JP3653622B2 - Method for evaluating compound semiconductor epitaxial wafer including GaAs-AlGaAs superlattice structure layer - Google Patents

Method for evaluating compound semiconductor epitaxial wafer including GaAs-AlGaAs superlattice structure layer Download PDF

Info

Publication number
JP3653622B2
JP3653622B2 JP13641597A JP13641597A JP3653622B2 JP 3653622 B2 JP3653622 B2 JP 3653622B2 JP 13641597 A JP13641597 A JP 13641597A JP 13641597 A JP13641597 A JP 13641597A JP 3653622 B2 JP3653622 B2 JP 3653622B2
Authority
JP
Japan
Prior art keywords
wafer
gaas
layer
compound semiconductor
superlattice structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13641597A
Other languages
Japanese (ja)
Other versions
JPH10335400A (en
Inventor
浩二 角田
操 ▲高▼草木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP13641597A priority Critical patent/JP3653622B2/en
Publication of JPH10335400A publication Critical patent/JPH10335400A/en
Application granted granted Critical
Publication of JP3653622B2 publication Critical patent/JP3653622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、GaAs−AlGaAs超格子構造層を含む化合物半導体エピタキシャルウェハの評価方法に関し、特にウェハ表面にレーザー光線を照射し、その照射されたレーザー光線がウェハ表面で反射される際の散乱光の量を測定することによって、エピタキシャル成長層の結晶性の評価を行う方法に関する。
【0002】
【従来の技術】
レーザーダイオードや発光ダイオード等の半導体発光素子、及びFETやHEMT等の電子デバイスの作製にあたっては、一般に、GaAs基板上に超格子構造をしたバッファー層が形成され、さらにその上に化合物半導体結晶層がエピタキシャル成長されてなる化合物半導体エピタキシャルウェハ、あるいはInPやGaInP等の半導体基板上に化合物半導体結晶層がエピタキシャル成長されてなるウェハが使用される。
【0003】
従来、このようなエピタキシャルウェハの結晶性を評価する際には、レーザー光線等を励起源として用いてウェハのフォトルミネッセンス(photoluminescence)を測定する、所謂PL法が採用されている。このPL法により測定された発光スペクトルの発光ピークの半値幅に基づいて、エピタキシャル層の結晶性の良否の情報が得られる。
【0004】
PL法では、一般に、結晶性のより正確な情報を得るために、試料(ウェハ)を劈開して適当な大きさにし、それを液体窒素等を満たしたガラス製のデュワー等の中に入れて、液体窒素温度(77K)以下の低温で測定を行っている。
【0005】
また、例えば、GaAs単結晶基板上にGaAs−AlGaAs超格子層をエピタキシャル成長させ、さらにその上に1層もしくは2層以上のGaAs層等をエピタキシャル成長させてなる化合物半導体エピタキシャルウェハについて、GaAs−AlGaAs超格子層のフォトルミネッセンスを測定する場合には、超格子層上のエピタキシャル層の影響をなくすために、そのエピタキシャル層をエッチングにより除去してから測定を行っている。
【0006】
ところで、PL法以外に、ウェハ表面に照射したレーザー光線の微小な散乱光を測定することにより、ウェハ表面の状態を評価する方法がある。具体的には、測定対象であるウェハの表面を、レーザー光線を照射しながら走査し、ウェハ表面の粗さや微小欠陥や微小な異物に起因して散乱されたレーザー光線の散乱量を測定する。そして、得られた散乱量に基づいて、ウェハ表面の異物やヘイズの大きさ、及びそれらの分布等の情報を得る。ここで、ヘイズとは、表面の不規則性または微細パーティクルであり、そのサイズが光線の波長と比較して非常に小さいが、表面の広範囲に及んでいるもののことである。このヘイズの測定では、ウェハ表面からの散乱光を、ウェハ表面に入射する光の100万分率(ppm)で表した値(これをヘイズ(haze)という)が測定結果として得られる。具体的には、基板の反射率をR0 、表面粗さ(RMS)をσ及び入射光の波長をλで表すと、hazeは次の(1)式で表される。
haze=R0 (4πσ/λ)2 ×106 ・・・・(1)
ヘイズの測定を行う際に使用される機器としては、例えば、テンコールインスツルメンツ社(Tencor Instruments)製の表面評価装置Surfscan4500がある。このSurfscan4500では、レーザー光源として、波長6328オングストロームのHe−Neレーザーが用いられている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来のPL法は、破壊検査法の一種であり、測定対象である超格子層の上に積層された他のエピタキシャル層を除去したり、デュワー等の中に入れられる大きさにウェハを劈開したりしなければならず、手間がかかるだけでなく、ウェハの製品としての歩留まりが低下するという問題があった。
【0008】
また、上記従来のPL法では、冷却しながら測定を行うため、測定装置が複雑な構成になってしまうという問題もあった。
【0009】
また、上述したヘイズの測定によるウェハ表面の評価方法には、次のような問題があることが本発明者らにより明らかとされた。すなわち、この評価方法により、エピタキシャル成長層を有する化合物半導体ウェハ表面の測定を行った場合、通常、測定値(すなわち、haze)が約20ppm以上であれば肉眼による表面状態の観察時にウェハ表面に曇りが認められる。しかし、エピタキシャル成長層にGaAs−AlGaAs超格子層が含まれている場合には、hazeが数十ppmに達しているにもかかわらず、ウェハ表面に曇りが観察されない場合がある。例えば、GaAs−AlGaAs超格子層が含まれているウェハについて本発明者らが行った実験によれば、hazeが2ppmより小さい値のウェハでは、表面に曇りがなく、原子間力顕微鏡(AFM,Atomic Force Microscope)による表面粗さ(視野:1μm角)は1.5561nmであった。また、hazeが36ppmのウェハでは、表面に曇りがなく、AFMによる表面粗さ(視野:1μm角)は1.4731nmであった。それと同程度であるhaze36ppmのウェハでは、表面に曇りがあり、AFMによる表面粗さ(視野:1μm角)は10.219nmであった。つまり、ヘイズの測定結果と実際のウェハの表面状態との間に規則性が認められないことがわかった。
【0010】
本発明は、上記事情に鑑みなされたもので、基板上にエピタキシャル成長された化合物半導体層、特にGaAs−AlGaAs超格子構造層を含むエピタキシャル成長層の結晶性に関する情報を、レーザー光線を用いたヘイズの測定を行うことにより、ウェハを破壊することなく簡便に得ることができる化合物半導体エピタキシャルウェハの評価方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは、GaAs−AlGaAs超格子構造層を含むエピタキシャル成長層を有するウェハについて、ヘイズの測定を行い、鋭意検討した結果、図1に示すように、得られたhazeの値と、液体窒素温度(77K)におけるGaAs−AlGaAs超格子構造層からのPL発光のピークの半値幅(FWHM)との間に密接な相関関係があることを見出した。
【0012】
本発明は、上記知見に基づきなされたもので、基板上にエピタキシャル成長された化合物半導体層を有する化合物半導体エピタキシャルウェハの表面の一部にレーザー光線を照射し、その照射部位を走査させながら、ウェハ表面で散乱された散乱光を検出し、その検出結果と、予め求めておいた、ウェハ表面での散乱光の検出値とエピタキシャル成長層のフォトルミネッセンス(PL)の発光ピークの半値幅との間の相関関係に基づいて、前記化合物半導体層の結晶性の評価を行うことを特徴とするものである。
【0013】
この発明によれば、化合物半導体エピタキシャルウェハの表面の散乱光を測定することによって、基板上に形成されたエピタキシャル成長層の、液体窒素温度(77K)におけるPL発光ピークの半値幅を推定することができる。
【0014】
また、上記発明において、前記基板はGaAsでできており、かつ前記エピタキシャル成長層はGaAs−AlGaAs超格子構造層を含むようになっていてもよい。そうすれば、化合物半導体エピタキシャルウェハの表面の散乱光を測定することによって、GaAs−AlGaAs超格子構造層を含むエピタキシャル成長層の、液体窒素温度(77K)におけるPL発光ピークの半値幅を推定することができる。
【0015】
【発明の実施の形態】
まず、GaAs基板上に、所望の積層構造をなすように、1または2以上の化合物半導体結晶層がエピタキシャル成長されてなる化合物半導体エピタキシャルウェハを作製する。エピタキシャル成長される化合物半導体結晶層は、例えば、GaAs−AlGaAs超格子構造層上にさらに化合物半導体結晶層が積層されたものである。
【0016】
作製されたウェハについて、テンコールインスツルメンツ社(Tencor Instruments)製のSurfscan4500等の表面評価装置を用いて、例えば室温にてヘイズの測定を行い、上記(1)式よりhazeの値を求める。Surfscan4500では、光源としてHe−Neレーザー(波長:6328オングストローム)が用いられているが、これに限らず、光源として、例えばArレーザー(波長:5145オングストローム)やYAGレーザー(波長:10600オングストローム)を用いてもよい。
【0017】
次いで、同ウェハを適当な大きさとなるように劈開し、エッチング処理を行った後、液体窒素温度(77K)にてPL測定を行い、PL発光のピークの半値幅を求める。
【0018】
hazeの値とPL発光ピークの半値幅とに基づいて、それらの間の相関関係(図1参照)を求める。
【0019】
以上のようにして予めhazeの値とPL発光ピークの半値幅との関係が求まったら、実際に製造されたウェハについて、PL測定を行わずに、例えば室温にてヘイズの測定を行う。そして、先に求めた、hazeの値とPL発光ピークの半値幅との相関関係(図1参照)に基づいて、得られた製品としてのウェハのhazeの値からPL発光ピークの半値幅を求め、ウェハの良否を判断する。
【0020】
あるいは、hazeの値とPL発光ピークの半値幅との相関関係が求まった時点で、その相関関係に基づいて、ウェハの良否の臨界となるPL発光ピークの半値幅(製品の仕様等により決まる)からウェハの良否の臨界となるhazeの値を求めておき、製品として製造されたウェハについて、PL測定を行わずに、室温にてヘイズの測定を行い、ウェハの良否を判断するようにしてもよい。
【0021】
上記実施形態によれば、例えばGaAs−AlGaAs超格子構造層を含む所望の積層構造をなすエピタキシャル成長層を有する化合物半導体エピタキシャルウェハについて、予め、例えば図1に示すように、hazeの値とPL発光ピークの半値幅との相関関係を求めておくことによって、以後作製されたウェハについてヘイズの測定を行うことにより、エピタキシャル成長層のPL発光ピークの半値幅を推定することができるので、実際にPL法を行わずに済み、ウェハを破壊することなく、簡便にエピタキシャル成長層の結晶性を評価することができる。従って、結晶性の評価に要する時間が著しく短縮されるとともに、非破壊検査であるため、エピタキシャルウェハの歩留まりが向上する。
【0022】
【実施例】
電子デバイス作製用のGaAs基板上に、MBE(分子線エピタキシー)法によりGaAsよりなるバッファー層を成長させ、さらにその上にGaAs−AlGaAs超格子構造層を成長させた。GaAs−AlGaAs超格子構造層は、厚さ15nmのAlGaAs層(AlAs組成が0.28程度のもの)と厚さ5nmのGaAs層とからなるヘテロ構造を1周期とし、これを全部で20周期分積層した構造とした。そして、その超格子構造層上に、さらに厚さ300nmのGaAs層を成長させた後、その上に厚さ600nm程度で、Siをドナーとするn型のGaAs層を成長させてエピタキシャルウェハを作製した。
【0023】
このエピタキシャルウェハに対して、テンコールインスツルメンツ社(Tencor Instruments)製のSurfscan4500を用い、室温でウェハ表面からの散乱光を測定した。レーザー光源は、He−Neレーザー(波長:6328オングストローム)であった。ウェハ表面で散乱された光は、Surfscan4500の電子倍増管により検出され、その検出された散乱光の強度に基づいて、上記(1)式より、hazeの値を算出した。
【0024】
次に、散乱光を測定したウェハを劈開して7mm角程度の大きさのチップとした。そのチップの表面の前記n型のGaAs層を、ウェットエッチングにより除去した。その際、フッ酸系エッチャント(HF:H2 2 :H2 O=1:1:10)を用いた。なお、アンモニア系エッチャント(NH4 OH:H2 2 :H2 O=3:1:146)を用いてもよい。エッチング後、チップを水洗及び乾燥させ、液体窒素温度(77K)にてArレーザー(波長:5145オングストローム)を光源として、PL測定を行った。測定された、GaAs−AlGaAs超格子構造層からの発光ピークの波長は、7700〜7800オングストローム程度であった。
【0025】
以上のようにして得られたhazeの値とPL発光ピークの半値幅との関係を図1に示す。図1より、PL発光ピークの半値幅(FWHM)とhazeの値との間には、次の(2)式で表されるような良好な一次線形の相関関係があることがわかった。
(FWHM)=0.0377×(haze)+4.522、R2 =0.7624・・・・(2)
従って、図1及び式(2)より、hazeの値が大きくなるほどPL発光ピークの半値幅が大きくなり、GaAs−AlGaAs超格子構造層の結晶性が悪化することがわかった。
【0026】
図1及び式(2)を用いることにより、例えば、電子デバイス作製用の化合物半導体エピタキシャルウェハのGaAs−AlGaAs超格子構造層の結晶性の良否の判断基準として、77KにおけるGaAs−AlGaAs超格子構造層からのPL発光ピークの半値幅が5meV以下であると仮定すれば、hazeの値は10ppm以下であればよいことがわかり、PL測定に代わって、ウェハを破壊することなく、室温でヘイズの測定を行うことによって、GaAs−AlGaAs超格子構造層の結晶性の良否を判断することができることがわかった。
【0027】
なお、上記実施例では、GaAs基板上のGaAs−AlGaAs超格子構造層上に、さらにGaAs層が積層されたGaAsエピタキシャルウェハの評価について説明したが、本発明は、これに限らず、他の構造のエピタキシャルウェハの評価にも適用可能であるのはいうまでもない。
【0028】
【発明の効果】
本発明によれば、化合物半導体エピタキシャルウェハの表面の散乱光を測定することによって、基板上に形成されたエピタキシャル成長層の、液体窒素温度(77K)におけるPL発光ピークの半値幅を推定することができるので、実際にPL法を行わずに済み、ウェハを破壊することなく、簡便にエピタキシャル成長層の結晶性を評価することができる。従って、結晶性の評価に要する時間が著しく短縮されるとともに、非破壊検査であるため、エピタキシャルウェハの歩留まりが向上する。
【0029】
また、本発明によれば、化合物半導体エピタキシャルウェハの表面の散乱光を測定することによって、GaAs基板上に形成されたGaAs−AlGaAs超格子構造層を含むエピタキシャル成長層の、液体窒素温度(77K)におけるPL発光ピークの半値幅を推定することができるので、実際にPL法を行わずに済み、GaAs基板上にGaAs−AlGaAs超格子構造層を含むエピタキシャル成長層が形成されてなるウェハを破壊することなく、簡便にエピタキシャル成長層の結晶性を評価することができる。従って、GaAs−AlGaAs超格子構造層を含むエピタキシャル成長層の結晶性評価に要する時間が著しく短縮されるとともに、非破壊検査であるため、エピタキシャルウェハの歩留まりが向上する。
【図面の簡単な説明】
【図1】GaAs−AlGaAs超格子構造層を含むエピタキシャル成長層を有するウェハのhazeの値と、77KにおけるGaAs−AlGaAs超格子構造層からのPL発光のピークの半値幅との間の関係の一例を示す特性図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating a compound semiconductor epitaxial wafer including a GaAs-AlGaAs superlattice structure layer, and in particular, irradiates a laser beam on the wafer surface, and reduces the amount of scattered light when the irradiated laser beam is reflected on the wafer surface. The present invention relates to a method for evaluating crystallinity of an epitaxially grown layer by measurement.
[0002]
[Prior art]
In fabricating semiconductor light emitting devices such as laser diodes and light emitting diodes, and electronic devices such as FETs and HEMTs, a buffer layer having a superlattice structure is generally formed on a GaAs substrate, and a compound semiconductor crystal layer is further formed thereon. A compound semiconductor epitaxial wafer obtained by epitaxial growth or a wafer obtained by epitaxial growth of a compound semiconductor crystal layer on a semiconductor substrate such as InP or GaInP is used.
[0003]
Conventionally, when evaluating the crystallinity of such an epitaxial wafer, a so-called PL method has been adopted in which photoluminescence of the wafer is measured using a laser beam or the like as an excitation source. Based on the half-value width of the emission peak of the emission spectrum measured by the PL method, information on the crystallinity of the epitaxial layer can be obtained.
[0004]
In the PL method, in general, in order to obtain more accurate information on crystallinity, a sample (wafer) is cleaved to an appropriate size and placed in a glass dewar filled with liquid nitrogen or the like. The measurement is performed at a low temperature below the liquid nitrogen temperature (77K).
[0005]
Further, for example, a compound semiconductor epitaxial wafer obtained by epitaxially growing a GaAs-AlGaAs superlattice layer on a GaAs single crystal substrate and further epitaxially growing one or more GaAs layers on the GaAs-AlGaAs superlattice layer. When measuring the photoluminescence of a layer, in order to eliminate the influence of the epitaxial layer on the superlattice layer, the measurement is performed after removing the epitaxial layer by etching.
[0006]
In addition to the PL method, there is a method for evaluating the state of the wafer surface by measuring the minute scattered light of the laser beam applied to the wafer surface. Specifically, the surface of the wafer to be measured is scanned while irradiating a laser beam, and the scattering amount of the laser beam scattered due to the roughness of the wafer surface, minute defects, and minute foreign matter is measured. Then, based on the obtained scattering amount, information such as the size of foreign matter and haze on the wafer surface and their distribution is obtained. Here, haze is irregularity or fine particles on the surface, and its size is very small compared to the wavelength of light, but extends over a wide range of the surface. In this haze measurement, a value obtained by expressing the scattered light from the wafer surface in parts per million (ppm) of light incident on the wafer surface (this is referred to as haze) is obtained as a measurement result. Specifically, when the reflectance of the substrate is represented by R 0 , the surface roughness (RMS) is represented by σ, and the wavelength of incident light is represented by λ, haze is represented by the following equation (1).
haze = R 0 (4πσ / λ) 2 × 10 6 (1)
As an apparatus used when measuring haze, for example, there is a surface evaluation device Surfscan 4500 manufactured by Tencor Instruments. In the Surfscan 4500, a He-Ne laser having a wavelength of 6328 angstroms is used as a laser light source.
[0007]
[Problems to be solved by the invention]
However, the above-mentioned conventional PL method is a kind of destructive inspection method, and removes other epitaxial layers stacked on the superlattice layer to be measured, or allows the wafer to be of a size that can be placed in a dewar or the like. In addition to being troublesome, there is a problem that the yield of the wafer as a product is reduced.
[0008]
In addition, the conventional PL method has a problem that the measurement apparatus has a complicated configuration because the measurement is performed while cooling.
[0009]
Further, the present inventors have revealed that the above-described method for evaluating a wafer surface by measuring haze has the following problems. That is, when the surface of a compound semiconductor wafer having an epitaxially grown layer is measured by this evaluation method, usually, if the measured value (that is, haze) is about 20 ppm or more, the wafer surface becomes cloudy when the surface state is observed with the naked eye. Is recognized. However, when the epitaxial growth layer includes a GaAs-AlGaAs superlattice layer, cloudiness may not be observed on the wafer surface even though the haze reaches several tens of ppm. For example, according to an experiment conducted by the present inventors on a wafer including a GaAs-AlGaAs superlattice layer, a wafer having a haze value of less than 2 ppm has no cloudiness on the surface, and an atomic force microscope (AFM, The surface roughness (field of view: 1 μm square) according to Atomic Force Microscope was 1.5561 nm. Further, the wafer having a haze of 36 ppm had no cloudiness on the surface, and the surface roughness (field of view: 1 μm square) by AFM was 1.4731 nm. The wafer with haze of 36 ppm, which is comparable to that, had cloudiness on the surface, and the surface roughness (view field: 1 μm square) by AFM was 10.219 nm. That is, it was found that no regularity was observed between the measurement result of haze and the actual surface state of the wafer.
[0010]
The present invention has been made in view of the above circumstances, and information on crystallinity of a compound semiconductor layer epitaxially grown on a substrate, particularly an epitaxially grown layer including a GaAs-AlGaAs superlattice structure layer, is measured by measuring a haze using a laser beam. An object of the present invention is to provide a method for evaluating a compound semiconductor epitaxial wafer that can be easily obtained without destroying the wafer.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted a haze measurement on a wafer having an epitaxially grown layer including a GaAs-AlGaAs superlattice structure layer, and as a result of earnest investigation, as shown in FIG. It was found that there is a close correlation between the value of haze and the half width (FWHM) of the peak of PL emission from the GaAs-AlGaAs superlattice structure layer at liquid nitrogen temperature (77 K).
[0012]
The present invention has been made on the basis of the above knowledge, and a part of the surface of a compound semiconductor epitaxial wafer having a compound semiconductor layer epitaxially grown on a substrate is irradiated with a laser beam, and the irradiated portion is scanned on the wafer surface. The scattered scattered light is detected, and the correlation between the detection result and the half-value width of the emission peak of the photoluminescence (PL) of the photoluminescence (PL) of the epitaxial growth layer obtained in advance is obtained. Based on the above, the crystallinity of the compound semiconductor layer is evaluated.
[0013]
According to this invention, the half-value width of the PL emission peak at the liquid nitrogen temperature (77 K) of the epitaxial growth layer formed on the substrate can be estimated by measuring the scattered light on the surface of the compound semiconductor epitaxial wafer. .
[0014]
In the above invention, the substrate may be made of GaAs, and the epitaxial growth layer may include a GaAs-AlGaAs superlattice structure layer. Then, the half-value width of the PL emission peak at the liquid nitrogen temperature (77 K) of the epitaxial growth layer including the GaAs-AlGaAs superlattice structure layer can be estimated by measuring the scattered light on the surface of the compound semiconductor epitaxial wafer. it can.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, a compound semiconductor epitaxial wafer in which one or more compound semiconductor crystal layers are epitaxially grown on a GaAs substrate so as to form a desired laminated structure is manufactured. The compound semiconductor crystal layer to be epitaxially grown is, for example, a compound semiconductor crystal layer further stacked on a GaAs-AlGaAs superlattice structure layer.
[0016]
About the produced wafer, haze is measured, for example at room temperature using surface evaluation apparatuses, such as Surfscan 4500 by Tencor Instruments, and the value of haze is calculated | required from said (1) Formula. In the Surfscan 4500, a He-Ne laser (wavelength: 6328 angstrom) is used as a light source. However, the present invention is not limited to this, and an Ar laser (wavelength: 5145 angstrom) or a YAG laser (wavelength: 10600 angstrom) is used as the light source. May be.
[0017]
Next, the wafer is cleaved to an appropriate size, etched, and then subjected to PL measurement at a liquid nitrogen temperature (77 K) to determine the half-value width of the PL emission peak.
[0018]
Based on the value of haze and the half-value width of the PL emission peak, a correlation between them (see FIG. 1) is obtained.
[0019]
When the relationship between the value of haze and the half-value width of the PL emission peak is obtained in advance as described above, haze measurement is performed on the actually manufactured wafer, for example, at room temperature without performing PL measurement. Then, based on the correlation between the value of haze and the half-value width of the PL emission peak obtained earlier (see FIG. 1), the half-value width of the PL emission peak is obtained from the value of the wafer as the obtained product. The quality of the wafer is judged.
[0020]
Alternatively, when the correlation between the value of haze and the half-value width of the PL emission peak is obtained, the half-value width of the PL emission peak, which is the criticality of wafer quality, is determined based on the correlation (determined by the product specifications, etc.) Then, the haze value that is the criticality of the wafer quality is obtained from the wafer, and for the wafer manufactured as a product, the haze measurement is performed at room temperature without performing the PL measurement to judge the wafer quality. Good.
[0021]
According to the above-described embodiment, for example, as shown in FIG. 1, the value of haze and the PL emission peak are preliminarily obtained for a compound semiconductor epitaxial wafer having an epitaxially grown layer having a desired laminated structure including a GaAs-AlGaAs superlattice structure layer. The half-width of the PL emission peak of the epitaxially grown layer can be estimated by measuring the haze of the wafer produced thereafter, by calculating the correlation with the half-width of the The crystallinity of the epitaxially grown layer can be easily evaluated without performing the process and without destroying the wafer. Therefore, the time required for the evaluation of crystallinity is remarkably shortened and the yield of the epitaxial wafer is improved because of non-destructive inspection.
[0022]
【Example】
A buffer layer made of GaAs was grown on a GaAs substrate for manufacturing an electronic device by MBE (molecular beam epitaxy) method, and a GaAs-AlGaAs superlattice structure layer was further grown thereon. The GaAs-AlGaAs superlattice structure layer has a heterostructure consisting of an AlGaAs layer having a thickness of 15 nm (with an AlAs composition of about 0.28) and a GaAs layer having a thickness of 5 nm as one period, and this is a total of 20 periods. A laminated structure was obtained. Then, after a GaAs layer having a thickness of 300 nm is further grown on the superlattice structure layer, an epitaxial wafer is fabricated by growing an n-type GaAs layer having a thickness of about 600 nm and using Si as a donor. did.
[0023]
The epitaxial wafer was measured for scattered light from the wafer surface at room temperature using a Surfscan 4500 manufactured by Tencor Instruments. The laser light source was a He—Ne laser (wavelength: 6328 Å). The light scattered on the wafer surface was detected by an electron multiplier tube of Surfscan 4500, and the value of haze was calculated from the above equation (1) based on the intensity of the detected scattered light.
[0024]
Next, the wafer from which the scattered light was measured was cleaved to obtain a chip having a size of about 7 mm square. The n-type GaAs layer on the surface of the chip was removed by wet etching. At that time, a hydrofluoric acid-based etchant (HF: H 2 O 2 : H 2 O = 1: 1: 10) was used. An ammonia-based etchant (NH 4 OH: H 2 O 2 : H 2 O = 3: 1: 146) may be used. After etching, the chip was washed with water and dried, and PL measurement was performed at a liquid nitrogen temperature (77 K) using an Ar laser (wavelength: 5145 angstrom) as a light source. The measured wavelength of the emission peak from the GaAs-AlGaAs superlattice structure layer was about 7700-7800 angstroms.
[0025]
The relationship between the haze value obtained as described above and the half-value width of the PL emission peak is shown in FIG. From FIG. 1, it was found that there is a good first-order linear correlation represented by the following equation (2) between the half-value width (FWHM) of the PL emission peak and the value of haze.
(FWHM) = 0.0377 × (haze) +4.522, R 2 = 0.7624 (2)
Therefore, from FIG. 1 and formula (2), it was found that as the haze value increases, the half-value width of the PL emission peak increases, and the crystallinity of the GaAs-AlGaAs superlattice structure layer deteriorates.
[0026]
By using FIG. 1 and formula (2), for example, a GaAs-AlGaAs superlattice structure layer at 77K can be used as a criterion for determining the crystallinity of the GaAs-AlGaAs superlattice structure layer of a compound semiconductor epitaxial wafer for manufacturing an electronic device. Assuming that the half-value width of the PL emission peak from 5 is 5 meV or less, it is understood that the haze value should be 10 ppm or less. Instead of PL measurement, haze measurement is performed at room temperature without destroying the wafer. It was found that the crystallinity of the GaAs-AlGaAs superlattice structure layer can be judged by performing the above.
[0027]
In the above embodiment, the evaluation of the GaAs epitaxial wafer in which the GaAs layer is further laminated on the GaAs-AlGaAs superlattice structure layer on the GaAs substrate has been described. However, the present invention is not limited to this, and other structures are also described. Needless to say, the present invention can also be applied to the evaluation of epitaxial wafers.
[0028]
【The invention's effect】
According to the present invention, the half width of the PL emission peak at the liquid nitrogen temperature (77 K) of the epitaxial growth layer formed on the substrate can be estimated by measuring the scattered light on the surface of the compound semiconductor epitaxial wafer. Therefore, the PL method is not actually performed, and the crystallinity of the epitaxial growth layer can be easily evaluated without destroying the wafer. Therefore, the time required for the evaluation of crystallinity is remarkably shortened and the yield of the epitaxial wafer is improved because of non-destructive inspection.
[0029]
Further, according to the present invention, by measuring the scattered light on the surface of the compound semiconductor epitaxial wafer, the epitaxial growth layer including the GaAs-AlGaAs superlattice structure layer formed on the GaAs substrate is measured at a liquid nitrogen temperature (77 K). Since the half-value width of the PL emission peak can be estimated, it is not necessary to actually perform the PL method, and without destroying the wafer in which the epitaxial growth layer including the GaAs-AlGaAs superlattice structure layer is formed on the GaAs substrate. The crystallinity of the epitaxial growth layer can be easily evaluated. Therefore, the time required for evaluating the crystallinity of the epitaxial growth layer including the GaAs-AlGaAs superlattice structure layer is remarkably shortened, and the yield of the epitaxial wafer is improved because the nondestructive inspection is performed.
[Brief description of the drawings]
FIG. 1 shows an example of the relationship between the haze value of a wafer having an epitaxial growth layer including a GaAs-AlGaAs superlattice structure layer and the half-value width of the peak of PL emission from the GaAs-AlGaAs superlattice structure layer at 77K. FIG.

Claims (2)

基板上にエピタキシャル成長された化合物半導体層を有する化合物半導体エピタキシャルウェハの表面の一部にレーザー光線を照射し、その照射部位を走査させながら、ウェハ表面で散乱された散乱光を検出し、その検出結果と、予め求めておいた、ウェハ表面での散乱光の検出値とエピタキシャル成長層のフォトルミネッセンスの発光ピークの半値幅との間の相関関係に基づいて、前記化合物半導体層の結晶性の評価を行うことを特徴とするGaAs−AlGaAs超格子構造層を含む化合物半導体エピタキシャルウェハの評価方法。A part of the surface of a compound semiconductor epitaxial wafer having a compound semiconductor layer epitaxially grown on a substrate is irradiated with a laser beam, and the scattered light scattered on the wafer surface is detected while scanning the irradiated portion. And evaluating the crystallinity of the compound semiconductor layer based on the correlation between the detected value of scattered light on the wafer surface and the half-value width of the photoluminescence emission peak of the epitaxial growth layer, which has been obtained in advance. And a method for evaluating a compound semiconductor epitaxial wafer including a GaAs-AlGaAs superlattice structure layer. 前記基板はGaAsでできており、かつ前記エピタキシャル成長層はGaAs−AlGaAs超格子構造層を含むことを特徴とする請求項1記載のGaAs−AlGaAs超格子構造層を含む化合物半導体エピタキシャルウェハの評価方法。2. The method of evaluating a compound semiconductor epitaxial wafer including a GaAs-AlGaAs superlattice structure layer according to claim 1, wherein the substrate is made of GaAs and the epitaxial growth layer includes a GaAs-AlGaAs superlattice structure layer.
JP13641597A 1997-05-27 1997-05-27 Method for evaluating compound semiconductor epitaxial wafer including GaAs-AlGaAs superlattice structure layer Expired - Fee Related JP3653622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13641597A JP3653622B2 (en) 1997-05-27 1997-05-27 Method for evaluating compound semiconductor epitaxial wafer including GaAs-AlGaAs superlattice structure layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13641597A JP3653622B2 (en) 1997-05-27 1997-05-27 Method for evaluating compound semiconductor epitaxial wafer including GaAs-AlGaAs superlattice structure layer

Publications (2)

Publication Number Publication Date
JPH10335400A JPH10335400A (en) 1998-12-18
JP3653622B2 true JP3653622B2 (en) 2005-06-02

Family

ID=15174634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13641597A Expired - Fee Related JP3653622B2 (en) 1997-05-27 1997-05-27 Method for evaluating compound semiconductor epitaxial wafer including GaAs-AlGaAs superlattice structure layer

Country Status (1)

Country Link
JP (1) JP3653622B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175340A (en) * 2003-12-15 2005-06-30 Hitachi Cable Ltd Epitaxial wafer for semiconductor laser
JP7467816B2 (en) * 2021-06-24 2024-04-16 ベイジン トンメイ クリスタル テクノロジー カンパニー リミテッド Method and setup for detecting surface haze of a material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732184B2 (en) * 1989-03-13 1995-04-10 株式会社東芝 Method for evaluating compound semiconductor epitaxial film
JP3098670B2 (en) * 1994-03-14 2000-10-16 三菱マテリアル株式会社 Method for controlling polishing surface roughness of semiconductor wafer for bonding
JP2932238B2 (en) * 1994-06-10 1999-08-09 株式会社ジャパンエナジー Evaluation method of compound semiconductor
JPH09167789A (en) * 1995-12-14 1997-06-24 Toshiba Corp Evaluation method for semiconductor device

Also Published As

Publication number Publication date
JPH10335400A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
Morkoç Comprehensive characterization of hydride VPE grown GaN layers and templates
US8115927B2 (en) Production method of compound semiconductor member
Gfroerer Photoluminescence in analysis of surfaces and interfaces
Palacios et al. Wet etching of GaN grown by molecular beam epitaxy on Si (111)
US6657232B2 (en) Defect reduction in GaN and related materials
JP5006331B2 (en) Method for characterization of light reflection of strain and active dopants in semiconductor structures
US8177911B2 (en) Damage evaluation method of compound semiconductor member, production method of compound semiconductor member, gallium nitride compound semiconductor member and gallium nitride compound semiconductor membrane
Kontos et al. Micro-Raman characterization of In x Ga 1− x N∕ Ga N∕ Al 2 O 3 heterostructures
Kuball et al. Raman mapping of epitaxial lateral overgrown GaN: Stress at the coalescence boundary
JP3653622B2 (en) Method for evaluating compound semiconductor epitaxial wafer including GaAs-AlGaAs superlattice structure layer
US20070105246A1 (en) Method of manufacturing a material compound wafer
EP1922539B1 (en) Method and device to quantify active charge carrier profiles in ultra-shallow semiconductor structures
US20010018891A1 (en) Calibrated scale in the nanometer range for technical devices used for the high-resolution or ultrahigh-resolution imaging of structures
Benyoucef et al. Raman mapping, photoluminescence investigations, and finite element analysis of epitaxial lateral overgrown GaN on silicon substrates
JPH09246341A (en) Semiconductor wafer damage evaluating sample and damage evaluating method using thereof
Roughani et al. Raman scattering by epitaxial GaAs on a Si substrate
Scheibler et al. Fourier resolution of surface and interface contributions to photoreflectance spectra of multilayered structures
JP3783851B2 (en) Method for sorting semiconductor wafers
Herbst et al. Structural and optical properties of vertically correlated Ge island layers grown at low temperatures
US20140055783A1 (en) Method of analyzing nitride semiconductor layer and method of manufacturing nitride semiconductor substrate using the analysis method
Pozina et al. InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy with mass transport
Epperlein Temperature, stress, disorder, and crystallization effects in laser diodes: measurements and impacts
US20220130887A1 (en) Apparatus for integrated microwave photonics on a sapphire platform, method of forming same, and applications of same
JP2002141386A (en) Method for measuring dislocation density
TWI420094B (en) Method of photo-reflectance characterization of strain and active dopant in semiconductor structures

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees