態においては音響レンズを2つのレンズ部で構成しているが、音響レンズをそれ以上のレンズ部で構成するようにしてもよい。
【0051】
なお、本発明は、以上述べた実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲で種々変形実施可能である。
【0052】
[付記]
以上詳述したような本発明の上記実施形態によれば、以下の如き構成を得ることができる。
【0053】
(1)複数の柱状圧電体及びこれら柱状圧電体の隙間等に充填される有機物で形成され、音響インピーダンスが所定の範囲となるように前記柱状圧電体の体積充填率を設定してた複合圧電体と、
この複合圧電体の放射面側に配置され、中央部から周辺方向に向かって厚さ寸法が連続的に変化する、音響レンズを兼ね、音響インピーダンスを所定範囲に設定した音響整合層と、
を具備する超音波振動子。
【0054】
(2)前記複合圧電体の音響インピーダンスは、7X106 Kg/m2 ・sないし15X106 Kg/m2 ・sの範囲であり、前記音響整合層の音響インピーダンスはこの複合圧電体の音響インピーダンスに対して1/5ないし1/2の範囲である付記1記載の超音波振動子。
【0055】
(3)前記複合圧電体の音響インピーダンスを所定の範囲に設定するため、前記柱状圧電体の体積充填率を20ないし45パーセントにした付記2記載の超音波振動子。
【0056】
(4)前記複合圧電体に配置される一方の電極を、所定の形状で複数に分割し、電極を介して複合圧電体を駆動することによって振動子開口の大きさを変化させる付記1記載の超音波振動子。
【0057】
(5)前記複合圧電体を、高周波パルス又はパースト波、或いは低周波パルス又はパースト波で駆動させる付記1又は付記4記載の超音波振動子。
【0058】
(6)前記音響レンズを、少なくとも音速の異なる2つの部材を周方向に積層して形成した付記1記載の超音波振動子。
【0059】
【発明の効果】
以上説明したように本発明によれば、感度低下を起こすことなく、体腔表面から深部までの観察を行え、超音波内視鏡の挿入部の細径化を図れる超広帯域化(多周波化)した超音波振動子を提供することができる。
【図面の簡単な説明】
【図1】図1ないし図4は本発明の第1実施形態に係り、図1は超音波振動子の概略構成を示す図
【図2】複合圧電体の構成を説明する図
【図3】周波数及びゲインによる超音波振動子の特性を示す図
【図4】超音波振動子を配置した超音波内視鏡の先端部を説明する図
【図5】前面電極の他の構成例を説明する図
【図6】図6及び図7は本発明の第2実施形態にかかり、図6は超音波振動子の構成を説明する図
【図7】超音波振動子の作用を説明する図
【図8】超音波振動子の他の作用を説明する図
【図9】第3実施形態に係る超音波振動子の構成を説明す図
【図10】従来の超音波振動子及び超音波内視鏡の先端部に配置される超音波振動子を説明する図
【符号の説明】
1…超音波振動子
2…複合圧電体
2a…柱状圧電体
2b…複合圧電体
3b…後面電極
4…音響整合層
4a…音響レンズ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic transducer mainly used in an ultrasonic endoscope that images a tomography in a living body using an ultrasonic echo.
[0002]
[Prior art]
2. Description of the Related Art In recent years, an ultrasonic diagnostic apparatus that obtains an ultrasonic tomographic image by irradiating a living body with ultrasonic waves, receiving reflected ultrasonic waves reflected by a changing portion of acoustic impedance in the living body, converting them into electrical signals, and imaging them. Became widely used.
[0003]
An ultrasonic endoscope in which an ultrasonic transducer is provided at the distal end of an endoscope insertion portion that can be inserted into a body cavity and an ultrasonic tomographic image can be obtained by this ultrasonic transducer has been put into practical use. .
[0004]
The piezoelectric body of the ultrasonic vibrator used in the ultrasonic endoscope is formed of a piezoelectric material such as lead zirconate titanate (PZT) or lead titanate (PbTiO 3 ), for example. The impedance was as large as about 30 × 10 6 Kg / m 2 · s. For this reason, even when a concave acoustic lens that also serves as an acoustic matching layer having an acoustic impedance optimized to about 4 to 5 × 10 6 Kg / m 2 · s is arranged on the piezoelectric body, the solid line in FIG. As shown in the band characteristics of the 7.5 MHz piezoelectric material, the ratio band at a gain of −6 dB was about 40%. For this reason, there was almost no effect on wideband by using the concave acoustic lens in which the thickness dimension of the acoustic lens was continuously changed.
[0005]
The −6 dB ratio band is a quotient relationship between a difference between a higher frequency fh and a lower frequency fl at a gain of −6 dB and a center frequency fc between the frequency fh and the frequency fl. It can be expressed as
[0006]
−6 dB ratio band = (frequency fh−frequency fl) / center frequency fc
The center frequency fc = (frequency fh + frequency fl) / 2.
[0007]
Further, in order to widen the specific band of the piezoelectric material formed of PZT, PbTiO3, etc., the piezoelectric material has a first matching layer having an acoustic impedance of 8 to 10 × 10 6 Kg / m 2 · s and an acoustic impedance of 2 to 3 × 10 6 Kg / There is also a configuration in which the second matching layer of m 2 · s and the acoustic lens are provided to increase the bandwidth. However, even in this configuration, the specific band at -6 dB was about 60 to 70 percent.
[0008]
It is known that the matching layer has a three-layer structure, so that the specific band becomes about 90%, but it is also known that there are many problems such as a great deal of labor for pasting the matching layer.
[0009]
For this reason, in the ultrasonic endoscope, in order to increase the bandwidth and enable observation from the surface of the body cavity to the deep part, as shown in FIG. 5B, the distal end of the insertion part of the ultrasonic endoscope 90 For the purpose of observing a deep portion in the tip cap 92 disposed at 91, a frequency 7.5 MHz (with a band characteristic shown by the solid line in FIG. 10A), a fixed focus type ultrasonic transducer 93 for long-distance observation, For the purpose of observing the vicinity of the surface of the body cavity, an ultrasonic transducer 94 having a frequency of 12 MHz (with the band characteristics shown by the broken line in FIG. 10A) or a fixed focus type ultrasonic transducer 94 of 20 MHz is attached. It was arranged and observed.
[0010]
[Problems to be solved by the invention]
However, as described above, the distal end portion of the ultrasonic endoscope has a large diameter by arranging the ultrasonic transducer for long-distance observation and the ultrasonic transducer for short-distance observation on the distal end portion of the insertion portion. It became a factor that deteriorated the insertability.
[0011]
The present invention has been made in view of the above circumstances, without causing the decrease in sensitivity can observation until the body cavity surface or RaFukashi unit, ultra wideband attained a diameter of the insertion portion of the ultrasonic endoscope An object is to provide an ultrasonic transducer that has been made multi-frequency.
[0012]
[Means for Solving the Problems]
The ultrasonic transducer according to the present invention is formed of a plurality of columnar piezoelectric bodies and an organic substance filled in a gap between the columnar piezoelectric bodies, and has an acoustic impedance of 7 to 15 × 10 6 kg / m 2 · s. A composite piezoelectric body in which the volume filling rate of the columnar piezoelectric body is set to 20 to 45%, and the acoustic impedance of the composite piezoelectric body is set to a value within a predetermined range smaller than the acoustic impedance of the composite piezoelectric body. , an acoustic matching layer comprising a single layer which is set at a predetermined thickness from the acoustic radiation surface of the composite piezoelectric body, wherein are formed disposed on the acoustic emission face side of the acoustic matching layer, the thickness of the central portion, the It is set to zero with respect to the acoustic radiation surface at the predetermined thickness position of the acoustic matching layer, and is formed in a spherical shape that changes so that the thickness dimension continuously increases from the central portion toward the peripheral direction. ago In the same acoustic impedance as the acoustic matching layer, characterized by comprising an acoustic lens which sound velocity condition is set to a speed higher than water.
[0013]
According to this configuration, ultrasonic waves over a wide frequency band such as 7.5 MHz, 12 MHz, or 20 MHz are radiated from the composite piezoelectric body through the acoustic lens without lowering the sensitivity.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 to 4 relate to a first embodiment of the present invention, FIG. 1 is a diagram illustrating a schematic configuration of an ultrasonic transducer, FIG. 2 is a diagram illustrating a configuration of a composite piezoelectric body, and FIG. FIG. 4 is a diagram illustrating the characteristics of the ultrasonic transducer, and FIG. 4 is a diagram illustrating the distal end portion of the ultrasonic endoscope in which the ultrasonic transducer is arranged.
[0015]
1A is a perspective view illustrating the configuration of the ultrasonic transducer, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A.
[0016]
As shown in FIGS. 1A, 1B, and 2, the ultrasonic transducer 1 according to this embodiment includes a large number of prismatic or cylindrical columnar piezoelectric bodies 2a,..., 2a, and the columnar piezoelectric body 2a. ,..., 2a are filled with a resin member 2b such as polyurethane or epoxy and formed into a predetermined shape, and the composite piezoelectric body 2 emits ultrasonic waves or transmits / receives ultrasonic waves. The front electrode 3a formed by sputtering gold on the sound wave emitting surface or the ultrasonic wave transmitting / receiving surface (also simply referred to as the front surface) and the surface opposite to the ultrasonic wave emitting surface of the composite piezoelectric body 2 (referred to as the rear surface with respect to the front surface). In order to eliminate a gap between the acoustic impedance of the rear electrode 3b formed by sputtering gold and the composite piezoelectric body 2 laminated via the front electrode 3a of the composite piezoelectric body 2 and the acoustic impedance of the living body. Efficiency An acoustic matching layer 4 provided with an acoustic lens 4a that serves as a focusing means for focusing and focusing the ultrasonic wave emitted from the composite piezoelectric body 2 on the central axis of the ultrasonic transducer 1 and emitting an ultrasonic beam; Backing material 5 (acoustic impedance is 5-6 × 10 6 Kg / m 2 .multidot.2) formed of ferrite-containing rubber or the like for attenuating the ultrasonic wave radiated to the rear side of the composite piezoelectric body by being provided via the rear electrode 3b of the piezoelectric body 2. s) and parylene (which has excellent water resistance and chemical resistance covering the surface of the composite piezoelectric body 2, the front electrode 3a, the rear electrode 3b, the acoustic matching layer 4, the acoustic lens 4a, and a part of the backing material 5). And a protective film 6 made of polyparaxylylene) or the like.
[0017]
The central axis is the effective surface central axis of the composite piezoelectric body 2, that is, the ultrasonic sound axis. A ground wire 7 is electrically connected to the front electrode 3a, and a signal line 8 is electrically connected to the rear electrode 3b. The electric wires 7 and 8 are collectively extended as a lead wire 9 and connected to a signal terminal and an earth terminal of an observation apparatus (not shown).
[0018]
As shown in FIG. 2, the composite piezoelectric body 2 is formed of a plurality of columnar piezoelectric bodies 2a,..., 2a and a resin member 2b having an acoustic impedance of 2 to 5 × 10 6 Kg / m 2 · s. The volume filling rate of the columnar piezoelectric bodies 2a, ..., 2a is set to 20 to 45%. As a result, the acoustic impedance of the composite piezoelectric body 2 is set to 7 to 15 × 10 6 Kg / m 2 · s, which is close to the bioimpedance.
[0019]
The acoustic matching layer 4 is an epoxy resin having an acoustic impedance of 2 to 4.5 × 10 6 Kg / m 2 · s, which is lower than the acoustic impedance of the composite piezoelectric body 2, and the thickness dimension excluding the acoustic lens 4a portion is λ / It is formed in a cylindrical shape of 4 (λ is the wavelength of the center frequency of the ultrasonic wave, hereinafter the same).
[0020]
The acoustic lens 4a provided on the acoustic matching layer 4 is formed and arranged with respect to the acoustic matching layer 4 formed to have a predetermined thickness, and the epoxy resin of the same member as the acoustic matching layer 4 is acoustically matched. For example, the layer 4 is formed in a concave curved surface shape that is laminated on the ultrasonic radiation surface of the layer 4 so that the thickness dimension continuously increases from the central portion in the circumferential direction.
[0021]
In the present embodiment, the thickness dimension of the central portion of the acoustic lens 4 a is set to zero with respect to the ultrasonic radiation surface of the acoustic matching layer 4. That is, the central part of the acoustic lens 4a and the ultrasonic radiation surface of the acoustic matching layer 4 are coincident. Further, the sound speed condition of the acoustic lens 4a is set faster than water (living body).
[0022]
When the composite piezoelectric body 2 of the ultrasonic vibrator 1 configured as described above is driven to emit ultrasonic waves, an extremely wide band characteristic as shown in FIG. 3 is obtained. At this time, since the higher frequency fh at the gain of −6 dB is 20 MHz and the lower frequency fl is 3 MHz,
−6 dB ratio band = (frequency fh−frequency fl) / center frequency fc
The center frequency fc = (frequency fh + frequency fl) / 2.
[0023]
By substituting the frequency fh = 20 MHz and the frequency fl = 3 MHz into the above equation, the ratio band at −6 dB is required to be an ultra-wide band of about 150%.
[0024]
That is, this ultrasonic transducer 1 has the functions of a fixed focus type long-distance observation ultrasonic transducer having a frequency of 7.5 MHz and a fixed focus type short-distance observation ultrasonic transducer having a frequency of 12 MHz or 20 MHz.
[0025]
Accordingly, as shown in FIG. 4, by placing only one ultrasonic transducer 1 in the distal end cap 12 of the insertion portion distal end portion 11, the insertion portion distal end portion 11 has a small diameter and is deep from the body cavity surface. The ultrasonic endoscope 10 that can perform the observation up to is configured. At this time, of course, only one lead wire 9 extends from the ultrasonic transducer 1.
[0026]
As described above, the thickness of the composite piezoelectric body formed with the columnar piezoelectric body having a predetermined volume filling rate so that the acoustic impedance approaches the impedance of the living body, that is, the acoustic impedance becomes a small value, on the ultrasonic radiation surface side. By arranging an acoustic matching layer that also serves as an acoustic lens whose acoustic impedance is smaller than the acoustic impedance of the composite piezoelectric material in a shape that the thickness dimension increases continuously from the central portion in the circumferential direction, the specific bandwidth at −6 dB is reduced to about -6 dB. An ultrasonic transducer with a long focal range can be configured by increasing the bandwidth to 150%. Therefore, this single ultrasonic vibrator has the function of a multi-frequency vibrator.
[0027]
Further, by arranging this ultrasonic transducer at the distal end of the insertion portion, it is possible to configure an ultrasonic endoscope that can observe from the body cavity surface to the deep portion by reducing the diameter of the insertion portion.
[0028]
As shown in the perspective view of FIG. 5A and the cross-sectional view of FIG. 5B, a part of the front electrode 3a formed on the front surface of the composite piezoelectric body 2 is exposed to the side surface of the composite piezoelectric body 2. The ultrasonic transducer 1 </ b> A may be configured by providing the electrode 31 and connecting the ground wire 7 to the surrounding electrode 31.
[0029]
As a result, the composite piezoelectric body 2 and the acoustic matching layer 4 can be joined without arranging the ground wire 7 on the joint surface between the front electrode 3a and the acoustic matching layer 4, so that the joining workability can be improved. In addition, the composite piezoelectric body 2 and the acoustic matching layer 4 can be joined with high accuracy.
[0030]
6 and 7 relate to the second embodiment of the present invention, FIG. 6 is a diagram for explaining the configuration of the ultrasonic transducer, and FIG. 7 is a diagram for explaining the operation of the ultrasonic transducer.
6A is a perspective view of the ultrasonic transducer, FIG. 6B is a cross-sectional view taken along the line BB of FIG. 6B, and FIG. 6C is a diagram illustrating the configuration of the rear electrode. FIG. 7A is a diagram illustrating a state in which a small transducer opening is formed and radiating ultrasonic waves, and FIG. 7B is a diagram illustrating a state in which a large transducer aperture is formed and radiating ultrasonic waves.
[0031]
In the present embodiment, the configurations of the ultrasonic transducer 1 and the rear electrode 3a of the first embodiment are different.
[0032]
As shown in FIG. 6C, the rear electrode 3b constituting the ultrasonic transducer 1B of the present embodiment includes a first electrode 32 having a disk shape and a small diameter disposed in the center portion, and the first electrode 32. The second electrode 33 having a substantially donut plate shape disposed on the outer periphery. The first electrode 32 constituting the rear electrode 3b is connected to the signal line 8 of the first lead wire 9a, and the second electrode 33 is connected to the signal line 8 of the second lead wire 9b. The ground wires 7 of the wires 9a and 9b are connected to the front electrode 3a.
[0033]
Therefore, the composite piezoelectric body 2 is driven by the first electrode 32 and the second electrode 33. Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals and description thereof is omitted.
[0034]
By configuring the ultrasonic transducer 1B as described above, when the composite piezoelectric body 2 is driven by the first electrode 32, as shown in FIG. An ultrasonic wave with a narrow beam width set at a short distance is radiated from the acoustic lens 4a.
[0035]
On the other hand, when the composite piezoelectric body 2 is driven by the first electrode 32 and the second electrode 33, as shown in FIG. 7B, the vibrator aperture is enlarged and the focal position is set to a long distance. Are emitted from the acoustic lens 4a.
[0036]
As described above, the rear electrode is constituted by the first electrode having a small diameter and the doughnut-shaped second electrode arranged on the outer periphery of the first electrode, and the composite piezoelectric body is driven by combining each electrode alone or in combination. To provide an ultrasonic transducer having a long focal range from a short distance to a long distance by changing the focal position of an ultrasonic wave with a narrow beam width to a short distance or a long distance, or by combining them. Can do. Other operations and effects are the same as those in the first embodiment.
[0037]
In the present embodiment, the rear electrode is composed of two electrodes, but the rear electrode may be composed of more electrodes.
[0038]
Further, in the present embodiment, the description of the frequency when driving the composite piezoelectric body 2 is omitted. However, by driving the composite piezoelectric body 2 by applying a high frequency f1 to the first electrode 32, FIG. As shown in (a), it is possible to radiate high-resolution ultrasonic waves from the acoustic lens 4a by setting the focal position to a short distance from a small vibrator opening.
[0039]
Further, by driving the composite piezoelectric body 2 by applying a low frequency f0 to the first electrode 32 and the second electrode 33, the focal position is moved away from a large vibrator opening as shown in FIG. 8B. Ultrasonic waves that have been set and improved in depth speed can be emitted from the acoustic lens 4a.
[0040]
That is, as shown in the characteristic diagram showing the relationship between sensitivity and frequency in FIG. 8C, an ultrasonic transducer having high sensitivity characteristics can be obtained by switching the frequency.
[0041]
As described above, when the rear electrode is composed of the first electrode having a small diameter and the doughnut-shaped second electrode disposed on the outer periphery of the first electrode, when driving the composite piezoelectric body by combining each electrode alone or in combination, Furthermore, an ultrasonic transducer capable of changing the focal position to a short distance or a long distance by appropriately switching and setting the frequency and radiating highly sensitive ultrasonic waves is provided. it can. Other operations and effects are the same as those of the above-described embodiment.
[0042]
FIG. 9 is a view for explaining the configuration of an ultrasonic transducer according to the third embodiment. 9A is a perspective view illustrating the configuration of the ultrasonic transducer, and FIG. 9B is a cross-sectional view taken along the line CC in FIG. 9A.
[0043]
In the present embodiment, the configuration of the acoustic lens 4b provided in the ultrasonic transducer 1 of the first embodiment and the acoustic matching layer 4 is different.
[0044]
As shown in FIGS. 9 (a) and 9 (b), different members are used on the ultrasonic radiation surface side of the acoustic matching layer 4 formed in a predetermined thickness dimension constituting the ultrasonic transducer 1C of the present embodiment. An acoustic lens 4b having a first lens portion 41 and a second lens portion 42 formed to have a curvature is formed and arranged.
[0045]
The first lens portion 41 is a so-called central lens disposed in the central portion, and changes with a predetermined lens curvature radius (R1) so that the thickness dimension continuously increases from the central portion in the circumferential direction. It is formed in a concave curved shape. And the thickness dimension of the center part is set to zero with respect to an ultrasonic radiation surface similarly to the acoustic lens 4a of 1st Embodiment. The sound speed condition of the first lens unit 41 is set to a sound speed V1 that is faster than the water (biological) sound speed V0.
[0046]
On the other hand, the second lens portion 42 is a so-called peripheral lens having a substantially donut shape disposed around the first lens portion 41, and the thickness dimension increases continuously from the inner peripheral surface to the outer peripheral surface. The first lens portion 41 is formed in a concave curved shape that changes with a lens curvature radius (R2) larger than the lens curvature radius R1. The sound speed condition of the second lens unit 42 is set to a sound speed V2 that is faster than the sound speed V0 of water (living body) and smaller than the sound speed V1 of the first lens part 41.
[0047]
That is, there is a relationship of V0 <V2 ≦ V1, R1 <R2 between the sound velocities V0, V1, V2 and the lens curvature radii R1, R2. Other configurations are the same as those of the first embodiment, and the same members are denoted by the same reference numerals and description thereof is omitted.
[0048]
By configuring the ultrasonic transducer 1C as described above, when the composite piezoelectric body 2 is driven, the focal position is set to a short distance from the first lens portion 41 having a small opening as shown in FIG. On the other hand, an ultrasonic wave having a narrow beam width is emitted from the second lens part 42 having a large aperture, while an ultrasonic wave having a narrow beam width is radiated.
[0049]
As described above, the acoustic lens provided in the acoustic matching layer is configured by the first lens portion disposed in the central portion having different lens curvature radii and the second lens portion disposed around the first lens portion, and the respective lenses. By setting the relationship of V0 <V2≤V1, R1 <R2 between the parts, the focal position can be lengthened by providing two types of focal positions, short distance and long distance, and the short distance and long distance Thus, it is possible to provide an ultrasonic transducer capable of emitting highly sensitive (deep speed) ultrasonic waves by switching the driving frequency. Other operations and effects are the same as those of the above-described embodiment.
[0050]
In this embodiment, the acoustic lens is composed of two lens portions, but the acoustic lens may be composed of more lens portions.
[0051]
It should be noted that the present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit of the invention.
[0052]
[Appendix]
According to the embodiment of the present invention as described above in detail, the following configuration can be obtained.
[0053]
(1) A composite piezoelectric element formed of a plurality of columnar piezoelectric bodies and an organic material filled in a gap between the columnar piezoelectric bodies and having a volume filling rate of the columnar piezoelectric bodies set so that an acoustic impedance is in a predetermined range. Body,
An acoustic matching layer that is disposed on the radiation surface side of the composite piezoelectric body and has a thickness dimension that continuously changes from the central portion toward the peripheral direction, serving as an acoustic lens, and having an acoustic impedance set to a predetermined range;
An ultrasonic transducer comprising:
[0054]
(2) The acoustic impedance of the composite piezoelectric material is in the range of 7 × 10 6 Kg / m 2 · s to 15 × 10 6 Kg / m 2 · s, and the acoustic impedance of the acoustic matching layer is equal to the acoustic impedance of the composite piezoelectric material. The ultrasonic transducer according to appendix 1, which is in a range of 1/5 to 1/2.
[0055]
(3) The ultrasonic transducer according to appendix 2, wherein a volume filling factor of the columnar piezoelectric body is set to 20 to 45% in order to set an acoustic impedance of the composite piezoelectric body within a predetermined range.
[0056]
(4) One of the electrodes arranged in the composite piezoelectric body is divided into a plurality of predetermined shapes, and the size of the vibrator opening is changed by driving the composite piezoelectric body through the electrodes. Ultrasonic vibrator.
[0057]
(5) The ultrasonic transducer according to appendix 1 or appendix 4, wherein the composite piezoelectric body is driven by a high frequency pulse or a burst wave, or a low frequency pulse or a burst wave.
[0058]
(6) The ultrasonic transducer according to appendix 1, wherein the acoustic lens is formed by laminating at least two members having different sound speeds in the circumferential direction.
[0059]
【The invention's effect】
According to the present invention described above, without causing the decrease in sensitivity can observation until the body cavity surface or RaFukashi unit, ultra wide band attained a diameter of the insertion portion of the ultrasonic endoscope (multifrequency The ultrasonic transducer can be provided.
[Brief description of the drawings]
FIG. 1 to FIG. 4 relate to a first embodiment of the present invention, FIG. 1 is a diagram showing a schematic configuration of an ultrasonic transducer, and FIG. 2 is a diagram for explaining a configuration of a composite piezoelectric material. The figure which shows the characteristic of the ultrasonic transducer | vibrator by a frequency and a gain. FIG. 4 is a figure explaining the front-end | tip part of the ultrasonic endoscope which has arrange | positioned the ultrasonic vibrator. FIG. FIGS. 6 and 7 are related to the second embodiment of the present invention, and FIG. 6 is a diagram for explaining the configuration of the ultrasonic transducer. FIG. 7 is a diagram for explaining the operation of the ultrasonic transducer. 8 is a diagram for explaining another operation of the ultrasonic transducer. FIG. 9 is a diagram for explaining the configuration of the ultrasonic transducer according to the third embodiment. FIG. 10 is a diagram of a conventional ultrasonic transducer and an ultrasonic endoscope. The figure explaining the ultrasonic transducer arranged in the tip part
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic vibrator 2 ... Composite piezoelectric body 2a ... Columnar piezoelectric body 2b ... Composite piezoelectric body 3b ... Rear electrode 4 ... Acoustic matching layer 4a ... Acoustic lens

Claims (3)

複数の柱状圧電体及びこれら柱状圧電体の隙間に充填される有機物で形成され、音響インピーダンスが7〜15×10 kg/m ・sとなるように前記柱状圧電体の体積充填率を20〜45%に設定した複合圧電体と、
この複合圧電体の音響放射面側に配置され、音響インピーダンスを前記複合圧電体の音響インピーダンスより小さい所定範囲の値とし、前記複合圧電体の音響放射面から所定の厚みで設定された単一の層を含む音響整合層と、
前記音響整合層の音響放射面側に形成配置され、中央部の厚み寸法が前記音響整合層の前記所定の厚み位置での音響放射面に対し零に設定されると共に、この中央部から周辺方向に向かって厚さ寸法が連続的に大きくなるように変化する球面形状に形成された前記音響整合層と同じ音響インピーダンスで、音速条件が水より速い速度に設定された音響レンズと、
を具備することを特徴とする超音波振動子。
The columnar piezoelectric body is formed of an organic material filled in a plurality of columnar piezoelectric bodies and gaps between these columnar piezoelectric bodies, and the volume filling rate of the columnar piezoelectric bodies is 20 so that the acoustic impedance is 7 to 15 × 10 6 kg / m 2 · s. A composite piezoelectric body set to ~ 45%;
It is arranged on the acoustic radiation surface side of the composite piezoelectric body, and the acoustic impedance is set to a value within a predetermined range smaller than the acoustic impedance of the composite piezoelectric body, and a single thickness set with a predetermined thickness from the acoustic radiation surface of the composite piezoelectric body. An acoustic matching layer including a layer;
The formed disposed on the acoustic emission face side of the acoustic matching layer, the thickness of the central portion is set to zero with respect to the acoustic radiation surface at said predetermined thickness position of the acoustic matching layer, near from the central portion An acoustic lens having the same acoustic impedance as the acoustic matching layer formed in a spherical shape that changes so that the thickness dimension continuously increases toward the direction, and the speed of sound is set to a speed faster than water ;
An ultrasonic transducer comprising:
前記複合圧電体に配置される一方の電極を、所定の形状で複数に分割し、この電極を介して前記複合圧電体を駆動することによって振動子開口の大きさを変化させることを特徴とする請求項1に記載の超音波振動子。  One electrode arranged in the composite piezoelectric body is divided into a plurality of shapes with a predetermined shape, and the size of the vibrator opening is changed by driving the composite piezoelectric body through the electrode. The ultrasonic transducer according to claim 1. 前記音響レンズは、中央部に配置され、第1のレンズ曲率で形成された第1のレンズ部と、前記第1のレンズ部の周囲に配置され、前記第1のレンズ曲率とは異なる第2のレンズ曲率で形成された第2のレンズ部とからなることを特徴とする請求項1に記載の超音波振動子。  The acoustic lens is disposed at a central portion, and a first lens portion formed with a first lens curvature, and a second lens disposed around the first lens portion and different from the first lens curvature. The ultrasonic transducer according to claim 1, comprising: a second lens portion formed with a lens curvature of:
JP37127799A 1999-12-27 1999-12-27 Ultrasonic transducer Expired - Fee Related JP3655794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37127799A JP3655794B2 (en) 1999-12-27 1999-12-27 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37127799A JP3655794B2 (en) 1999-12-27 1999-12-27 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JP2001178719A JP2001178719A (en) 2001-07-03
JP3655794B2 true JP3655794B2 (en) 2005-06-02

Family

ID=18498433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37127799A Expired - Fee Related JP3655794B2 (en) 1999-12-27 1999-12-27 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP3655794B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798302B2 (en) * 2001-11-20 2006-07-19 独立行政法人科学技術振興機構 Thermally induced pressure wave generator
JP2006334075A (en) * 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd Ultrasonic probe and ultrasonic diagnostic equipment
JP2006334074A (en) * 2005-06-01 2006-12-14 Matsushita Electric Ind Co Ltd Ultrasonic probe and ultrasonic diagnostic equipment
JP6080747B2 (en) * 2013-12-02 2017-02-15 株式会社日立パワーソリューションズ Ultrasonic probe and ultrasonic flaw detection system
CN109530197B (en) * 2018-12-29 2020-06-16 陕西师范大学 Ultrasonic vibration method and ultrasonic vibration system with active acoustic impedance matching
CN114101018B (en) * 2021-11-25 2022-11-22 福州大学 Metamaterial acoustic lens phased array transducer and method for improving focus sound pressure

Also Published As

Publication number Publication date
JP2001178719A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
US20220022845A1 (en) Focused rotational ivus transducer using single crystal composite material
US5163436A (en) Ultrasonic probe system
US5957851A (en) Extended bandwidth ultrasonic transducer
US5577507A (en) Compound lens for ultrasound transducer probe
US20210282746A1 (en) Intravascular imaging devices having a low reverberation housing and associated systems and methods
JP7190590B2 (en) Ultrasound imaging device with programmable anatomy and flow imaging
US20090048519A1 (en) Hybrid Dual Layer Diagnostic Ultrasound Transducer Array
US20080045838A1 (en) Ultrasonic transducer array, ultrasonic probe, ultrasonic endoscope and ultrasonic diagnostic apparatus
JPH0856949A (en) Ultrasonic wave probe
JP6650925B2 (en) Intravascular imaging device with low reverberation housing and related systems and methods
KR102044705B1 (en) Ultrasonic transducer having matching layer having composite structure and method for manufacturing same
JP2016501626A (en) Catheter assembly having a truncated tip
JP2001258879A (en) Ultrasonic transducer system and ultrasonic transducer
CA3105459A1 (en) Imaging devices with selectively alterable characteristics
JP3655794B2 (en) Ultrasonic transducer
US6416478B1 (en) Extended bandwidth ultrasonic transducer and method
JP4004845B2 (en) Array type ultrasonic transducer
JP6584839B2 (en) Extracorporeal ultrasound probe
JP4632478B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP2011077572A (en) Ultrasonic transducer and producing method thereof, and ultrasonic probe
JP3749192B2 (en) Ultrasonic transducer
JP3819315B2 (en) Ultrasonic transducer
JP2019062496A (en) Ultrasonic probe
JPS60137200A (en) Ultrasonic probe
JPH08275944A (en) Arrangement type ultrasonic probe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees