JP3654536B2 - coaxial cable - Google Patents

coaxial cable Download PDF

Info

Publication number
JP3654536B2
JP3654536B2 JP06125994A JP6125994A JP3654536B2 JP 3654536 B2 JP3654536 B2 JP 3654536B2 JP 06125994 A JP06125994 A JP 06125994A JP 6125994 A JP6125994 A JP 6125994A JP 3654536 B2 JP3654536 B2 JP 3654536B2
Authority
JP
Japan
Prior art keywords
coaxial cable
insulator layer
parts
weight
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06125994A
Other languages
Japanese (ja)
Other versions
JPH07272552A (en
Inventor
好美 佐藤
二三夫 会田
Original Assignee
昭和電線電纜株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電線電纜株式会社 filed Critical 昭和電線電纜株式会社
Priority to JP06125994A priority Critical patent/JP3654536B2/en
Publication of JPH07272552A publication Critical patent/JPH07272552A/en
Application granted granted Critical
Publication of JP3654536B2 publication Critical patent/JP3654536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Landscapes

  • Organic Insulating Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、高速増殖炉などで使用される耐熱性、耐放射線性に優れた同軸ケーブルに関する。
【0002】
【従来の技術】
近年、高速増殖炉などの原子力関連施設で使用する同軸ケーブルとして、電気特性に優れ、かつ高い耐熱性と耐放射線性を具備し、さらに繰り返し曲げに耐えうる優れた可とう性を備え、外径の細径化を図ることができる同軸ケーブルの要求がある。
【0003】
従来、この種のケーブルとしては、絶縁材料やシース材料にポリエーテルエーテルケトン(PEEK)や、フッ素系樹脂、たとえばポリテトラフルオロエチレン(PTFE)やエチレン−テトラフルオロエチレン共重合体(ETFE)などを使用したものなどが知られている。
【0004】
しかしながら、PEEKは耐熱性(耐熱温度 220℃)および耐放射線性に優れるものの、高温領域( 180〜220 ℃)で誘電特性や絶縁特性が大きく低下するという難点があった。また、可とう性が不十分で、さらに、加工性に乏しく安定した押出しができないという難点もあった。
【0005】
また、PTFEは、耐熱性(耐熱温度 180〜220 ℃)および耐放射線性が良好で、かつ高温領域での電気特性にも優れているが、可とう性に乏しいという難点があった。
【0006】
これに対し、ETFEは、電気特性が良好で、また耐放射線性が高く、さらに可とう性にも優れている。しかしながら、耐熱性(耐熱温度 150〜180 ℃)がPEEKなどに比べやや劣るという難点があった。
【0007】
【発明が解決しようとする課題】
このように近年、高速増殖炉などの原子力関連施設で用いる同軸ケーブルとして、電気特性に優れ、かつ高い耐熱性と耐放射線性を具備し、さらに可とう性も良好で、外径の細径化を図ることができる同軸ケーブルの要求がある。
しかしながら、従来より知られる絶縁・シース材料は、耐熱性および耐放射線性は良好なものの、高温での電気特性や可とう性が不十分であったり、あるいは耐熱性、耐放射線性および電気特性は良好なものの、可とう性が不十分であるなど、未だ上記要求に十分に応えうる同軸ケーブルは得られていないのが実状である。
【0008】
本発明はこのような従来の事情に対処してなされたもので、良好な電気特性を有し、かつ耐熱性および耐放射線性に優れ、さらに可とう性も良好で、外径の細径化を図ることができる同軸ケーブルを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、内部導体上に、絶縁体層、外部導体、およびシースを順に設けてなる同軸ケーブルにおいて、前記絶縁体層および前記シースがともに、エチレン−テトラフルオロエチレン共重合体とアモルファスポリオレフィンとをポリマー成分として含有する絶縁性混和物の発泡体により構成され、前記絶縁性混和物中のアモルファスポリオレフィンの配合量が、エチレン−テトラフルオロエチレン共重合体100重量部あたり5〜10重量部であり、かつ前記発泡体の発泡率が40〜65%であることを特徴としている。
【0011】
本発明において使用される絶縁性混和物のポリマー成分であるエチレン−テトラフルオロエチレン共重合体としては、下記[I]式で示されるような構造単位を有する分子量がそ百万〜数百万程度のものが適しており、市販品を例示すると、三井・デュポンフロロケミカル社製のテフゼル(商品名)などがあげられる。
【0012】
【化1】

Figure 0003654536
また、アモルファスポリオレフィンは、下記[II]式で示されるような構造単位を有する分子量が 2〜3 万程度の非晶質の熱可塑性ポリマーで、下記[II]式中、R1 〜R4 が水素原子または炭素数 1〜7 のアルキル基であり、R1 〜R4 の合計炭素数が10以下のものが好適に使用される。このアモルファスポリオレフィンは、エチレン−テトラフルオロエチレン共重合体の耐熱性を向上させる効果を有し、その配合量としては、エチレン−テトラフルオロエチレン共重合体 100重量部に対し 5〜10重量部が適当である。アモルファスポリオレフィンの配合量が10重量部を越えると屈曲性が低下する。
【0013】
【化2】
Figure 0003654536
さらに、発泡剤としては、窒素、ヘリウム、ネオン、アルゴンなどの不活性ガス、プロパン、ブタン、ヘキサン、ペンタンなどの炭化水素、ジクロロジフルオロメタン、モノクロロジフルオロメタン、トリクロロトリフルオロエタンなどのハロゲン化フッ化炭化水素などが使用される。
【0014】
以上の成分のほか、本発明で使用される絶縁性混和物には、必要に応じて、トリアリルシアヌレート(TAC)やトリメチロールプロパントリアクリレート(TMPT)のような架橋助剤、酸化防止剤などを適宜配合することができる。酸化防止剤としては、チオエーテル系およびフェノール系の併用が好ましい。また、酸化ケイ素、酸化チタン、酸化アルミナ、酸化ジルコニウムなどの発泡核剤を配合してもよい。これらの各成分の配合量としては、エチレン−テトラフルオロエチレン共重合体とアモルファスポリオレフィンの合計量 100重量部あたり、TACなどの架橋助剤は0.05〜5 重量部、酸化防止剤は0.05〜5 重量部、発泡核剤は10〜35重量部が適当である。
【0015】
本発明の同軸ケーブルはたとえば次のように製造される。
【0016】
まず、上記各成分を二軸混練機などの混練機を用いて均一に混合して絶縁性混和物を得た後、これを押出機に投入し、軟銅線あるいはAgメッキ軟銅線などからなる内部導体上に押出被覆するとともに発泡させ、好ましくは、さらに、紫外線照射により架橋させて絶縁体層を形成する。ここで、紫外線照射量としては 5〜15Mradが適当である。次いで、この上に、たとえば軟銅線あるいはAgメッキ軟銅線の編組からなる外部導体を設け、さらに、その上に、シースとして、PEEKなどを押出被覆するか、あるいは絶縁体層の形成に用いた絶縁性混和物を同様にして被覆すればよい。なお、絶縁性混和物の押出温度としては、 220〜290 ℃程度が適当で、かつ、押出機のノズル部分の温度を他より30℃程度高くすることが望ましい。図1は、このように形成された本発明の同軸ケーブルの構成を示す断面図で、1が内部導体、2がエチレン−テトラフルオロエチレン共重合体とアモルファスポリオレフィンとをポリマー成分として含有する絶縁性混和物の発泡体からなる絶縁体層、3が外部導体、4がPEEKあるいは絶縁体層と同様のエチレン−テトラフルオロエチレン共重合体とアモルファスポリオレフィンとをポリマー成分として含有する絶縁性混和物の発泡体などからなるシースを示している。
【0017】
なお、本発明において、エチレン−テトラフルオロエチレン共重合体とアモルファスポリオレフィンとをポリマー成分として含有する絶縁性混和物からなる発泡体の発泡率としては40〜65%の範囲が望ましい。発泡倍率が前記範囲外では良好な電気特性を得るのが難しい。また、その厚さは、絶縁体層、シースのいずれの場合にも2〜5mmの範囲が適当である。厚さが前記範囲外では、良好な可とう性を得るのが難しい。
【0018】
【作用】
本発明の同軸ケーブルでは、エチレン−テトラフルオロエチレン共重合体にアモルファスポリオレフィンを配合したことにより耐熱性を向上させることができ、また、これらを発泡させたことによって静電容量などの電気特性を向上させることができるため、絶縁体層やシースは、電気特性に優れ、また、耐熱性および耐放射線性が良好で、さらに可とう性に優れたものとなる。したがって、同軸ケーブルは、これらの特性を具備したものとなり、ケーブル外径の細径化が可能となる。
【0019】
【実施例】
次に、本発明の実施例を記載する。
実施例1
0.2mmφのAgメッキ軟銅線からなる内部導体上に、エチレン−テトラフルオロエチレン共重合体(ETFE)としてテフゼル 280(三井・デュポンフロロケミカル社製 商品名)100 重量部、アモルファスポリオレフィン(APO)としてZEONEX 280(日本ゼオン社製 商品名)5 重量部、トリアリルシアヌレート(TAC)5 重量部、酸化防止剤としてマーク A080 およびマーク A04128 (以上、アデカ・アーガス社製 商品名)各0.3 重量部を混合して得た絶縁性コンパウンドを押出被覆するととともに、発泡させて、厚さ 2mm、発泡率40%の絶縁体層を形成した。次いで、この上にAgメッキ軟銅線編組からなる外部導体を設け、さらに、その上に、上記絶縁性コンパウンドを再度、絶縁体層を形成した場合と同様にして押出被覆し、発泡させて厚さ 2mm、発泡率40%のシースを形成した。なお、発泡は窒素ガスを押出機に注入添加することにより行った。
【0020】
実施例2
絶縁体層およびシースの発泡率を60%とした以外は、実施例1と同様にして同軸ケーブルを製造した。
【0021】
実施例3、4
絶縁体層およびシースを形成する際に、絶縁性コンパウンドを押出被覆し、発泡させた後、電子線を照射(10Mrad)して架橋させた以外は、実施例1または2の場合と同様にして同軸ケーブルを製造した。
【0024】
各実施例について、絶縁体層を形成したところで行った特性評価試験結果を、絶縁性コンパウンドの組成や発泡条件などと併せ、表1に示す。なお、特性評価のうち、発泡状態は、輪切りにした試料の顕微鏡による観察結果から、気泡が微細かつ均一であった場合を良、気泡が大きくばらつきがあった場合を不良と評価した。また、耐屈曲性は、自己径巻付けによるクラックの発生の有無、および自己径巻付け後、180 ℃で10時間、次いで -10℃で10時間のヒートサイクルを 5回繰り返した後のクラックの発生の有無を調べて評価した。さらに、加熱変形率は、180 ℃、荷重 1kgの条件での測定値、誘電率εは、23℃、50Hz、 1kVの条件での測定値である。
【0025】
なお、比較のために、絶縁性コンパウンドとして、ETFEを単独使用し、かつ未発泡とした例(比較例1)、低密度ポリエチレン(LDPE)を単独使用し、かつ電子線照射により架橋させた例(比較例2)、ETFEとLDPEを併用し、かつ電子線照射により架橋させた例(比較例3)、ETFEにアモルファスポリオレフィン(APO)5重量部を配合し、かつ発泡率が70%の例(比較例4)、ETFEにAPO20重量部を配合し、かつ電子線照射により架橋した例(比較例5)について、実施例と同様に評価した特性試験の結果を表1に示す。
【0026】
【表1】
Figure 0003654536
【0027】
【発明の効果】
以上の実施例からも明らかなように、本発明によれば、エチレン−テトラフルオロエチレン共重合体100重量部あたり、アモルファスポリオレフィン5〜10重量部をポリマー成分として含有する絶縁性混和物について、その発泡率を40〜65%とした発泡体により絶縁体層およびシースを構成するようにしたので、良好な電気特性を有し、かつ耐熱性、耐放射線性に優れ、さらに可とう性も良好で、外径を細径化しうる同軸ケーブルを得ることができる。
【図面の簡単な説明】
【図1】本考案の一実施例の同軸ケーブルの構成を示す断面図。
【符号の説明】
1………内部導体
2………エチレン−テトラフルオロエチレン共重合体とアモルファスポリオレフィンの発泡体からなる絶縁体層
3………外部導体
4………シース[0001]
[Industrial application fields]
The present invention relates to a coaxial cable excellent in heat resistance and radiation resistance used in a fast breeder reactor or the like.
[0002]
[Prior art]
In recent years, coaxial cables used in nuclear facilities such as fast breeder reactors have excellent electrical characteristics, high heat resistance and radiation resistance, and excellent flexibility that can withstand repeated bending. There is a demand for a coaxial cable capable of reducing the diameter.
[0003]
Conventionally, as this type of cable, polyether ether ketone (PEEK) or fluororesin such as polytetrafluoroethylene (PTFE) or ethylene-tetrafluoroethylene copolymer (ETFE) is used as an insulating material or a sheath material. The ones used are known.
[0004]
However, although PEEK is excellent in heat resistance (heat resistance temperature 220 ° C.) and radiation resistance, there is a problem that dielectric properties and insulation properties are greatly deteriorated in a high temperature region (180 to 220 ° C.). In addition, there is a problem that the flexibility is insufficient and the processability is poor and stable extrusion cannot be performed.
[0005]
In addition, PTFE has good heat resistance (heat resistant temperature 180 to 220 ° C.) and radiation resistance, and is excellent in electrical characteristics in a high temperature region, but has a drawback of poor flexibility.
[0006]
In contrast, ETFE has good electrical characteristics, high radiation resistance, and excellent flexibility. However, the heat resistance (heat-resistant temperature 150-180 degreeC) had the difficulty that it was a little inferior compared with PEEK etc.
[0007]
[Problems to be solved by the invention]
Thus, in recent years, as a coaxial cable used in nuclear facilities such as fast breeder reactors, it has excellent electrical characteristics, high heat resistance and radiation resistance, and also has good flexibility and a reduced outer diameter. There is a demand for a coaxial cable that can achieve this.
However, although conventionally known insulation / sheath materials have good heat resistance and radiation resistance, the electrical properties and flexibility at high temperatures are insufficient, or the heat resistance, radiation resistance and electrical properties are Although it is good, the coaxial cable that can sufficiently meet the above requirements has not been obtained yet, such as insufficient flexibility.
[0008]
The present invention has been made in response to such a conventional situation, has good electrical characteristics, is excellent in heat resistance and radiation resistance, has good flexibility, and has a reduced outer diameter. An object of the present invention is to provide a coaxial cable capable of achieving the above.
[0009]
[Means for Solving the Problems]
The present invention relates to a coaxial cable in which an insulator layer, an outer conductor, and a sheath are provided in this order on an inner conductor, and both the insulator layer and the sheath include an ethylene-tetrafluoroethylene copolymer and an amorphous polyolefin. It is constituted by a foam of an insulating admixture contained as a polymer component, and the amount of amorphous polyolefin in the insulating admixture is 5 to 10 parts by weight per 100 parts by weight of the ethylene-tetrafluoroethylene copolymer, And the foaming rate of the said foam is 40 to 65%, It is characterized by the above-mentioned.
[0011]
The ethylene-tetrafluoroethylene copolymer that is a polymer component of the insulating admixture used in the present invention has a molecular weight of about 1 to several millions having a structural unit represented by the following formula [I]: Examples of commercially available products include Tefzel (trade name) manufactured by Mitsui DuPont Fluorochemicals.
[0012]
[Chemical 1]
Figure 0003654536
Amorphous polyolefin is an amorphous thermoplastic polymer having a structural unit represented by the following formula [II] and having a molecular weight of about 20,000 to 30,000. In the following formula [II], R 1 to R 4 are A hydrogen atom or an alkyl group having 1 to 7 carbon atoms and having a total carbon number of R 1 to R 4 of 10 or less is preferably used. This amorphous polyolefin has the effect of improving the heat resistance of the ethylene-tetrafluoroethylene copolymer, and the blending amount is suitably 5 to 10 parts by weight per 100 parts by weight of the ethylene-tetrafluoroethylene copolymer. It is. If the amount of the amorphous polyolefin exceeds 10 parts by weight, the flexibility decreases.
[0013]
[Chemical formula 2]
Figure 0003654536
In addition, as blowing agents, inert gases such as nitrogen, helium, neon and argon, hydrocarbons such as propane, butane, hexane and pentane, halogenated fluorination such as dichlorodifluoromethane, monochlorodifluoromethane and trichlorotrifluoroethane Hydrocarbons are used.
[0014]
In addition to the above components, the insulating admixture used in the present invention includes a crosslinking aid such as triallyl cyanurate (TAC) and trimethylolpropane triacrylate (TMPT), and an antioxidant, if necessary. Etc. can be appropriately blended. As antioxidant, combined use of thioether type and phenol type is preferable. Moreover, you may mix | blend foaming nucleating agents, such as a silicon oxide, a titanium oxide, an alumina oxide, and a zirconium oxide. As the blending amount of each of these components, the total amount of the ethylene-tetrafluoroethylene copolymer and the amorphous polyolefin is 0.05 to 5 parts by weight for the crosslinking aid such as TAC and 0.05 to 5 parts by weight for the antioxidant per 100 parts by weight. 10 to 35 parts by weight of the part and the foam nucleating agent are appropriate.
[0015]
The coaxial cable of the present invention is manufactured as follows, for example.
[0016]
First, the above components are uniformly mixed using a kneader such as a biaxial kneader to obtain an insulating admixture, which is then put into an extruder, and is composed of an annealed copper wire or an Ag-plated annealed copper wire. The insulator layer is formed by extrusion coating on the conductor and foaming, and preferably by further crosslinking by ultraviolet irradiation. Here, 5 to 15 Mrad is appropriate as the ultraviolet irradiation amount. Next, an external conductor made of, for example, a braid of an annealed copper wire or an Ag-plated annealed copper wire is provided thereon, and further, PEEK or the like is extrusion coated thereon as a sheath, or insulation used for forming an insulator layer The sexual admixture may be coated in the same manner. The extrusion temperature of the insulating admixture is suitably about 220 to 290 ° C, and the temperature of the nozzle portion of the extruder is desirably about 30 ° C higher than the others. FIG. 1 is a cross-sectional view showing the structure of the coaxial cable of the present invention formed as described above, wherein 1 is an inner conductor, 2 is an insulating material containing ethylene-tetrafluoroethylene copolymer and amorphous polyolefin as polymer components. Foam of an insulating mixture comprising an insulator layer made of a foam of an admixture, 3 an outer conductor, 4 PEEK or an ethylene-tetrafluoroethylene copolymer similar to the insulator layer and amorphous polyolefin as polymer components The sheath which consists of a body etc. is shown.
[0017]
In the present invention, the foaming ratio of the foamed material comprising an insulating admixture containing ethylene-tetrafluoroethylene copolymer and amorphous polyolefin as polymer components is preferably in the range of 40 to 65%. When the expansion ratio is outside the above range, it is difficult to obtain good electrical characteristics. In addition, the thickness is suitably in the range of 2 to 5 mm for both the insulator layer and the sheath. When the thickness is outside the above range, it is difficult to obtain good flexibility.
[0018]
[Action]
In the coaxial cable of the present invention, heat resistance can be improved by blending amorphous polyolefin with ethylene-tetrafluoroethylene copolymer, and electrical characteristics such as capacitance can be improved by foaming these. Therefore, the insulator layer and the sheath have excellent electrical characteristics, good heat resistance and radiation resistance, and excellent flexibility. Accordingly, the coaxial cable has these characteristics, and the outer diameter of the cable can be reduced.
[0019]
【Example】
Next, examples of the present invention will be described.
Example 1
On the inner conductor made of 0.2mmφ Ag-plated annealed copper wire, 100 parts by weight of Tefzel 280 (trade name, made by Mitsui-DuPont Fluorochemical Co., Ltd.) as ethylene-tetrafluoroethylene copolymer (ETFE), ZEONEX as amorphous polyolefin (APO) 280 (trade name, manufactured by ZEON CORPORATION) 5 parts by weight, 5 parts by weight of triallyl cyanurate (TAC), and 0.3 parts by weight of antioxidants Mark A080 and Mark A04128 (above, product name by Adeka Argus) The insulating compound obtained in this way was extrusion coated and foamed to form an insulator layer having a thickness of 2 mm and a foaming rate of 40%. Next, an outer conductor made of an Ag-plated annealed copper wire braid is provided on this, and further, the insulating compound is extruded and coated again in the same manner as in the case of forming the insulator layer, and then foamed to obtain a thickness. A sheath of 2 mm and a foaming rate of 40% was formed. Foaming was performed by injecting and adding nitrogen gas to the extruder.
[0020]
Example 2
A coaxial cable was manufactured in the same manner as in Example 1 except that the foam ratio of the insulator layer and the sheath was 60%.
[0021]
Examples 3 and 4
When forming the insulator layer and the sheath, the insulating compound was extrusion-coated, foamed, then irradiated with an electron beam (10 Mrad) and cross-linked in the same manner as in Example 1 or 2. A coaxial cable was manufactured.
[0024]
Table 1 shows the results of the characteristic evaluation tests conducted for each example when the insulator layer was formed, together with the composition of the insulating compound and the foaming conditions. In addition, among the characteristic evaluations, the foamed state was evaluated as good when the bubbles were fine and uniform from the observation result of the sample cut into rounds, and was poor when the bubbles were largely dispersed. In addition, the bending resistance is the presence or absence of cracks due to self-diameter winding, and after self-diameter winding, after cracking after 5 times of heat cycle of 180 ° C for 10 hours and then -10 ° C for 10 hours. The presence or absence of occurrence was examined and evaluated. Furthermore, the heating deformation rate is a measured value under the conditions of 180 ° C. and a load of 1 kg, and the dielectric constant ε is a measured value under the conditions of 23 ° C., 50 Hz, and 1 kV.
[0025]
For comparison, an example in which ETFE is used alone and non-foamed as an insulating compound (Comparative Example 1), a low density polyethylene (LDPE) is used alone, and crosslinked by electron beam irradiation. (Comparative Example 2), Example in which ETFE and LDPE are used together and crosslinked by electron beam irradiation (Comparative Example 3), Example in which 5 parts by weight of amorphous polyolefin (APO) is blended with ETFE, and the foaming ratio is 70% (Comparative Example 4) Table 1 shows the results of characteristic tests evaluated in the same manner as in Examples for Comparative Example 5 in which 20 parts by weight of APO is blended with ETFE and crosslinked by electron beam irradiation.
[0026]
[Table 1]
Figure 0003654536
[0027]
【The invention's effect】
As is clear from the above examples, according to the present invention, an insulating mixture containing 5 to 10 parts by weight of amorphous polyolefin as a polymer component per 100 parts by weight of ethylene-tetrafluoroethylene copolymer Since the insulator layer and the sheath are made of a foam having a foaming rate of 40 to 65%, it has good electrical characteristics, excellent heat resistance and radiation resistance, and also has good flexibility. A coaxial cable capable of reducing the outer diameter can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a coaxial cable according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ......... Internal conductor 2 ......... Insulator layer 3 which consists of a foam of ethylene-tetrafluoroethylene copolymer and amorphous polyolefin ......... Outer conductor 4 ......... Sheath

Claims (2)

内部導体上に、絶縁体層、外部導体、およびシースを順に設けてなる同軸ケーブルにおいて、前記絶縁体層および前記シースがともに、エチレン−テトラフルオロエチレン共重合体とアモルファスポリオレフィンとをポリマー成分として含有する絶縁性混和物の発泡体により構成され、前記絶縁性混和物中のアモルファスポリオレフィンの配合量が、エチレン−テトラフルオロエチレン共重合体100重量部あたり5〜10重量部であり、かつ前記発泡体の発泡率が40〜65%であることを特徴とする同軸ケーブル。  In a coaxial cable in which an insulator layer, an outer conductor, and a sheath are sequentially provided on an inner conductor, the insulator layer and the sheath both contain an ethylene-tetrafluoroethylene copolymer and amorphous polyolefin as polymer components. And the amount of the amorphous polyolefin in the insulating mixture is 5 to 10 parts by weight per 100 parts by weight of the ethylene-tetrafluoroethylene copolymer, and the foam The coaxial cable is characterized by having a foaming ratio of 40 to 65%. 請求項1に記載の同軸ケーブルにおいて、絶縁体層は、電子線照射により架橋されていることを特徴とする同軸ケーブル。  2. The coaxial cable according to claim 1, wherein the insulator layer is crosslinked by electron beam irradiation.
JP06125994A 1994-03-30 1994-03-30 coaxial cable Expired - Fee Related JP3654536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06125994A JP3654536B2 (en) 1994-03-30 1994-03-30 coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06125994A JP3654536B2 (en) 1994-03-30 1994-03-30 coaxial cable

Publications (2)

Publication Number Publication Date
JPH07272552A JPH07272552A (en) 1995-10-20
JP3654536B2 true JP3654536B2 (en) 2005-06-02

Family

ID=13166066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06125994A Expired - Fee Related JP3654536B2 (en) 1994-03-30 1994-03-30 coaxial cable

Country Status (1)

Country Link
JP (1) JP3654536B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2015317A1 (en) 2007-07-11 2009-01-14 Alcatel Lucent A coaxial cable

Also Published As

Publication number Publication date
JPH07272552A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
US5358786A (en) Electric insulated wire and cable using the same
US3269862A (en) Crosslinked polyvinylidene fluoride over a crosslinked polyolefin
US5614319A (en) Insulating composition, insulated plenum cable and methods for making same
TWI361816B (en) Cross-linkable polyolefin composition having the tree resistance
US4554173A (en) Method for manufacturing flame-retardant insulated wire and cable for nuclear power stations
JPH10168248A (en) Flame-retardant resin composition and insulated wire, shielded wire and covering tube using the same
JP3654536B2 (en) coaxial cable
JP2593715B2 (en) Coaxial cable and method of manufacturing the same
GB2127210A (en) Insulated electrical article
EP0713732A1 (en) Varnish-coated electric wire and method of producing the same
JPH04106B2 (en)
WO1983000488A1 (en) Flame retardant compositions, method of preparation and wire and cable products thereof
JP2001325834A (en) Dc power cable
JP2018129195A (en) Flat wires and flat cables
JP2009245927A (en) Composition for manufacturing high thermal-resistance insulated material and high thermal resistance insulated wire manufactured using this
JPH06223637A (en) Heat and radiation resistant wire and cable
JP2001266650A (en) Electric insulating composition and electric cable
ES2799530T3 (en) Halogen-free communication cable
JPH0765633A (en) Dc cable
JPH06283055A (en) Heat-resisting and radiation-resisting wire and cable
JP3285097B2 (en) Insulated wire
JPH0696623A (en) Heat resistant and radiation resistant electric wire/ cable
JPH07169340A (en) Coaxial cable
JP3720074B2 (en) Heat and radiation resistant cable and method for manufacturing the same
JPH11345519A (en) D.c. power cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees