JP3655426B2 - Oxygen absorber - Google Patents

Oxygen absorber Download PDF

Info

Publication number
JP3655426B2
JP3655426B2 JP10331797A JP10331797A JP3655426B2 JP 3655426 B2 JP3655426 B2 JP 3655426B2 JP 10331797 A JP10331797 A JP 10331797A JP 10331797 A JP10331797 A JP 10331797A JP 3655426 B2 JP3655426 B2 JP 3655426B2
Authority
JP
Japan
Prior art keywords
diatomaceous earth
oxygen absorbent
oxygen
granular
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10331797A
Other languages
Japanese (ja)
Other versions
JPH10290930A (en
Inventor
隆史 加柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Nittetsu Mining Co Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, Nittetsu Mining Co Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10331797A priority Critical patent/JP3655426B2/en
Publication of JPH10290930A publication Critical patent/JPH10290930A/en
Application granted granted Critical
Publication of JP3655426B2 publication Critical patent/JP3655426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は還元性有機物を主剤とする金属探知機に検知されない酸素吸収剤に関する。詳しくは、還元性有機物を主剤とし、酸化鉄分の含有量が0.5重量%以下であるように焼成した珪藻土を含む酸素吸収剤に関する。ここで酸化鉄分とは、Fe3 4 、FeTiO3 及びFe2 3 をいう。
【0002】
【従来の技術】
近年、食品保存技術の一つとして酸素吸収剤を用いる技術が確立され、酸化防止、変色防止、カビや細菌の増殖防止等に酸素吸収剤が利用されている。この技術によれば、包装体内の酸素を食品包装体に同封した酸素吸収剤に吸収させることにより、包装体内の食品は実質的に無酸素状態に保たれる。酸素吸収剤としては鉄粉主剤の酸素吸収剤が広く用いられているが、食品メーカーでは、針、釘等の金属異物の製品への混入を防止するために、製品の食品包装体の品質管理に金属探知器が使用されることが多い。しかし、鉄粉主剤の酸素吸収剤は金属探知機に感応するために用いることができず、金属探知機を使用する場合には、通常、金属探知機に感応することのない還元性有機物を酸素吸収反応の主剤に用いた酸素吸収剤が使用される。
【0003】
還元性有機物の酸化反応(酸素吸収反応)を利用した酸素吸収剤は多く、例えば、アスコルビン酸類、多価アルコール類、多糖類、多価フェノール類等を主剤に用いた酸素吸収剤が知られている。しかし、還元性有機物主剤の酸素吸収剤を金属探知機に感応しないものとするためには、主剤以外の成分にも金属探知機に感応しないものを用いる必要がある。還元性有機物主剤の酸素吸収剤には、例えば、珪藻土、ゼオライト、シリカ、アルミナ、活性炭等、公知の多孔質固体がしばしば含まれるが、これらの多孔質固体も金属探知機に感応しないものを用いる必要がある。なお、多孔質固体は主剤の担体として用いられるだけでなく、これに水分を保持させて主剤の酸素吸収反応に必要な水分の供与剤として用いられることも多い。
【0004】
例えば、特開平5−269376号公報には、アスコルビン酸類を主剤とし珪藻土を含む酸素吸収剤において、酸洗浄処理により鉄分を除去した珪藻土を用いることによって金属探知機に感応しないものとした酸素吸収剤が提案されている。そもそも珪藻土原石には鉄分が含まれるために、珪藻土を含む酸素吸収剤を金属探知機に感応しないものとするには、従来は、珪藻土中の鉄分の除去が必要と考えられていた。しかしながら、鉄分除去のために珪藻土に酸洗浄を施すことは特別な処理を加えることになり、鉄分を含まない珪藻土を用いることは酸素吸収剤のコストアップになるので望ましくない。
【0005】
【発明が解決しようとする課題】
本発明は、還元有機物を主剤とし珪藻土を含む酸素吸収剤を金属探知機に検知されない酸素吸収剤とするには用いる珪藻土を酸洗浄して鉄分を除かねばならないという従来技術の問題を解決して、鉄分を含んでいても除去を必要としない珪藻土を用いた還元有機物主剤の酸素吸収剤を提供することを目的とする。さらには、前記珪藻土が強度がありかつ液状物の保持性に優れた粒状珪藻土であり、これを含む酸素吸収剤を流動性よく充填してコンパクトな酸素吸収剤包装体とするができる酸素吸収剤を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、上記課題を解決するべく珪藻土の鉄分の挙動を検討したところ、次のようなことが判った。珪藻土原石に含まれる鉄分は、通常、二硫化鉄(FeS2 )や酸化水酸化鉄(FeO(OH))の形で含まれ、これらの鉄分は磁性が低く金属検知機に対する感度は極めて低いが、原石を粉砕した状態では、珪藻土は担体として適当な物性をもたず、強度も弱く、本発明に用いることはできない。市販の珪藻土は、鉄分を含む原石を粉砕して、適宜、120〜1200℃の範囲の温度で焼成して製品化されたものであるが、珪藻土中の原石由来の鉄分は焼成することによって磁性の強い酸化鉄系の四三酸化鉄(Fe3 4 )やチタン酸鉄(FeTiO3 )に転化するために、高温で焼成した珪藻土は金属検知機に対して感度の高いものとなると考えられる。さらに1200℃以上の高温で焼成すると鉄分はさらに酸化が進み、ほとんど逆に相対的に磁性の低い酸化鉄(Fe2 3 )に転化するが、他方、珪藻土の多孔性が損なわれるために、担体として十分な担持能をもつ珪藻土とはならず、本発明の酸素吸収剤には適さない。
【0007】
そこで本発明者は、上記事実に鑑み珪藻土の焼成方法を検討した結果、珪藻土中に含まれる鉄分を酸化鉄分として0.5重量%以下に抑えるように珪藻土を焼成することにより、好ましくは150〜300℃の温度で焼成することにより、この珪藻土を用いた還元有機物主剤の酸素吸収剤が金属検知機に感応しないものにできることを見い出した。さらには、珪藻土原石から得られた粉末珪藻土を造粒後前記温度で焼成することにより、適当な強度を有しかつ液状物の保持性に優れた多孔質顆粒とすることができることを見い出した。
【0008】
すなわち、本発明は、課題を解決するための手段として、還元性有機物を主剤とし、酸化鉄分としてFe3 4 、FeTiO3 及びFe2 3 の合計含有量が0.5重量%以下であるように焼成した珪藻土を含むことを特徴とする酸素吸収剤を提供する。
【0009】
上記本発明においては、珪藻土の焼成温度は150℃以上、300℃以下の範囲が好ましい。珪藻土を前記範囲の温度で焼成することによって、酸化鉄分としてFe3 4 、FeTiO3 及びFe2 3 の合計含有量が0.5重量%以下に抑えるように焼成することができる。殊に焼成温度が300℃をこえて高温になると、珪藻土に含まれる硫化鉄などの鉄分が酸化して磁性の強いFe3 4 及びFeTiO3 、さらにはFe2 3 に変化し、これを酸素吸収剤に使用した場合に金属探知器に検知され易くなるために好ましくない。
【0010】
また珪藻土を前記範囲の温度で焼成するかぎり、鉄分を含む珪藻土は金属探知器に対して感応し易いものとならないだけでなく、担体として液状物の保持力に優れた多孔質のものとすることができる。特に液状物の担体を必要とする本発明の酸素吸収剤においては、液状物の保持力に優れた上記本発明に係る珪藻土を用いることにより、これを含む酸素吸収剤の容積を減らすことが可能となる。
【0011】
また上記本発明の酸素吸収剤においては、珪藻土は好ましくは粒状珪藻土であり、より好ましくは造粒珪藻土である。粒状珪藻土の粒子径は、好ましくは0.2〜3mm、より好ましくは0.5〜2mmである。前記範囲の粒子径の粒状珪藻土を用いることにより、主剤の還元性有機物をはじめ酸素吸収剤組成物を混合して酸素吸収剤として取り扱うのに必要な流動性が確保される。また粒状珪藻土は流動性を許容できる範囲で粒径0.2mm以下の微粉を少量は含んでいても良い。
【0012】
本発明の酸素吸収剤は、通常、通気性包材に包装して酸素吸収剤包装体として用いられるが、本発明に係る粒状珪藻土を用いることにより、酸素吸収剤組成物の液状成分を前記粒状珪藻土に含浸担持した酸素吸収剤を流動性よく通気性小袋に充填包装することができる。また、本発明によれば、前記粒状珪藻土に酸素吸収剤組成物を多量に担持できるために、粒状珪藻土を含む酸素吸収剤の容積を減らすことが可能となり、容量当たりの酸素吸収性能が高く、コンパクトで収納性の良い酸素吸収包装体とすることができる。
【0013】
【発明の実施の形態】
以下に、本発明についてさらに詳しく説明する。
珪藻土は海洋性珪藻又は淡水性珪藻の堆積により生成された珪藻土が用いられる。海洋性珪藻としては、アミメケイソウ属コシノディスカス、アクチノキルクス属、ステファノピクシス属、コメツブケイソウ属コックネイス等が挙げられ、淡水性珪藻としては、タルケイソウ属メルシラ、キクロテラ属、ステファノディスカス属等が挙げられる。本発明においては、海洋性珪藻土が好ましく、海洋性ケイソウ属コシノディスカスに由来する珪藻土がより好ましい。
【0014】
本発明では、上記珪藻土原石から得られる珪藻土を150〜300℃の温度範囲で、酸化鉄分としてFe3 4 、FeTiO3 及びFe2 3 の合計含有量が0.5重量%以下であるように焼成して用いられる。用いる珪藻土は粒状珪藻土が好ましく、粒状珪藻土は破砕品でも造粒品でもよいが、適当な形状や粒度の粒状体が容易に得られることから造粒品がより好ましい。
【0015】
造粒品は、粉末珪藻土を造粒した後に焼成したものでも、粉末珪藻土を焼成した後に造粒したものでもよいが、前者が好ましい。珪藻土原石から得られた粉末珪藻土を湿式押出造粒した後、乾燥工程を兼ねて焼成を行う方が製造コストの点から有利であり、また造粒後に焼成することによって、適当な物理的強度が確保でき、担体として液状物の保持性に優れた多孔質のものとすることができる。造粒品の強度を確保するために、造粒に際し、水以外にも必要に応じてバインダーを添加してもよい。バイダーとしては、水ガラス、水酸化カルシウム、水酸化マグネシウム、炭酸ナトリウム、ポリプロピレン粉末、ポリエチレン粉末が挙げられ水酸化カルシウム、水ガラス、炭酸ナトリウム等が好適に用いられる。
【0016】
本発明に係る上記造粒珪藻土は、多孔質担体として特に液状物の保持性に優れ、多量の液を含浸しても流動性が損なわれない特徴を有している。本発明においては、主剤の還元性有機物又はその水溶液等の液状成分を粒状珪藻土に含浸担持した酸素吸収剤を作業性よく通気性小袋に充填包装するために、酸素吸収剤の流動性を確保する必要があり、粒状珪藻土は液保有時の流動性が重要である。例えば、実施例に記す試験方法で、液保有時の流動性を評価することができ、保水容量の大きい粒状珪藻土を選ぶことができる。
【0017】
本発明の酸素吸収剤は、還元性有機物を主剤とするものであればよく、前記の珪藻土を含む酸素吸収剤である。主剤の還元性有機物としては、例えば、アスコルビン酸やアスコルビン酸塩等のアスコルビン酸類、グリセリン、・・・等の多価アルコール類、多糖類、カテコール、ピロガロール等の多価フェノール類等を用いることができ、アスコルビン酸類及び多価アルコール類が好ましい。還元性有機物を主剤とする酸素吸収剤として、例えば、特開平5−269376にアスコルビン酸類を、また特開平9−38486にグリセリンを、それぞれ、主剤に用いた酸素吸収剤が知られるが、これらの酸素吸収剤に含まれる珪藻土に本発明に係る粒状珪藻土を用いることができる。
【実施例】
【0018】
アスコルビン酸類主剤の酸素吸収剤を例にとって詳しく説明する。なお、本発明はアスコルビン酸類主剤の酸素吸収剤に限定されるものではない。
主剤のアスコルビン酸類としては、L−アスコルビン酸、L−アスコルビン酸ナトリウム、L−アスコルビン酸カルシウム、D−iso−アスコルビン酸ナトリウム、グリセリン等の単独あるいはこれらの混合物が用いられいる。
【0019】
本発明に係わるアスコルビン酸類主剤の酸素吸収剤においては、必要に応じてアルカリ金属の炭酸塩を添加してもよい。例えばNa2 CO3 、NaHCO3 、K2 CO3 またはKHCO3 等が用いられるが、これらの塩は単独または混合物が用いられる。また、金属化合物を酸化触媒として用いることが好ましく、金属化合物としては鉄化合物、銅化合物、亜鉛化合物、マンガン化合物が好適に用いられる。具体的にはFeCl2 、FeCl2 、FeSO4 、Fe2 (SO4 3 、CuCl、CuCl2 、CuSO4 、ZnCl2 、ZnSO4 、MnCl2 、またはMnSO4 の無水塩または含水塩が用いられる。金属化合物の添加量は主剤のアスコルビン酸類によって異なるが、主剤100重量部当たり好ましくは0.1〜100重量部であり、より好ましくは1〜30重量部である。
【0020】
酸素吸収剤の各成分の配合方法は、主剤のアスコルビン酸類を水に溶解し、必要に応じて、アルカリ金属の炭酸塩及び金属化合物を溶解し、この水溶液を珪藻土造粒珪藻土に含浸させ酸素吸収剤とする。さらに、必要に応じて、その酸素吸収剤に活性炭等の吸着剤や水酸化マグネシウム、水酸化カルシウム、石膏、アエロジル、タルク等の各種不溶性の粉末を被覆してもよい。
【0021】
実施例1
〔焼成粒状珪藻土の製造〕
珪藻土(海洋性珪藻アミメケイソウ属コシノディスカス由来)原石を粉砕して得られた粉末珪藻土(水分40重量%、鉄含有量0.42重量%)100重量部にバインダーとして水酸化カルシウム5重量部を添加し、さらに水を加えながら混合して、水分が珪藻土とバインダーの総量の50重量%となるよう調湿した。粉末珪藻土とバインダーの調湿混合物を、湿式押出造粒機(スクリーン開度1.0mmφ)より押し出して、平均粒径1.0mmの造粒物を調製し、得られた造粒物を温度250℃で焼成した。粒径0.5mm以上の粒子を焼成粒状珪藻土として回収したが、回収得率は、水分とバインダーを除いた珪藻土成分として焼成前の98%であり、焼成処理による造粒物の破壊、損失はきわめて少なかった。250℃焼成の粒状珪藻土は、水分1.2重量%、酸化鉄分0.37重量%であった。なお、ここでは、焼成珪藻土を分析して定量したFe3 4 、FeTiO3 及びFe2 3 の合計量を酸化鉄分として示した。得られた粒状珪藻土について、次の試験方法により保水量と流動性の関係を調べた。
【0022】
〔粒状珪藻土の保水量と流動性試験〕
まず含浸水量を変えて保水させた含水粒状珪藻土を準備した。準備した含水粒状珪藻土を、水平な台上に置いて下部出口(出口径8mmφ)の塞がったガラス製脚無し漏斗(漏斗の脚を切り取ったもの)に入れた。続いて、含水粒状珪藻土を入れたガラス製脚無し漏斗を持ち上げ、漏斗下部出口を台から離した時に、漏斗内の粒状珪藻土が下部出口から円滑に流出落下するかどうかで、流動性を判定した。次々と含浸水量を増した粒状珪藻土で試験を行い、含水粒状珪藻土が流出しなかったり、流出途中に詰まったりすることなく、円滑に流出して流動性を保つことが出来た最大の含水量をもって、珪藻土の保水量(試料100g当たりで示す)とした。250℃焼成の粒状珪藻土の保水量は75g/100gであり、流動性も良かった。この流動性試験による保水量が大きく流動性のよいものほど、保水剤として良好な担体ということができる。
【0023】
〔酸素吸収剤の製造〕
水100重量部に対してアスコルビン酸ナトリウム60重量部、硫酸第1鉄7水和物5重量部及び炭酸ナトリウム10重量部を溶解した、酸素吸収剤の水溶液を準備しておき、前記250℃焼成の粒状珪藻土に酸素吸収剤水溶液を1:1の割合(重量比)で含浸させ、さらにこれに粉末活性炭を1重量%の割合で混合、被覆して、酸素吸収剤を調製した。得られた酸素吸収剤4gを有孔ポリエチレンフィルムを内側にラミネートした紙袋に封入して酸素吸収包装体とした。
【0024】
〔酸素吸収試験と金属検知試験〕
上に得た酸素吸収包装体を、ガスバリア性フィルム(ポリ塩化ビニリデン被覆ナイロン/ポリエチレン)の袋に空気量500ccとともに密封し、酸素吸収包装体を封入した袋内の酸素濃度の変化を経時的に測定した。また、0.5φの鉄球が通過すると検知できるように感度設定した金属探知機(アンリツ電気製、型式K470A)に酸素吸収包装体を通過させたところ、金属探知機は感応しなかった。結果を表1に示す。
【0025】
比較例1
実施例1で調製した未焼成の造粒珪藻土を800℃で焼成した。粒径0.5mm以上の焼成粒状珪藻土の回収率は、珪藻土成分として、焼成前の99%であり、焼成処理による造粒物の破壊、損失はきわめて少なかった。800℃焼成の粒状珪藻土の水分は0.8重量%。焼成粒状珪藻土を50%硫酸に5日間浸漬したのち、水洗して酸を除去した後、乾燥した。酸洗浄、水洗浄、乾燥を含む工程での珪藻土の損失は多く、酸洗処理による回収率は、67%であった。酸洗処理した粒状珪藻土は、水分0.9%、酸化鉄分0.48%、保水量74g/100gであった。
【0026】
酸洗処理した粒状珪藻土(800℃焼成)を用い、実施例1と同様にして酸素吸収剤を調製し、紙袋に封入して酸素吸収包装体とした。得られた酸素吸収包装体を用い、同様に酸素吸収テストを行うと共に、金属探知機を通過させて金属検知試験を行った。金属検知試験では、金属探知機は感応しなかった。結果を表1に示す。
【0027】
比較例2
実施例1で調製した未焼成の造粒珪藻土を500℃で焼成した。粒径0.5mm以上の焼成粒状珪藻土の回収率は、珪藻土成分として、焼成前の99%であった。500℃焼成の粒状珪藻土は、水分1.1重量%、酸化鉄分0.63%、保水量72g/100gであった。
【0028】
500℃で焼成した粒状珪藻土を用い、実施例1と同様にして酸素吸収剤を調製し、酸素吸収剤を紙袋に封入し酸素吸収包装体とした。得られた酸素吸収包装体を用い、同様に酸素吸収テストを行うと共に、金属探知機を通過させて金属検知試験を行った。この場合、金属探知機は酸素吸収包装体に感応した。結果を表1に示す。
【0029】
【表1】

Figure 0003655426
【0030】
上記結果から明らかなように、実施例1では造粒珪藻土を高収率で製造することができ、この造粒珪藻土を用いて製造した酸素吸収剤は、金属探知器に検知されず、また酸素吸収性能も優れたものであった。比較例1では、造粒珪藻土を用いて製造した酸素吸収剤は金属探知器に検知されなかったが、酸洗浄処理による珪藻土の損失が大きく、効率よく造粒珪藻土が得られなかった。また、比較例2で製造した造粒珪藻土は焼成温度が高いために、金属探知器に検知されない酸素吸収剤とすることはできなかった。
【0031】
比較例3
実施例1で調製した未焼成の造粒珪藻土を1200℃で焼成した。粒径0.5mm以上の焼成粒状珪藻土の回収率は、珪藻土成分として、焼成前の99%であった。1200℃焼成の粒状珪藻土は、水分含有量0.7重量%、酸化鉄分0.59%、保水量56g/100gであった。
【0032】
1200℃焼成の粒状珪藻土を用い、実施例1と同様に、酸素吸収剤の水溶液を含浸させようと試みたが、焼成粒状珪藻土の保水力が低いために、所定量の液を含浸させることができず、所望の酸素吸収剤は得られなかった。
【0033】
比較例4
実施例1と同じ珪藻土原石(海洋性珪藻アミメケイソウ属コシノディスカス由来)を粉砕して得られた粉末珪藻土を250℃で焼成した(焼成後の水分含有量1.3%)。250℃で焼成した粉末珪藻土と実施例1に調製した酸素吸収剤水溶液とを1:1の割合(重量比)で混合しながら、天動造粒により混合物を顆粒とするべく造粒を試みたが、粉末珪藻土の保水力が低いために混合物が泥状となり、造粒できなかった。
【0034】
比較例5
実施例1と同じ珪藻土原石(海洋性珪藻アミメケイソウ属コシノディスカス由来)の破砕品を、分級して得られた平均粒径1.0mmの粒状珪藻土を250℃で焼成した。粒径0.5mm以上の焼成粒状珪藻土の回収率は、珪藻土成分として、焼成前の48%であり、焼成処理による破壊損失が大きかった。250℃焼成の粒状珪藻土は、水分含有量1.2重量%、酸化鉄分0.35%、保水量58g/100gであった。破砕品の250℃焼成粒状珪藻土を用い、実施例1と同様に、酸素吸収剤の水溶液を含浸させようと試みたが、焼成粒状珪藻土の保水力が低いために、所定量の液を含浸させることができず、所望の酸素吸収剤は得られなかった。
【0035】
【発明の効果】
本発明によれば、珪藻土中に含まれる鉄分を酸化鉄分として0.5重量%以下に抑えるように焼成した珪藻土、好ましくは150〜300℃の温度で焼成した珪藻土を用いることにより、還元有機物を主剤として珪藻土を含む酸素吸収剤を金属検知機に感応しない酸素吸収剤にすることができ、酸洗浄等の特別な鉄分除去処理を施して珪藻土中の鉄分を除去した珪藻土を用いる必要がない。さらには、前記珪藻土に造粒珪藻土を用いることにより、酸素吸収剤を流動性よく充填包装すること可能となり、コンパクトで収納性のよい酸素吸収剤包装体を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxygen absorbent that is not detected by a metal detector based on a reducing organic substance. Specifically, the present invention relates to an oxygen absorbent containing diatomaceous earth that is fired so that the content of iron oxide is 0.5% by weight or less using a reducing organic substance as a main ingredient. Here, the iron oxide refers to Fe 3 O 4 , FeTiO 3 and Fe 2 O 3 .
[0002]
[Prior art]
In recent years, a technique using an oxygen absorbent has been established as one of food preservation techniques, and the oxygen absorbent is used for preventing oxidation, preventing discoloration, preventing growth of mold and bacteria, and the like. According to this technique, the oxygen in the package is absorbed by the oxygen absorbent enclosed in the food package so that the food in the package is substantially kept oxygen-free. As an oxygen absorber, an oxygen absorber based on iron powder is widely used. However, in order to prevent the contamination of metal foreign objects such as needles and nails into the product, food manufacturers have controlled the quality of food packaging products. In many cases, a metal detector is used. However, the iron powder base oxygen absorber cannot be used to respond to metal detectors, and when a metal detector is used, reducing organic substances that are not sensitive to metal detectors are usually oxygenated. The oxygen absorbent used as the main component of the absorption reaction is used.
[0003]
There are many oxygen absorbers that utilize the oxidation reaction (oxygen absorption reaction) of reducing organic substances. For example, oxygen absorbers that use ascorbic acids, polyhydric alcohols, polysaccharides, polyhydric phenols, etc. as main ingredients are known. Yes. However, in order to make the oxygen absorber of the reducing organic substance main agent insensitive to the metal detector, it is necessary to use components other than the main agent that are insensitive to the metal detector. For example, diatomaceous earth, zeolite, silica, alumina, activated carbon, etc. often contain known porous solids, but these porous solids are not sensitive to metal detectors. There is a need. In addition, the porous solid is not only used as a carrier for the main agent, but is often used as a water donor for holding the water in the main component and for the oxygen absorption reaction of the main agent.
[0004]
For example, in Japanese Patent Laid-Open No. 5-269376, an oxygen absorbent containing ascorbic acid as a main ingredient and containing diatomaceous earth is made insensitive to a metal detector by using diatomaceous earth from which iron has been removed by acid cleaning treatment. Has been proposed. In the first place, since diatomaceous earth contains iron, in order to make oxygen absorbers containing diatomaceous earth insensitive to metal detectors, it has conventionally been considered necessary to remove iron in diatomaceous earth. However, acid cleaning of diatomaceous earth for removing iron content adds a special treatment, and using diatomaceous earth containing no iron content is undesirable because it increases the cost of the oxygen absorbent.
[0005]
[Problems to be solved by the invention]
The present invention solves the problem of the prior art that the diatomaceous earth used to remove oxygen from the diatomaceous earth used to make the oxygen absorbent containing diatomaceous earth as a main component of a reduced organic substance and not detected by a metal detector must be removed. An object of the present invention is to provide an oxygen absorbent as a main component of a reduced organic substance using diatomaceous earth that does not require removal even if it contains iron. Further, the diatomaceous earth is a granular diatomaceous earth having strength and excellent liquid retention, and an oxygen absorbent that can be packed into an oxygen absorbent containing the fluid with good fluidity to form a compact oxygen absorbent package. The purpose is to provide.
[0006]
[Means for Solving the Problems]
When this inventor examined the behavior of the iron content of diatomaceous earth in order to solve the said subject, the following thing was understood. The iron content of diatomaceous earth is usually in the form of iron disulfide (FeS 2 ) or iron oxide hydroxide (FeO (OH)), and these iron components are low in magnetism and very sensitive to metal detectors. In the state where the raw stones are crushed, diatomaceous earth does not have suitable physical properties as a carrier and is weak in strength and cannot be used in the present invention. Commercially available diatomaceous earth is a product produced by pulverizing an ore containing iron and firing it at a temperature in the range of 120 to 1200 ° C. as appropriate, but the iron derived from the ore in diatomaceous earth is magnetic by firing. It is considered that diatomaceous earth baked at high temperature is highly sensitive to metal detectors in order to convert to strong iron oxide-based triiron tetroxide (Fe 3 O 4 ) and iron titanate (FeTiO 3 ). . Further, when calcined at a high temperature of 1200 ° C. or higher, the iron content further oxidizes, and on the contrary, it is converted to iron oxide (Fe 2 O 3 ) with relatively low magnetism, but on the other hand, the porosity of diatomaceous earth is impaired, It does not become diatomaceous earth having sufficient supporting ability as a carrier and is not suitable for the oxygen absorbent of the present invention.
[0007]
Therefore, as a result of examining the diatomaceous earth firing method in view of the above facts, the present inventor preferably fired diatomaceous earth so that the iron content in the diatomaceous earth is suppressed to 0.5% by weight or less, preferably 150 to 150%. It has been found that, by firing at a temperature of 300 ° C., the oxygen absorbent as a main component of the reduced organic substance using diatomaceous earth can be made insensitive to a metal detector. Furthermore, it discovered that it can be set as the porous granule which has appropriate intensity | strength and was excellent in the retention property of a liquid substance by baking at the said temperature after granulating the powder diatomaceous earth obtained from the diatomaceous earth ore.
[0008]
That is, as a means for solving the problems, the present invention uses a reducing organic substance as a main component, and the total content of Fe 3 O 4 , FeTiO 3 and Fe 2 O 3 as an iron oxide content is 0.5% by weight or less. Thus, an oxygen absorbent characterized by including baked diatomaceous earth is provided.
[0009]
In the said invention, the calcination temperature of diatomaceous earth has the preferable range of 150 to 300 degreeC. By baking diatomaceous earth at a temperature in the above range, the total content of Fe 3 O 4 , FeTiO 3, and Fe 2 O 3 can be reduced to 0.5 wt% or less as the iron oxide content. In particular, when the firing temperature exceeds 300 ° C., the iron content such as iron sulfide contained in diatomaceous earth is oxidized to change to strong magnetic Fe 3 O 4 and FeTiO 3 , and further Fe 2 O 3. When it is used as an oxygen absorbent, it is not preferable because it is easily detected by a metal detector.
[0010]
As long as the diatomaceous earth is fired at a temperature within the above range, the diatomaceous earth containing iron is not only sensitive to metal detectors, but also has a porous structure with excellent liquid retention as a carrier. Can do. In particular, in the oxygen absorbent according to the present invention that requires a liquid carrier, the volume of the oxygen absorbent containing this can be reduced by using the diatomaceous earth according to the present invention, which has excellent liquid retention. It becomes.
[0011]
In the oxygen absorbent of the present invention, the diatomaceous earth is preferably granular diatomaceous earth, and more preferably granulated diatomaceous earth. The particle diameter of the granular diatomaceous earth is preferably 0.2 to 3 mm, more preferably 0.5 to 2 mm. By using the granular diatomaceous earth having a particle diameter in the above range, the fluidity necessary for handling the oxygen absorbent composition including the reducing organic substance as the main agent and handling it as an oxygen absorbent is ensured. The granular diatomaceous earth may contain a small amount of fine powder having a particle size of 0.2 mm or less within a range in which fluidity can be allowed.
[0012]
The oxygen absorbent of the present invention is usually packaged in a breathable packaging material and used as an oxygen absorbent package, but by using the granular diatomaceous earth according to the present invention, the liquid component of the oxygen absorbent composition is granular. The oxygen absorbent impregnated and supported in diatomaceous earth can be filled and packaged in a breathable sachet with good fluidity. In addition, according to the present invention, since a large amount of the oxygen absorbent composition can be supported on the granular diatomaceous earth, it becomes possible to reduce the volume of the oxygen absorbent containing the granular diatomaceous earth, and the oxygen absorption performance per volume is high, It is possible to provide an oxygen-absorbing package that is compact and easy to store.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
As diatomaceous earth, diatomaceous earth produced by the deposition of marine diatoms or freshwater diatoms is used. Examples of marine diatoms include the genus Amphidia, Cosinodiscus, Actinocircus, Stefanopyxis, and Copella genus Cocknas. . In the present invention, marine diatomaceous earth is preferred, and diatomaceous earth derived from the marine diatom Koshino discus is more preferred.
[0014]
In the present invention, the total content of Fe 3 O 4 , FeTiO 3 and Fe 2 O 3 as an iron oxide component is 0.5 wt% or less in the temperature range of 150 to 300 ° C. of diatomaceous earth obtained from the diatomaceous earth ore. Used after firing. The diatomaceous earth used is preferably granular diatomaceous earth, and the granular diatomaceous earth may be either a crushed product or a granulated product, but a granulated product is more preferred because a granule having an appropriate shape and particle size can be easily obtained.
[0015]
The granulated product may be one obtained by granulating powdered diatomaceous earth and then calcined or after granulating powdered diatomaceous earth, but the former is preferred. It is more advantageous from the viewpoint of production cost that wet calcination granulation of powdered diatomaceous earth obtained from diatomite ore is also performed from the point of production cost, and the appropriate physical strength is obtained by baking after granulation. It can be ensured, and the carrier can be made of a porous material having excellent liquid retention. In order to ensure the strength of the granulated product, a binder may be added as necessary in addition to water during granulation. Examples of the binder include water glass, calcium hydroxide, magnesium hydroxide, sodium carbonate, polypropylene powder, and polyethylene powder, and calcium hydroxide, water glass, sodium carbonate, and the like are preferably used.
[0016]
The granulated diatomaceous earth according to the present invention is particularly excellent as a porous carrier in retaining liquids, and has a characteristic that fluidity is not impaired even when impregnated with a large amount of liquid. In the present invention, the fluidity of the oxygen absorbent is ensured in order to fill and package the oxygen absorbent in which granular components of diatomaceous earth are impregnated and supported with liquid components such as a reducing organic substance as a main component or an aqueous solution thereof in a breathable sachet with good workability. It is necessary, and fluidity at the time of liquid holding is important for granular diatomaceous earth. For example, the fluidity at the time of liquid holding can be evaluated by the test method described in the examples, and granular diatomaceous earth having a large water retention capacity can be selected.
[0017]
The oxygen absorbent according to the present invention is not limited as long as it contains a reducing organic substance as a main ingredient, and is an oxygen absorbent containing the diatomaceous earth. As the reducing organic substance of the main agent, for example, ascorbic acids such as ascorbic acid and ascorbate, polyhydric alcohols such as glycerin,..., Polyhydric phenols such as polysaccharides, catechol, pyrogallol, etc. may be used. Ascorbic acids and polyhydric alcohols are preferred. As oxygen absorbers mainly composed of reducing organic substances, for example, ascorbic acids are disclosed in JP-A-5-269376, and glycerin is disclosed in JP-A-9-38486, respectively. The granular diatomaceous earth according to the present invention can be used for the diatomaceous earth contained in the oxygen absorbent.
【Example】
[0018]
This will be described in detail with reference to an example of an oxygen absorbent as a main component of ascorbic acid. In addition, this invention is not limited to the oxygen absorber of ascorbic acid main ingredient.
As the main ascorbic acid, L-ascorbic acid, L-sodium ascorbate, calcium L-ascorbate, D-iso-sodium ascorbate, glycerin or the like alone or a mixture thereof is used.
[0019]
In the oxygen absorber of the ascorbic acid main component according to the present invention, an alkali metal carbonate may be added as necessary. For example, Na 2 CO 3 , NaHCO 3 , K 2 CO 3, KHCO 3 or the like is used, and these salts are used alone or as a mixture. Moreover, it is preferable to use a metal compound as an oxidation catalyst, and an iron compound, a copper compound, a zinc compound, and a manganese compound are suitably used as the metal compound. Specifically, FeCl 2 , FeCl 2 , FeSO 4 , Fe 2 (SO 4 ) 3 , CuCl, CuCl 2 , CuSO 4 , ZnCl 2 , ZnSO 4 , MnCl 2 , or an anhydrous or hydrated salt of MnSO 4 is used. . The addition amount of the metal compound varies depending on ascorbic acids as the main agent, but is preferably 0.1 to 100 parts by weight, more preferably 1 to 30 parts by weight per 100 parts by weight of the main agent.
[0020]
The compounding method of each component of the oxygen absorbent is to dissolve the main component ascorbic acid in water, and if necessary, dissolve alkali metal carbonate and metal compound, impregnate this aqueous solution in diatomaceous earth granulated diatomaceous earth and absorb oxygen. Use as an agent. Further, if necessary, the oxygen absorbent may be coated with an adsorbent such as activated carbon or various insoluble powders such as magnesium hydroxide, calcium hydroxide, gypsum, aerosil, and talc.
[0021]
Example 1
[Production of calcined granular diatomaceous earth]
5 parts by weight of calcium hydroxide as a binder is added to 100 parts by weight of powdered diatomaceous earth (water content: 40% by weight, iron content: 0.42% by weight) obtained by pulverizing diatomaceous earth (derived from the marine diatom Aphidella spp. The mixture was added and further mixed with water to adjust the moisture to 50% by weight of the total amount of diatomaceous earth and binder. A moisture-conditioned mixture of powdered diatomaceous earth and binder is extruded from a wet extrusion granulator (screen opening 1.0 mmφ) to prepare a granulated product having an average particle size of 1.0 mm. Baked at ℃. Particles with a particle size of 0.5 mm or more were recovered as calcined granular diatomaceous earth, but the recovery rate was 98% before calcination as a diatomaceous earth component excluding moisture and binder, and the destruction and loss of the granulated material due to the calcining treatment was Very few. The granular diatomaceous earth fired at 250 ° C. had a water content of 1.2% by weight and an iron oxide content of 0.37% by weight. Here, the total amount of Fe 3 O 4 , FeTiO 3 and Fe 2 O 3 quantified by analyzing the calcined diatomaceous earth is shown as the iron oxide content. About the obtained granular diatomaceous earth, the relationship between a water retention amount and fluidity | liquidity was investigated with the following test method.
[0022]
[Water retention and fluidity test of granular diatomaceous earth]
First, water-containing granular diatomaceous earth was prepared by changing the amount of impregnated water. The prepared hydrous granular diatomaceous earth was placed on a horizontal table and placed in a glassless legless funnel (with the leg of the funnel cut out) closed at the lower outlet (exit diameter 8 mmφ). Subsequently, when the glassless legged funnel containing the hydrous granular diatomaceous earth was lifted and the funnel lower outlet was separated from the base, the fluidity was judged by whether the granular diatomaceous earth in the funnel smoothly flowed out and dropped from the lower outlet. . Tested with granular diatomaceous earth with increasing impregnated water one after another, with the maximum water content that could flow smoothly and keep fluidity without hydrated granular diatomaceous earth not flowing out or clogging in the middle of outflow The amount of water retained in diatomaceous earth (shown per 100 g of sample). The water retention amount of the granular diatomite fired at 250 ° C. was 75 g / 100 g, and the fluidity was also good. The larger the water retention amount by this fluidity test and the better the fluidity, the better the carrier as a water retention agent.
[0023]
[Manufacture of oxygen absorbent]
An aqueous solution of an oxygen absorbent prepared by dissolving 60 parts by weight of sodium ascorbate, 5 parts by weight of ferrous sulfate heptahydrate and 10 parts by weight of sodium carbonate with respect to 100 parts by weight of water was prepared and fired at 250 ° C. An oxygen absorbent was prepared by impregnating a granular diatomaceous earth with an oxygen absorbent aqueous solution at a ratio (weight ratio) of 1: 1, and further mixing and coating powdered activated carbon at a ratio of 1 wt%. 4 g of the obtained oxygen absorbent was enclosed in a paper bag laminated with a porous polyethylene film on the inside to obtain an oxygen absorbent package.
[0024]
[Oxygen absorption test and metal detection test]
The oxygen-absorbing package obtained above was sealed in a gas barrier film (polyvinylidene chloride-coated nylon / polyethylene) bag together with an air amount of 500 cc, and the oxygen concentration in the bag containing the oxygen-absorbing package was changed over time. It was measured. When the oxygen absorbing package was passed through a metal detector (Anritsu Electric Co., Ltd., model K470A) whose sensitivity was set so that it could be detected when a 0.5φ iron ball passed, the metal detector was not sensitive. The results are shown in Table 1.
[0025]
Comparative Example 1
The unfired granulated diatomaceous earth prepared in Example 1 was fired at 800 ° C. The recovery rate of the calcined granular diatomaceous earth having a particle size of 0.5 mm or more was 99% before calcination as a diatomaceous earth component, and the destruction and loss of the granulated product due to the calcining treatment were extremely small. The water content of granular diatomaceous earth fired at 800 ° C is 0.8% by weight. The fired granular diatomaceous earth was immersed in 50% sulfuric acid for 5 days, washed with water to remove the acid, and then dried. The loss of diatomaceous earth in the process including pickling, washing with water, and drying was large, and the recovery rate by pickling treatment was 67%. The pickled granular diatomaceous earth had a water content of 0.9%, an iron oxide content of 0.48%, and a water retention amount of 74 g / 100 g.
[0026]
An oxygen absorbent was prepared in the same manner as in Example 1 by using pickled granular diatomaceous earth (800 ° C. calcination), and sealed in a paper bag to obtain an oxygen absorbent package. Using the obtained oxygen-absorbing package, an oxygen absorption test was conducted in the same manner, and a metal detection test was conducted through a metal detector. In the metal detection test, the metal detector was not sensitive. The results are shown in Table 1.
[0027]
Comparative Example 2
The unfired granulated diatomaceous earth prepared in Example 1 was fired at 500 ° C. The recovery rate of the calcined granular diatomaceous earth having a particle size of 0.5 mm or more was 99% before calcination as a diatomaceous earth component. The granular diatomaceous earth calcined at 500 ° C. had a water content of 1.1% by weight, an iron oxide content of 0.63%, and a water retention amount of 72 g / 100 g.
[0028]
Using granular diatomaceous earth calcined at 500 ° C., an oxygen absorbent was prepared in the same manner as in Example 1, and the oxygen absorbent was sealed in a paper bag to obtain an oxygen absorbent package. Using the obtained oxygen-absorbing package, an oxygen absorption test was conducted in the same manner, and a metal detection test was conducted through a metal detector. In this case, the metal detector was sensitive to the oxygen absorbing package. The results are shown in Table 1.
[0029]
[Table 1]
Figure 0003655426
[0030]
As is apparent from the above results, granulated diatomaceous earth can be produced in high yield in Example 1, and the oxygen absorbent produced using this granulated diatomaceous earth is not detected by the metal detector, and oxygen Absorption performance was also excellent. In Comparative Example 1, the oxygen absorbent produced using the granulated diatomaceous earth was not detected by the metal detector, but the loss of diatomaceous earth due to the acid cleaning treatment was large, and the granulated diatomaceous earth could not be obtained efficiently. Moreover, since the granulated diatomaceous earth manufactured by the comparative example 2 had high calcination temperature, it was not able to be set as the oxygen absorber which is not detected by a metal detector.
[0031]
Comparative Example 3
The unfired granulated diatomaceous earth prepared in Example 1 was fired at 1200 ° C. The recovery rate of the calcined granular diatomaceous earth having a particle size of 0.5 mm or more was 99% before calcination as a diatomaceous earth component. The granular diatomaceous earth fired at 1200 ° C. had a water content of 0.7% by weight, an iron oxide content of 0.59%, and a water retention amount of 56 g / 100 g.
[0032]
Using granular diatomaceous earth calcined at 1200 ° C., an attempt was made to impregnate an aqueous solution of an oxygen absorbent in the same manner as in Example 1. However, since the water retention capacity of the calcined granular diatomaceous earth is low, a predetermined amount of liquid may be impregnated. The desired oxygen absorbent could not be obtained.
[0033]
Comparative Example 4
Powdered diatomaceous earth obtained by pulverizing the same diatomaceous earth ore (derived from the marine diatom Aphisium genus Koshino Discus) as in Example 1 was baked at 250 ° C. (water content after baking: 1.3%). While mixing the powdered diatomaceous earth calcined at 250 ° C. and the oxygen absorbent aqueous solution prepared in Example 1 at a ratio (weight ratio) of 1: 1, granulation was attempted to form the mixture into granules by natural granulation. However, because the water retention capacity of the powdered diatomaceous earth was low, the mixture became mud and could not be granulated.
[0034]
Comparative Example 5
Granular diatomaceous earth having an average particle size of 1.0 mm obtained by classifying the same crushed product of diatomite ore (derived from the marine diatom genus Kosinodiscus) as in Example 1 was fired at 250 ° C. The recovery rate of the calcined granular diatomaceous earth having a particle diameter of 0.5 mm or more was 48% before calcination as a diatomaceous earth component, and the destruction loss due to the calcination treatment was large. The granular diatomaceous earth fired at 250 ° C. had a water content of 1.2% by weight, an iron oxide content of 0.35%, and a water retention amount of 58 g / 100 g. Using the crushed 250 ° C. calcined granular diatomaceous earth, an attempt was made to impregnate an aqueous solution of an oxygen absorbent in the same manner as in Example 1. However, since the water retention capacity of the calcined granular diatomaceous earth is low, a predetermined amount of liquid is impregnated. The desired oxygen absorbent could not be obtained.
[0035]
【The invention's effect】
According to the present invention, by using diatomaceous earth calcined so that the iron content in diatomaceous earth is suppressed to 0.5% by weight or less as iron oxide, preferably reduced organic matter is produced by using diatomaceous earth calcined at a temperature of 150 to 300 ° C. Oxygen absorbent containing diatomaceous earth as a main agent can be made into an oxygen absorbent that is not sensitive to metal detectors, and it is not necessary to use diatomaceous earth that has been subjected to a special iron removal treatment such as acid cleaning to remove iron in diatomaceous earth. Furthermore, by using granulated diatomaceous earth for the diatomaceous earth, the oxygen absorbent can be filled and packaged with good fluidity, and a compact and well-packed oxygen absorbent package can be manufactured.

Claims (6)

還元性有機物を主剤とし、酸化鉄分としてFe3 4 、FeTiO3 及びFe2 3 の合計含有量が0.5重量%以下であるように焼成した珪藻土を含むことを特徴とする酸素吸収剤。An oxygen absorbent comprising a reduced organic substance as a main agent and diatomaceous earth calcined so that the total content of Fe 3 O 4 , FeTiO 3 and Fe 2 O 3 is 0.5% by weight or less as an iron oxide component . 150〜300℃の温度で焼成した珪藻土である請求項1記載の酸素吸収剤。The oxygen absorbent according to claim 1, which is diatomaceous earth calcined at a temperature of 150 to 300 ° C. 珪藻土が粒状珪藻土である請求項1記載の酸素吸収剤。The oxygen absorbent according to claim 1, wherein the diatomaceous earth is granular diatomaceous earth. 珪藻土が造粒珪藻土である請求項1記載の酸素吸収剤。The oxygen absorbent according to claim 1, wherein the diatomaceous earth is granulated diatomaceous earth. 還元性有機物がアスコルビン酸類又は多価アルコール類である請求項1記載の酸素吸収剤。The oxygen absorbent according to claim 1, wherein the reducing organic substance is ascorbic acid or a polyhydric alcohol. 請求項1記載の酸素吸収剤を通気性包材に包装してなる酸素吸収剤包装体。An oxygen absorbent package comprising the oxygen absorbent according to claim 1 packaged in a breathable packaging material.
JP10331797A 1997-04-21 1997-04-21 Oxygen absorber Expired - Fee Related JP3655426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10331797A JP3655426B2 (en) 1997-04-21 1997-04-21 Oxygen absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10331797A JP3655426B2 (en) 1997-04-21 1997-04-21 Oxygen absorber

Publications (2)

Publication Number Publication Date
JPH10290930A JPH10290930A (en) 1998-11-04
JP3655426B2 true JP3655426B2 (en) 2005-06-02

Family

ID=14350832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10331797A Expired - Fee Related JP3655426B2 (en) 1997-04-21 1997-04-21 Oxygen absorber

Country Status (1)

Country Link
JP (1) JP3655426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6679853B2 (en) * 2015-08-03 2020-04-15 三菱瓦斯化学株式会社 Oxygen absorber package and method for confirming its presence

Also Published As

Publication number Publication date
JPH10290930A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
JP4305664B2 (en) Oxygen scavenger composition
AU739262B2 (en) Oxygen scavenging compositions
KR960004610B1 (en) Method for cleaning gas containing toxic component
US5725795A (en) Oxygen absorber and method for producing same
US5462693A (en) Air purifying agent and a process for producing same
JP5936196B2 (en) Cesium-containing layered double hydroxide composite, solidified solid, method for treating cesium-containing wastewater, layered double hydroxide composite, and method for producing layered double hydroxide composite
JP3655426B2 (en) Oxygen absorber
JP3204273B2 (en) Oxygen absorber
JP4453797B2 (en) Oxygen absorber composition
JP3252866B2 (en) Oxygen absorber
JP6525927B2 (en) Urine treatment material for pets
JP7046399B2 (en) Organic oxygen scavenger
WO2008008715A1 (en) Oxygen scavenger compositions
JPH0938486A (en) Disoxidant and its packed body
JPH0721083B2 (en) Oxygen-absorbing resin composition containing hydrophilic filler
JPS626846B2 (en)
JPS626848B2 (en)
JP2822440B2 (en) Oxygen scavenger
JPH04290547A (en) Water-absorbing deodorant
JP3955155B2 (en) Oxygen scavenger
JP3522420B2 (en) Oxygen absorbing material
JP3131480B2 (en) Air purifier and method for producing the same
JP7341047B2 (en) Antimony adsorbent and antimony-containing liquid treatment equipment and treatment method
JP2001037457A (en) Deoxidizer
JP2000176441A (en) Method of removing arsenic compound and adsorbing agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees