JP3653949B2 - Forklift control device - Google Patents

Forklift control device Download PDF

Info

Publication number
JP3653949B2
JP3653949B2 JP26181497A JP26181497A JP3653949B2 JP 3653949 B2 JP3653949 B2 JP 3653949B2 JP 26181497 A JP26181497 A JP 26181497A JP 26181497 A JP26181497 A JP 26181497A JP 3653949 B2 JP3653949 B2 JP 3653949B2
Authority
JP
Japan
Prior art keywords
field
current
field winding
motor
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26181497A
Other languages
Japanese (ja)
Other versions
JPH1198618A (en
Inventor
利成 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP26181497A priority Critical patent/JP3653949B2/en
Publication of JPH1198618A publication Critical patent/JPH1198618A/en
Application granted granted Critical
Publication of JP3653949B2 publication Critical patent/JP3653949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、フォークリフトの制御装置に係り、特に走行用分巻電動機の界磁電流の方向を短時間で切り替えることができる制御装置に関する。
【0002】
【従来の技術】
図5に走行用と荷役用の直流分巻電動機を有する従来のフォークリフトの制御装置を示す。バッテリ1の正極にスイッチ2の一端が接続され、このスイッチ2の他端とバッテリ1の負極との間に走行用直流分巻電動機の電機子3、電機子電流検出器4及び電機子チョッパ素子5が直列に接続されている。互いに直列に接続された電機子3と電機子電流検出器4とに並列にフライホイールダイオード6が接続されると共に、スイッチ2の他端とバッテリ1の負極との間にスナバコンデンサ7が接続されている。このスナバコンデンサ7の両端間には、第1及び第2の界磁チョッパ素子8及び9の直列回路と、第3及び第4の界磁チョッパ素子10及び11の直列回路とが互いに並列に接続されて形成された走行用界磁電流制御回路部12が接続されている。この界磁電流制御回路部12内において、第1及び第2の界磁チョッパ素子8及び9の接続点Aと第3及び第4の界磁チョッパ素子10及び11の接続点Bとの間に走行用電動機の界磁巻線13及び走行用界磁電流検出器14が直列に接続されている。
【0003】
さらに、スナバコンデンサ7の両端間に図示しない荷役用油圧ポンプを駆動するための荷役用直流分巻電動機の電機子15、電機子電流検出器16及び電機子チョッパ素子17が直列に接続され、電機子15及び電機子電流検出器16の直列回路に並列にフライホイールダイオード18が接続されている。また、スナバコンデンサ7の両端間に荷役用電動機の界磁巻線19、界磁電流検出器20及び界磁チョッパ素子21が直列に接続され、界磁巻線19及び界磁電流検出器20の直列回路に並列にフライホイールダイオード22が接続されている。
【0004】
電機子チョッパ素子17及び界磁チョッパ素子21を図示しないドライブ回路によってオン/オフ制御することにより荷役用電動機が駆動され、電機子チョッパ素子5及び第1〜第4の界磁チョッパ素子8〜11をオン/オフ制御することにより走行用電動機が駆動される。走行用電動機は、車両の前進/後退に応じて互いに逆方向に回転させる必要があるが、界磁巻線13を流れる界磁電流の方向を切り替えることにより回転方向の反転が行われる。
【0005】
例えば、界磁巻線13に接続点AからBに向けて電流を流す場合には、第1の界磁チョッパ素子8をオンして第4の界磁チョッパ素子11をオン/オフする。第4の界磁チョッパ素子11がオンのときには、バッテリ1またはスナバコンデンサ7から第1の界磁チョッパ素子8、界磁巻線13、界磁電流検出器14及び第4の界磁チョッパ素子11を経てバッテリ1またはスナバコンデンサ7へと電流が流れ、一方第4の界磁チョッパ素子11をオフすると、界磁巻線13が有するインダクタンスエネルギにより界磁巻線13から界磁電流検出器14、第3の界磁チョッパ素子10及び第1の界磁チョッパ素子8を経て界磁巻線13へと電流が流れる。
【0006】
ここで、界磁巻線13を流れる界磁電流の方向を切り替えて接続点BからAに向けて流そうとする場合には、界磁電流を一旦0とする必要がある。このとき、第1及び第4の界磁チョッパ素子8及び11をオフすると、界磁巻線13が有するインダクタンスエネルギにより、界磁巻線13から界磁電流検出器14、第3の界磁チョッパ素子10、バッテリ1またはスナバコンデンサ7、第2の界磁チョッパ素子9を経て界磁巻線13へと電流が流れ、バッテリ1またはスナバコンデンサ7と界磁抵抗分に界磁巻線13のインダクタンスエネルギが吸収、消費される。その結果、界磁電流は次第に減衰して0となる。その後、第2及び第3の界磁チョッパ素子9及び10をオンすることにより、接続点BからAに向けて界磁巻線13に界磁電流が流れる。
【0007】
【発明が解決しようとする課題】
しかしながら、上述したように界磁電流の方向を切り替える際に、界磁電流を一旦0にしようとしても、界磁巻線13のインダクタンスが大きいために電流の減衰が遅く、また界磁電流が0になって逆方向に電流を流そうとしても、界磁巻線13のインダクタンスが大きいために電流の立ち上がりが遅くなるという問題があった。このため、界磁電流の方向の切り替えに時間を要し、走行用直流分巻電動機の制御性に改善の余地があった。
この発明はこのような問題点を解消するためになされたもので、走行用直流分巻電動機の制御性の向上を図ることができるフォークリフトの制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明に係るフォークリフトの制御装置は、走行用と荷役用の直流分巻電動機を有するフォークリフトの制御装置において、走行用電動機の界磁巻線のインダクタンスエネルギを吸収するためのコンデンサと、このコンデンサに接続されると共に走行用電動機の界磁巻線に流れる電流の立ち下がり時に走行用電動機の界磁巻線のインダクタンスエネルギがコンデンサに吸収されるように電流方向を制限するダイオードと、荷役用電動機の界磁巻線に接続されると共に走行用電動機の界磁巻線に流れる電流の立ち上がり時に荷役用電動機の界磁巻線に流れる電流を走行用電動機の界磁巻線に供給するための切替え素子とを備えたものである。
また、走行用電動機の界磁巻線に流れる電流の立ち上がり時にコンデンサに蓄積されていたエネルギによって走行用電動機の界磁巻線に電流が流れ、その後、切替え素子により荷役用電動機の界磁巻線に流れる電流が走行用電動機の界磁巻線に供給されるように構成することができる。
【0009】
【発明の実施の形態】
以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1.
図1にこの発明の実施の形態1に係るフォークリフトの制御装置を示す。バッテリ1の正極にスイッチ2の一端が接続され、このスイッチ2の他端とバッテリ1の負極との間にスナバコンデンサ7が接続され、スナバコンデンサ7の両端間に走行用直流分巻電動機の電機子3、電機子電流検出器4及び電機子チョッパ素子5が直列に接続されている。互いに直列に接続された電機子3と電機子電流検出器4とに並列にフライホイールダイオード6が接続されている。バッテリ1の負極には、第1〜第4の界磁チョッパ素子8〜11からなる界磁電流制御回路部12が接続されている。この界磁電流制御回路部12内において、第1及び第2の界磁チョッパ素子8及び9の接続点Aと第3及び第4の界磁チョッパ素子10及び11の接続点Bとの間に走行用電動機の界磁巻線13及び界磁電流検出器14が直列に接続されている。さらに、界磁電流制御回路部12とスイッチ2の他端との間に界磁巻線13のインダクタンスエネルギ吸収用のコンデンサ23が接続され、このコンデンサ23に並列に電流方向制限用のダイオード24と界磁電流切替え素子25との直列回路が接続されている。
【0010】
また、スナバコンデンサ7の両端間には、図示しない荷役用油圧ポンプを駆動するための荷役用直流分巻電動機の電機子15、電機子電流検出器16及び電機子チョッパ素子17が直列に接続され、電機子15及び電機子電流検出器16の直列回路に並列にフライホイールダイオード18が接続されている。さらに、スナバコンデンサ7の両端間に荷役用電動機の界磁巻線19、界磁電流検出器20及び界磁チョッパ素子21が直列に接続され、界磁電流検出器20及び界磁チョッパ素子21の接続点Cとダイオード24及び界磁電流切替え素子25の接続点Dとの間にフライホイールダイオード22が接続されている。
【0011】
すなわち、この実施の形態1に係る制御装置は、図5に示した従来の制御装置において、界磁電流制御回路部12とスイッチ2の他端との間にコンデンサ23を接続し、コンデンサ23と並列にダイオード24と界磁電流切替え素子25との直列回路を接続し、フライホイールダイオード22の一端をダイオード24と界磁電流切替え素子25との接続点Dに接続したものである。
【0012】
次に、この制御装置の動作について説明する。まず、走行用電動機の電機子3の印加電圧と電流は電機子チョッパ素子5をオン/オフすることにより制御される。電機子チョッパ素子5がオンのときには、バッテリ1からスイッチ2、電機子3、電機子電流検出器4及び電機子チョッパ素子5を経てバッテリ1へと電流が流れ、一方、電機子チョッパ素子5がオフのときには、電機子3から電機子電流検出器4及びフライホイールダイオード6を経て電機子3へと電流が流れる。同様に、荷役用電動機の電機子15の印加電圧と電流は電機子チョッパ素子17をオン/オフすることにより制御される。電機子チョッパ素子17がオンのときには、バッテリ1からスイッチ2、電機子15、電機子電流検出器16及び電機子チョッパ素子17を経てバッテリ1へと電流が流れ、一方、電機子チョッパ素子17がオフのときには、電機子15から電機子電流検出器16及びフライホイールダイオード18を経て電機子15へと電流が流れる。
【0013】
また、走行用電動機の界磁巻線13により形成される界磁は、界磁電流制御回路部12内の第1〜第4の界磁チョッパ素子8〜11をオン/オフすることにより制御される。例えば、界磁巻線13に接続点AからBに向けて電流を流す場合には、第1の界磁チョッパ素子8をオンして第4の界磁チョッパ素子11をオン/オフする。第4の界磁チョッパ素子11がオンのときには、図1の矢印aで示されるように、バッテリ1またはスナバコンデンサ7から切替え素子25、ダイオード24、第1の界磁チョッパ素子8、界磁巻線13、界磁電流検出器14及び第4の界磁チョッパ素子11を経てバッテリ1またはスナバコンデンサ7へと電流が流れる。第4の界磁チョッパ素子11をオフすると、界磁巻線13が有するインダクタンスエネルギにより、図1の矢印bで示されるように、界磁巻線13から界磁電流検出器14、第3の界磁チョッパ素子10及び第1の界磁チョッパ素子8を経て界磁巻線13へと電流が流れる。
【0014】
一方、荷役用電動機の界磁巻線19により形成される界磁は、界磁チョッパ素子21をオン/オフすることにより制御される。界磁チョッパ素子21がオンのときには、図1の矢印cで示されるように、バッテリ1またはスナバコンデンサ7から界磁巻線19、界磁電流検出器20及び界磁チョッパ素子21を経てバッテリ1またはスナバコンデンサ7へと電流が流れる。界磁チョッパ素子21をオフすると、界磁巻線19が有するインダクタンスエネルギにより、図1の矢印dで示されるように、界磁巻線19から界磁電流検出器20、フライホイールダイオード22及び切替え素子25を経て界磁巻線19へと電流が流れる。
【0015】
ここで、走行用電動機を逆方向に回転させるために、界磁巻線13を流れる界磁電流の方向を切り替えて接続点BからAに向けて流そうとする場合には、界磁電流を一旦0とするために、例えば図2に示す時刻t1に第1及び第4の界磁チョッパ素子8及び11をオフする。このとき、界磁巻線13が有するインダクタンスエネルギにより、図1の矢印eで示されるように、界磁巻線13から界磁電流検出器14及び第3の界磁チョッパ素子10を経てコンデンサ23に電流が流れ込み、さらに電流はバッテリ1またはスナバコンデンサ7及び第2の界磁チョッパ素子9を経て界磁巻線13へと流れる。これにより、界磁巻線13のインダクタンスエネルギはコンデンサ23に急速に吸収され、図2に曲線Rで示されるように界磁巻線13を流れる界磁電流が減衰すると共にコンデンサ23が充電される。このときコンデンサ23に蓄積される電荷はバッテリ1に対して逆極性となるため、スイッチ2に接続されたコンデンサ23の一端Pの電位Vよりも、界磁電流制御回路部12に接続されたコンデンサ23の他端Qの電位Vの方が高くなる。なお、図2においては、バッテリ1の負極の電位を0として電位V及びVが表されると共に、比較のために図5の従来の制御装置において界磁巻線13を流れる界磁電流の変化が曲線Sで示されている。
【0016】
なお、荷役動作を行っていない場合には、第1及び第4の界磁チョッパ素子8及び11をオフした時刻t1に界磁チョッパ素子21をオンして荷役用電動機の界磁巻線19に流れる界磁電流を図2の曲線Tのように増加させる。そして、この界磁電流が所定値になったところで界磁チョッパ素子21をオン/オフすることにより界磁電流を制御する。ここで、切替え素子25をオフしておくと、界磁巻線19から界磁電流検出器20、ダイオード22及び24を介してコンデンサ23あるいは走行用電動機の界磁巻線13に電流が流れ込み、切替え素子25をオンすると、界磁巻線19からの電流の流れ込みが停止される。そこで、切替え素子25をコンデンサ23の両端間電圧あるいはコンデンサ23の他端Qの電位Vが所定値より大きいときにオンし、所定値以下のときにオフさせることにより、コンデンサ23の他端Qの電位Vの最大値を制御することができる。
【0017】
このようにして、時刻t2に界磁巻線13のインダクタンスエネルギが全てコンデンサ23に吸収されると、界磁電流は0となる。ここで、第2及び第3の界磁チョッパ素子9及び10をオンすると、コンデンサ23に蓄積された電荷によってコンデンサ23の他端Qの電位Vが一端Pの電位Vよりも高くなっているため、図1の矢印fで示されるように、コンデンサ23から第3の界磁チョッパ素子10、界磁電流検出器14、界磁巻線13、第2の界磁チョッパ素子9及びバッテリ1またはスナバコンデンサ7を経てコンデンサ23へと電流が流れ始める。これにより、コンデンサ23が放電し、コンデンサ23の両端間電圧あるいはコンデンサ23の他端Qの電位Vが低下して、時刻t3に所定値以下になると、切替え素子25がオフし、図1の矢印gで示されるように、バッテリ1またはスナバコンデンサ7から荷役用電動機の界磁巻線19、界磁電流検出器20、ダイオード22及び24、第3の界磁チョッパ素子10、界磁電流検出器14、走行用電動機の界磁巻線13及び第2の界磁チョッパ素子9を経てバッテリ1またはスナバコンデンサ7へと電流が流れる。このため、コンデンサ23の両端間電圧あるいはコンデンサ23の他端Qの電位Vの低下が防止され、界磁巻線13を接続点BからAに向かって流れる界磁電流の立ち上がり時間が短縮される。
【0018】
なお、界磁巻線19の電流値は、荷役用電動機の制御によって決定されるため、荷役動作中はその最大値が制限され、その結果、コンデンサ23の両端間電圧あるいはコンデンサ23の他端Qの電位Vの保持力は低下する。
【0019】
界磁電流検出器14で検出される、接続点BからAに向かう界磁電流の値が目標値に対してある程度の割合を占める所定の値にまで達した時刻t4に切替え素子25がオンされ、このとき荷役動作をしていなければ、さらに界磁チョッパ素子21がオフされる。これにより、コンデンサ23の電荷が徐々に0に近づき、バッテリ1またはスナバコンデンサ7から切替え素子25、ダイオード24、第3の界磁チョッパ素子10、界磁電流検出器14、走行用電動機の界磁巻線13及び第2の界磁チョッパ素子9を経てバッテリ1またはスナバコンデンサ7へと電流が流れ始める。
【0020】
このようにして、界磁巻線13を流れる界磁電流の方向が接続点BからAに向かうように切り替えられるが、界磁電流の立ち下がり時に界磁巻線13のインダクタンスエネルギをコンデンサ23で吸収すると共に、立ち上がり時にはコンデンサ23に蓄積されたエネルギと荷役用電動機の界磁巻線19のインダクタンスエネルギを利用するようにしたので、立ち下がり時間及び立ち上がり時間が短くなる。従って、界磁巻線13を流れる界磁電流の方向を短時間で切り替えることができ、走行用直流分巻電動機の制御性の向上を図ることが可能となる。
【0021】
実施の形態2.
図3にこの発明の実施の形態2に係るフォークリフトの制御装置を示す。この制御装置は、図1に示した実施の形態1の装置において、界磁電流制御回路部12とスイッチ2の他端との間に接続されていたコンデンサ23、電流方向制限用のダイオード24及び切替え素子25を界磁電流制御回路部12とバッテリ1の負極との間に接続したものである。また、荷役用電動機の界磁巻線19、界磁電流検出器20及び界磁チョッパ素子21が、実施の形態1の装置とは逆に、バッテリ1の負極側から正極側へ順次配列されている。このような構成としても、実施の形態1と全く同様の効果を奏する。すなわち、走行用電動機の界磁巻線13を流れる界磁電流の立ち下がり時に界磁巻線13のインダクタンスエネルギをコンデンサ23で吸収すると共に、立ち上がり時にはコンデンサ23に蓄積されたエネルギと荷役用電動機の界磁巻線19のインダクタンスエネルギを利用して、界磁巻線13を流れる界磁電流の方向を短時間で切り替えることができる。
【0022】
実施の形態3.
図4にこの発明の実施の形態3に係るフォークリフトの制御装置を示す。この制御装置は、図1に示した実施の形態1の装置において、界磁電流制御回路部12とスイッチ2の他端との間に接続されていたコンデンサ23を、界磁電流制御回路部12と並列に接続したものである。このような構成にすると、界磁電流制御回路部12の各界磁チョッパ素子8〜11のスイッチングサージもコンデンサ23に吸収されるため、コンデンサ23の体格を大きくする必要があるが、実施の形態1あるいは2と同様の効果を奏する。
【0023】
【発明の効果】
以上説明したように、この発明に係るフォークリフトの制御装置によれば、従来の制御装置にインダクタンスエネルギ吸収用のコンデンサと電流方向制限用のダイオードと切替え素子を追加するだけで、走行用電動機の界磁巻線を流れる界磁電流の立ち下がり時間及び立ち上がり時間を短縮でき、走行用電動機の制御性が向上する。また、走行方向の切替え時のみ、荷役用電動機の界磁巻線に流れる電流を走行用電動機の界磁巻線に供給して利用するため、エネルギロスを抑制しつつ走行用電動機の制御性の向上を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1に係るフォークリフトの制御装置を示す回路図である。
【図2】実施の形態1に係る制御装置の動作を示すタイミングチャートである。
【図3】実施の形態2に係るフォークリフトの制御装置を示す回路図である。
【図4】実施の形態3に係るフォークリフトの制御装置を示す回路図である。
【図5】従来のフォークリフトの制御装置を示す回路図である。
【符号の説明】
1 バッテリ
3 走行用電動機の電機子
5,17 電機子チョッパ素子
7 スナバコンデンサ
8 第1の界磁チョッパ素子
9 第2の界磁チョッパ素子
10 第3の界磁チョッパ素子
11 第4の界磁チョッパ素子
12 界磁電流制御回路部
13 走行用電動機の界磁巻線
15 荷役用電動機の電機子
19 荷役用電動機の界磁巻線
23 コンデンサ
24 ダイオード
25 切替え素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a forklift, and more particularly to a control device that can switch the direction of field current of a shunt motor for traveling in a short time.
[0002]
[Prior art]
FIG. 5 shows a conventional forklift control device having DC shunt motors for traveling and cargo handling. One end of the switch 2 is connected to the positive electrode of the battery 1, and the armature 3, the armature current detector 4, and the armature chopper element of the traveling DC shunt motor are connected between the other end of the switch 2 and the negative electrode of the battery 1. 5 are connected in series. A flywheel diode 6 is connected in parallel to the armature 3 and the armature current detector 4 connected in series with each other, and a snubber capacitor 7 is connected between the other end of the switch 2 and the negative electrode of the battery 1. ing. Between both ends of the snubber capacitor 7, a series circuit of the first and second field chopper elements 8 and 9 and a series circuit of the third and fourth field chopper elements 10 and 11 are connected in parallel to each other. The traveling field current control circuit unit 12 formed in this way is connected. In the field current control circuit section 12, between the connection point A of the first and second field chopper elements 8 and 9 and the connection point B of the third and fourth field chopper elements 10 and 11. A field winding 13 and a traveling field current detector 14 of the traveling motor are connected in series.
[0003]
Furthermore, an armature 15, an armature current detector 16 and an armature chopper element 17 of a direct current shunting motor for driving a unloading hydraulic pump (not shown) are connected in series between both ends of the snubber capacitor 7. A flywheel diode 18 is connected in parallel to the series circuit of the child 15 and the armature current detector 16. A field winding 19, a field current detector 20, and a field chopper element 21 of a cargo handling motor are connected in series between both ends of the snubber capacitor 7, and the field winding 19 and the field current detector 20 are connected to each other. A flywheel diode 22 is connected in parallel to the series circuit.
[0004]
The armature chopper element 17 and the field chopper element 21 are turned on / off by a drive circuit (not shown) to drive the cargo handling motor, and the armature chopper element 5 and the first to fourth field chopper elements 8 to 11 are driven. The running motor is driven by controlling on / off of. The traveling motor needs to be rotated in the opposite directions in accordance with the forward / backward movement of the vehicle, but the direction of rotation is reversed by switching the direction of the field current flowing through the field winding 13.
[0005]
For example, when a current is passed through the field winding 13 from the connection point A to B, the first field chopper element 8 is turned on and the fourth field chopper element 11 is turned on / off. When the fourth field chopper element 11 is on, the first field chopper element 8, the field winding 13, the field current detector 14, and the fourth field chopper element 11 from the battery 1 or the snubber capacitor 7. When the current flows to the battery 1 or the snubber capacitor 7 through the fourth field chopper element 11 while the fourth field chopper element 11 is turned off, the field current detector 14 from the field winding 13 due to the inductance energy of the field winding 13, A current flows through the third field chopper element 10 and the first field chopper element 8 to the field winding 13.
[0006]
Here, when the direction of the field current flowing through the field winding 13 is switched to flow from the connection point B toward A, the field current needs to be once set to zero. At this time, when the first and fourth field chopper elements 8 and 11 are turned off, the field current detector 14 and the third field chopper are changed from the field winding 13 by the inductance energy of the field winding 13. A current flows to the field winding 13 through the element 10, the battery 1 or the snubber capacitor 7, and the second field chopper element 9, and the inductance of the field winding 13 is shared by the battery 1 or the snubber capacitor 7 and the field resistance. Energy is absorbed and consumed. As a result, the field current gradually attenuates to zero. Thereafter, by turning on the second and third field chopper elements 9 and 10, a field current flows through the field winding 13 from the connection point B to A.
[0007]
[Problems to be solved by the invention]
However, as described above, when the direction of the field current is switched, even if the field current is once set to zero, the field winding 13 has a large inductance, so that the current decay is slow, and the field current is zero. Even if an attempt is made to flow a current in the opposite direction, there is a problem that the rise of the current is delayed because the inductance of the field winding 13 is large. For this reason, it takes time to switch the direction of the field current, and there is room for improvement in the controllability of the traveling DC shunt motor.
The present invention has been made to solve such problems, and an object of the present invention is to provide a forklift control device capable of improving the controllability of the traveling DC shunt motor.
[0008]
[Means for Solving the Problems]
A forklift control device according to the present invention is a forklift control device having DC shunt motors for traveling and cargo handling, a capacitor for absorbing inductance energy of a field winding of the traveling motor, A diode that limits the current direction so that the inductance energy of the field winding of the traveling motor is absorbed by the capacitor when the current flowing through the field winding of the traveling motor falls, and a cargo handling motor A switching element that is connected to the field winding and supplies the current winding flowing in the field winding of the motor for cargo handling to the field winding of the traveling motor at the rising of the current flowing in the field winding of the traveling motor. It is equipped with.
Further, current flows in the field winding of the traveling motor due to the energy accumulated in the capacitor at the rise of the current flowing in the field winding of the traveling motor, and then the field winding of the cargo handling motor is switched by the switching element. It is possible to configure so that the current flowing through is supplied to the field winding of the electric motor for traveling.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 shows a control device for a forklift according to Embodiment 1 of the present invention. One end of the switch 2 is connected to the positive electrode of the battery 1, and a snubber capacitor 7 is connected between the other end of the switch 2 and the negative electrode of the battery 1. A child 3, an armature current detector 4 and an armature chopper element 5 are connected in series. A flywheel diode 6 is connected in parallel to the armature 3 and the armature current detector 4 connected in series with each other. A field current control circuit unit 12 including first to fourth field chopper elements 8 to 11 is connected to the negative electrode of the battery 1. In the field current control circuit section 12, between the connection point A of the first and second field chopper elements 8 and 9 and the connection point B of the third and fourth field chopper elements 10 and 11. A field winding 13 and a field current detector 14 of the traveling motor are connected in series. Further, an inductance energy absorbing capacitor 23 of the field winding 13 is connected between the field current control circuit unit 12 and the other end of the switch 2, and a current direction limiting diode 24 is connected in parallel with the capacitor 23. A series circuit with the field current switching element 25 is connected.
[0010]
Further, between the both ends of the snubber capacitor 7, an armature 15, an armature current detector 16, and an armature chopper element 17 of a DC shunt motor for cargo handling for driving a cargo handling hydraulic pump (not shown) are connected in series. A flywheel diode 18 is connected in parallel to the series circuit of the armature 15 and the armature current detector 16. Further, the field winding 19 of the electric motor for handling, the field current detector 20 and the field chopper element 21 are connected in series between both ends of the snubber capacitor 7, and the field current detector 20 and the field chopper element 21 are connected to each other. A flywheel diode 22 is connected between the connection point C and the connection point D of the diode 24 and the field current switching element 25.
[0011]
That is, in the control device according to the first embodiment, the capacitor 23 is connected between the field current control circuit unit 12 and the other end of the switch 2 in the conventional control device shown in FIG. A series circuit of a diode 24 and a field current switching element 25 is connected in parallel, and one end of the flywheel diode 22 is connected to a connection point D between the diode 24 and the field current switching element 25.
[0012]
Next, the operation of this control device will be described. First, the applied voltage and current of the armature 3 of the motor for traveling are controlled by turning the armature chopper element 5 on / off. When the armature chopper element 5 is on, current flows from the battery 1 to the battery 1 via the switch 2, the armature 3, the armature current detector 4, and the armature chopper element 5, while the armature chopper element 5 When off, a current flows from the armature 3 to the armature 3 through the armature current detector 4 and the flywheel diode 6. Similarly, the applied voltage and current of the armature 15 of the cargo handling motor are controlled by turning the armature chopper element 17 on and off. When the armature chopper element 17 is on, current flows from the battery 1 to the battery 1 through the switch 2, the armature 15, the armature current detector 16, and the armature chopper element 17, while the armature chopper element 17 When off, current flows from the armature 15 to the armature 15 via the armature current detector 16 and the flywheel diode 18.
[0013]
The field formed by the field winding 13 of the traveling motor is controlled by turning on / off the first to fourth field chopper elements 8 to 11 in the field current control circuit unit 12. The For example, when a current is passed through the field winding 13 from the connection point A to B, the first field chopper element 8 is turned on and the fourth field chopper element 11 is turned on / off. When the fourth field chopper element 11 is on, the switching element 25, the diode 24, the first field chopper element 8, the field winding from the battery 1 or the snubber capacitor 7 as shown by the arrow a in FIG. A current flows to the battery 1 or the snubber capacitor 7 via the line 13, the field current detector 14, and the fourth field chopper element 11. When the fourth field chopper element 11 is turned off, the field current detector 14, the third field current detector 14, and the third current coil 13 are shown in FIG. A current flows through the field chopper element 10 and the first field chopper element 8 to the field winding 13.
[0014]
On the other hand, the field formed by the field winding 19 of the cargo handling motor is controlled by turning on / off the field chopper element 21. When the field chopper element 21 is on, the battery 1 passes from the battery 1 or the snubber capacitor 7 via the field winding 19, the field current detector 20, and the field chopper element 21 as indicated by an arrow c in FIG. Alternatively, a current flows to the snubber capacitor 7. When the field chopper element 21 is turned off, the field current detector 20, the flywheel diode 22, and the switching are switched from the field winding 19 by the inductance energy of the field winding 19 as indicated by the arrow d in FIG. 1. A current flows through the element 25 to the field winding 19.
[0015]
Here, in order to rotate the electric motor for traveling in the reverse direction, the direction of the field current flowing through the field winding 13 is switched to flow from the connection point B to A. In order to make it zero once, for example, the first and fourth field chopper elements 8 and 11 are turned off at time t1 shown in FIG. At this time, the inductance energy of the field winding 13 causes the capacitor 23 to pass through the field current detector 14 and the third field chopper element 10 from the field winding 13 as indicated by an arrow e in FIG. The current flows into the field winding 13 and further flows through the battery 1 or the snubber capacitor 7 and the second field chopper element 9 to the field winding 13. As a result, the inductance energy of the field winding 13 is rapidly absorbed by the capacitor 23, and the field current flowing through the field winding 13 is attenuated and the capacitor 23 is charged as shown by the curve R in FIG. . At this time the charge stored in the capacitor 23 because the reverse polarity to the battery 1, than potential V P of the one end P of the capacitor 23 connected to the switch 2, which is connected to the field current control circuit section 12 If the potential V Q at the other end Q of the capacitor 23 becomes higher. In FIG. 2, potentials VP and VQ are represented by setting the potential of the negative electrode of the battery 1 to 0, and for comparison, a field current flowing through the field winding 13 in the conventional control device of FIG. Is shown by curve S.
[0016]
When the cargo handling operation is not performed, the field chopper element 21 is turned on at the time t1 when the first and fourth field chopper elements 8 and 11 are turned off, and the field winding 19 of the cargo handling motor is turned on. The flowing field current is increased as shown by the curve T in FIG. When the field current reaches a predetermined value, the field current is controlled by turning on / off the field chopper element 21. Here, when the switching element 25 is turned off, a current flows from the field winding 19 to the capacitor 23 or the field winding 13 of the traveling motor via the field current detector 20 and the diodes 22 and 24. When the switching element 25 is turned on, the flow of current from the field winding 19 is stopped. Therefore, the switching element 25 is turned on when the voltage across the capacitor 23 or the potential VQ of the other end Q of the capacitor 23 is larger than a predetermined value, and turned off when the voltage VQ is lower than the predetermined value. it is possible to control the maximum value of the potential V Q of.
[0017]
Thus, when the inductance energy of the field winding 13 is all absorbed by the capacitor 23 at time t2, the field current becomes zero. Here, when turning on the second and third field chopper element 9 and 10, the potential V Q of the other end Q of the capacitor 23 by the charge stored in the capacitor 23 becomes higher than the potential V P of the one end P Therefore, as shown by the arrow f in FIG. 1, the third field chopper element 10, the field current detector 14, the field winding 13, the second field chopper element 9 and the battery 1 from the capacitor 23. Alternatively, current starts to flow to the capacitor 23 via the snubber capacitor 7. Thus, the capacitor 23 is discharged, the potential V Q of the other end Q of the voltage across or the capacitor 23 of the capacitor 23 is reduced, and becomes equal to or less than the predetermined value at time t3, switching element 25 is turned off, in Figure 1 As indicated by the arrow g, the field winding 19 of the electric motor for cargo handling, the field current detector 20, the diodes 22 and 24, the third field chopper element 10, the field current detection from the battery 1 or the snubber capacitor 7 are shown. Current flows to the battery 1 or the snubber capacitor 7 through the device 14, the field winding 13 of the traveling motor and the second field chopper element 9. Therefore, lowering of the potential V Q of the other end Q of the voltage across or the capacitor 23 of the capacitor 23 is prevented, which reduces the rise time of the field current flowing toward the A field winding 13 from the connecting point B The
[0018]
Since the current value of the field winding 19 is determined by controlling the handling motor, the maximum value is limited during the handling operation. As a result, the voltage across the capacitor 23 or the other end Q of the capacitor 23 is limited. the holding force of the potential V Q of decreases.
[0019]
The switching element 25 is turned on at time t4 when the value of the field current from the connection point B to A detected by the field current detector 14 reaches a predetermined value that occupies a certain proportion of the target value. If the cargo handling operation is not performed at this time, the field chopper element 21 is further turned off. As a result, the electric charge of the capacitor 23 gradually approaches 0, and the switching element 25, the diode 24, the third field chopper element 10, the field current detector 14, and the field motor of the traveling motor are transferred from the battery 1 or the snubber capacitor 7. Current begins to flow to the battery 1 or the snubber capacitor 7 via the winding 13 and the second field chopper element 9.
[0020]
In this way, the direction of the field current flowing through the field winding 13 is switched from the connection point B to A, but the inductance energy of the field winding 13 is reduced by the capacitor 23 when the field current falls. While absorbing, the energy accumulated in the capacitor 23 and the inductance energy of the field winding 19 of the cargo handling motor are used at the time of rising, so that the falling time and the rising time are shortened. Therefore, the direction of the field current flowing through the field winding 13 can be switched in a short time, and the controllability of the traveling DC shunt motor can be improved.
[0021]
Embodiment 2. FIG.
FIG. 3 shows a forklift control device according to Embodiment 2 of the present invention. This control device includes a capacitor 23, a current direction limiting diode 24, and a current direction limiting diode 24, which are connected between the field current control circuit unit 12 and the other end of the switch 2 in the device of the first embodiment shown in FIG. The switching element 25 is connected between the field current control circuit unit 12 and the negative electrode of the battery 1. Further, the field winding 19, the field current detector 20, and the field chopper element 21 of the cargo handling motor are arranged sequentially from the negative electrode side to the positive electrode side of the battery 1, contrary to the device of the first embodiment. Yes. Even with this configuration, the same effects as those of the first embodiment can be obtained. That is, the inductance energy of the field winding 13 is absorbed by the capacitor 23 at the fall of the field current flowing through the field winding 13 of the traveling motor, and the energy accumulated in the capacitor 23 and the cargo handling motor at the rise. Using the inductance energy of the field winding 19, the direction of the field current flowing through the field winding 13 can be switched in a short time.
[0022]
Embodiment 3 FIG.
FIG. 4 shows a forklift control device according to Embodiment 3 of the present invention. In this control device, the capacitor 23 connected between the field current control circuit unit 12 and the other end of the switch 2 in the device of the first embodiment shown in FIG. 1 is connected to the field current control circuit unit 12. And connected in parallel. With such a configuration, the switching surges of the field chopper elements 8 to 11 of the field current control circuit unit 12 are also absorbed by the capacitor 23. Therefore, it is necessary to increase the size of the capacitor 23. Or the same effect as 2 is produced.
[0023]
【The invention's effect】
As described above, according to the forklift control device according to the present invention, the field of the electric motor for traveling can be obtained only by adding a capacitor for inductance energy absorption, a diode for limiting the current direction, and a switching element to the conventional control device. The fall time and rise time of the field current flowing through the magnetic winding can be shortened, and the controllability of the traveling motor is improved. In addition, since the current flowing in the field winding of the cargo handling motor is supplied to the field winding of the traveling motor and used only when the traveling direction is switched, the controllability of the traveling motor is suppressed while suppressing energy loss. Improvements can be made.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a forklift control device according to Embodiment 1 of the present invention;
FIG. 2 is a timing chart showing the operation of the control device according to the first embodiment.
FIG. 3 is a circuit diagram showing a forklift control device according to a second embodiment;
FIG. 4 is a circuit diagram showing a forklift control device according to a third embodiment.
FIG. 5 is a circuit diagram showing a conventional forklift control device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery 3 Armature 5, 17 of motor for driving | running | working Armature chopper element 7 Snubber capacitor 8 1st field chopper element 9 2nd field chopper element 10 3rd field chopper element 11 4th field chopper Element 12 Field current control circuit unit 13 Field winding 15 of electric motor for traveling 15 Armature 19 of motor for cargo handling Field winding 23 of motor for cargo handling 23 Capacitor 24 Diode 25 Switching element

Claims (2)

走行用と荷役用の直流分巻電動機を有するフォークリフトの制御装置において、
走行用電動機の界磁巻線のインダクタンスエネルギを吸収するためのコンデンサと、
前記コンデンサに接続されると共に走行用電動機の界磁巻線に流れる電流の立ち下がり時に走行用電動機の界磁巻線のインダクタンスエネルギが前記コンデンサに吸収されるように電流方向を制限するダイオードと、
荷役用電動機の界磁巻線に接続されると共に走行用電動機の界磁巻線に流れる電流の立ち上がり時に荷役用電動機の界磁巻線に流れる電流を走行用電動機の界磁巻線に供給するための切替え素子と
を備えたことを特徴とするフォークリフトの制御装置。
In a forklift control device having a DC shunt motor for traveling and cargo handling,
A capacitor for absorbing the inductance energy of the field winding of the electric motor for running,
A diode that is connected to the capacitor and restricts a current direction so that the inductance energy of the field winding of the traveling motor is absorbed by the capacitor when the current flowing in the field winding of the traveling motor falls.
The current flowing in the field winding of the motor for handling is supplied to the field winding of the motor for traveling when the current flowing in the field winding of the motor for driving rises while being connected to the field winding of the motor for handling. A forklift control device comprising: a switching element for controlling the forklift.
前記切替え素子は、走行用電動機の界磁巻線に流れる電流の立ち上がり時に前記コンデンサに蓄積されていたエネルギにより走行用電動機の界磁巻線に電流を流した後に、荷役用電動機の界磁巻線に流れる電流を走行用電動機の界磁巻線に供給することを特徴とする請求項1に記載のフォークリフトの制御装置。The switching element is configured to cause the current winding to flow in the field winding of the traveling motor by the energy accumulated in the capacitor when the current flowing in the field winding of the traveling motor rises. The forklift control device according to claim 1, wherein a current flowing in the wire is supplied to a field winding of the electric motor for traveling.
JP26181497A 1997-09-26 1997-09-26 Forklift control device Expired - Fee Related JP3653949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26181497A JP3653949B2 (en) 1997-09-26 1997-09-26 Forklift control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26181497A JP3653949B2 (en) 1997-09-26 1997-09-26 Forklift control device

Publications (2)

Publication Number Publication Date
JPH1198618A JPH1198618A (en) 1999-04-09
JP3653949B2 true JP3653949B2 (en) 2005-06-02

Family

ID=17367098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26181497A Expired - Fee Related JP3653949B2 (en) 1997-09-26 1997-09-26 Forklift control device

Country Status (1)

Country Link
JP (1) JP3653949B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3884909B2 (en) * 2000-12-06 2007-02-21 株式会社日立製作所 Electric vehicle and its control device

Also Published As

Publication number Publication date
JPH1198618A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
KR100287764B1 (en) Optimal DC Motor / Controller Structure
US4384240A (en) Regenerative braking system for three-terminal d.c. motor
JPS6334681B2 (en)
JP3653949B2 (en) Forklift control device
US5489828A (en) Electric drive system in lift trucks
CN209767424U (en) Two-gear motor winding switching device
US3845379A (en) Chopper circuit for d.c. motor
EP0036327B1 (en) Field weakening system for pulse-controlled three-terminal d.c. motor
US4443744A (en) Method and apparatus for charge enhancement of a commutating capacitor
JP3246389B2 (en) Control device for DC shunt motor
KR0152301B1 (en) Brake revival control of an industrial car
JP3344011B2 (en) Drive control device for DC motor
JP3729721B2 (en) Power converter
US5898280A (en) DC shunt (or compound) motor pair capable of synchronous operation
JPH04145808A (en) Energy conserving device for electric motor vehicle
JP2782732B2 (en) Drive device for variable reluctance motor
JPH05207783A (en) Driver for variable reluctance motor
US4406979A (en) Fail-safe system for pulse-controlled three-terminal d.c. motor
RU2076445C1 (en) Device which regulates speed of traction electric motors
JP2730354B2 (en) Fault diagnosis device in DC motor drive control device
JP2000059905A (en) Regenerative braking device for vehicle driven by battery
JPH06245564A (en) Motor controller
JP2540877B2 (en) How to start the inverter
JPS63190504A (en) Chopper apparatus
JPH0328918B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees