JP3651368B2 - Method and apparatus for heating electrode plate ear of lead-acid battery - Google Patents

Method and apparatus for heating electrode plate ear of lead-acid battery Download PDF

Info

Publication number
JP3651368B2
JP3651368B2 JP2000214573A JP2000214573A JP3651368B2 JP 3651368 B2 JP3651368 B2 JP 3651368B2 JP 2000214573 A JP2000214573 A JP 2000214573A JP 2000214573 A JP2000214573 A JP 2000214573A JP 3651368 B2 JP3651368 B2 JP 3651368B2
Authority
JP
Japan
Prior art keywords
electrode plate
magnetic field
lead
ears
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000214573A
Other languages
Japanese (ja)
Other versions
JP2002033095A (en
Inventor
寿一 鈴木
隆幸 藤野
友喜 蛭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2000214573A priority Critical patent/JP3651368B2/en
Priority to TW090116162A priority patent/TW531913B/en
Priority to CNB011224932A priority patent/CN1196212C/en
Publication of JP2002033095A publication Critical patent/JP2002033095A/en
Application granted granted Critical
Publication of JP3651368B2 publication Critical patent/JP3651368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • General Induction Heating (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛蓄電池の極板群を構成する陽極板および陰極板のそれぞれに設けられている極板耳部を、高周波の電流が作る磁界を用いて鉛蓄電池の極板耳部を加熱する方法に関する。
【0002】
【従来の技術】
鉛蓄電池の電槽内部に収容される極板群は、この鉛蓄電池が所定の電力を発生できるように、それぞれ複数枚からなる陽極板同士、および陰極板同士を接続する必要がある。この場合、同極性の各極板同士を接続するために、例えば、溶融された鉛中に、各陽極板が有している極板耳部を浸漬する。この状態において、各陽極板の極板耳部と溶融鉛とを一体に冷却して固化することにより、各陽極板の極板耳部同士を鉛のストラップで接続した状態となるように溶接する。同様に、各陰極板同士も、それらの極板耳部同士を溶融鉛とともに冷却して固化することにより溶接する。このような接続方法を、一般には、キャスト・オン・ストラップ方式という。
【0003】
このキャスト・オン・ストラップ方式により各陽極板同士、および各陰極板同士を溶接する際に、各極板の極板耳部同士と溶融鉛との間における溶接不良を無くすために、通常は、各極板耳部を予め所定の温度まで加熱した後、各極板耳部同士を溶接鉛によって溶接する。すなわち、各極板耳部同士を溶融鉛によって溶接する前に、各極板耳部を予め所定の温度まで予熱することにより、極板耳部と溶融鉛とをむらなく溶接することができる。
【0004】
この極板耳部の予熱を行う方法としては、極板耳部をバーナーなどで炙る方法、極板耳部へ局所的に熱風を吹き付ける方法、あるいは、極板耳部を錫などの低温溶融金属に一定時間浸漬する方法などが知られている。
【0005】
極板群には、前述したそれぞれ複数枚からなる陽極板と陰極板との間に、これらが接触して鉛蓄電池内で短絡(ショート)を起こさないように、絶縁体(隔離体)としてのセパレータが配置されている。よって、前述したように、極板耳部をバーナーなどで炙る方法においては、バーナーの炎でこのセパレータを焦がすおそれがある。また、極板耳部へ局所的に熱風を吹き付けたり、あるいは極板耳部を錫などの低温溶融金属に一定時間浸漬する方法においては、極板耳部が所定の温度に達するまで時間が掛かるので、加熱作業の効率、ひいては鉛蓄電池の生産効率が低い。特に後者の場合、極板耳部に溶融金属が付着するおそれがあるので、そのような予熱方法により生産された極板群、ひいては鉛蓄電池の品質および性能などを損なうおそれがある。
【0006】
【発明が解決しようとする課題】
以上説明した各予熱方法の問題点を克服する極板耳部の予熱方法として、例えば、特開平8−255608号公報に開示されている鉛蓄電池の製造法が提案されている。これは、各極板耳部同士を溶接するストラップとなる溶融された鉛、およびこの溶融鉛が注がれて熱せられた溶融槽の輻射熱と、高周波誘導用コイル自体の電磁誘導による加熱作用とによって、極板耳部を予熱する方法なども知られている。この方法を詳しく説明すると、溶融槽の周囲に、その内部に設けられている溶融された鉛などが貯えられるストラップキャビティーを側方から囲むように高周波誘導用コイルを這わせて設ける。このストラップキャビティー内に溶融された鉛を注ぎ、極板耳部をストラップキャビティー上に静止させて配置した後、高周波誘導用コイルに電流を印加して高周波の磁力線を誘導させる。これにより、溶融槽およびストラップキャビティー内の溶融鉛の輻射熱と、高周波誘導用コイル自体の電磁誘導による加熱作用とによって、極板耳部を予熱するものである。極板耳部が予め設定した温度に達したことを確認した後、極板耳部をその下方に設置されているストラップキャビティー内に貯えられている溶融鉛の中に浸漬する。しかる後、ストラップキャビティー内に貯えられている溶融鉛ごと極板耳部を冷却することにより、極板耳部同士を溶接して鉛製のストラップで接続する。
【0007】
この方法によれば、高周波誘導用コイルから離れる程、この高周波誘導用コイルが発生する磁力線の密度が疎な領域と、密な領域とに顕著に分かれる。そのため、高周波誘導用コイルが発生する磁力線の密度が疎な領域と、密な領域とで、それらの磁力線が作る渦電流による発熱効率の差が顕著になる。具体的には、磁力線の密度が疎な領域における渦電流は、磁力線の密度が密な領域における渦電流よりも、その発熱効率が減退して低くなる。したがって、この予熱方法においては、極板耳部と高周波誘導用コイルとの間には、溶融槽が配置されているため、高周波誘導用コイルが作る磁力線の密度が密な領域内に極板耳部を配置して静止させることができない。この場合、高周波誘導用コイルが発生する磁力線の密度が疎な領域で極板耳部を加熱することになる。すなわち、渦電流による発熱効率が低い領域で極板耳部を加熱することになるので、その加熱作業に時間が掛かり、その作業効率が低い。それとともに、溶融槽およびキャビティー内の溶融鉛の輻射熱による極板耳部の加熱作業は、前述した熱風を用いる場合と同様に時間が掛かるので、その作業効率が低い。
【0008】
よって、特開平8−255608号公報に開示されている発明のように、溶融槽およびストラップキャビティー内の溶融鉛の輻射熱と、高周波誘導用コイル自体の電磁誘導による加熱作用とによって、極板耳部を予熱する方法では、極板耳部を所定の温度に達するまで加熱する作業に大幅に時間が掛かり、極板群、ひいては鉛蓄電池の生産効率が著しく低くなるおそれがある。
【0009】
さらに、高周波誘導用コイル自体の電磁誘導による加熱作用を利用して極板耳部を予熱する方法において、極板耳部を高周波誘導用コイルに近付けるために、例えば、前述した高周波誘導用コイルから溶融槽を取り除き、この上側から極板耳部を十分に近付けて静止させて配置する。その後、高周波誘導用コイルに電流を印加して高周波の磁力線を誘導させた場合、前述したように、この高周波誘導用コイルが発生する磁力線が作る磁界には、その密度が密な領域と疎な領域とがあるので、極板耳部に当たる磁力線の数が、その部位によって異なる。これにより、極板耳部はその熱分布に差が生じ、温度が不均一になる。このように、部位によって温度が異なる極板耳部と溶融鉛とを溶接した場合、溶融鉛が固化した後の極板耳部と溶融鉛との溶接部分に、溶接が確実にできた部分と、溶接ができなかった部分とによる溶接むら、すなわち溶接不良が生じる。この溶接不良を含んだ鉛製のストラップにより接続された極板群は、その強度が弱くなるとともに、溶接ができなかった未溶接部分が抵抗となって電気伝導率が悪くなる。よって、このような溶接作業を経て生産された極板群は、その品質および性能などを損なうおそれがある。ひいては、このような溶接作業を経て生産された鉛蓄電池の品質および性能などを損なうおそれがある。
【0010】
よって、本発明が解決しようとする課題は、高周波の電流が作る磁界を用いて、鉛蓄電池が有している極板群を構成している複数枚の陽極板および陰極板のそれぞれに設けられている極板耳部を、その温度分布が略均一となるように加熱できる鉛蓄電池の極板耳部を加熱する方法および加熱装置を得ることにある。
【0011】
【課題を解決するための手段】
前記課題を解決するために、前記請求項1に記載の発明に係る鉛蓄電池の極板耳部を加熱する方法は、高周波の電流が作る磁界を用いて鉛蓄電池が有している複数枚の陽極板および陰極板のそれぞれに設けられている各極板耳部を加熱する方法であって、前記磁界を発生する高周波発生装置、もしくは前記各極板耳部のうちの少なくとも一方を、他方に対して、前記各極板耳部が前記磁界を相対的に横切るように、少なくとも1回往復移動させつつ、前記各極板耳部を加熱することを特徴とする鉛蓄電池の極板耳部を加熱することを特徴とするものである。
【0012】
この発明の鉛蓄電池の極板耳部を加熱する方法においては、各極板耳部が磁界を相対的に1往復以上横切るように、高周波発生装置、もしくは各極板耳部のうちの少なくとも一方を、他方に対して往復移動させるので、高周波発生装置が発生する磁力線を、その密度の疎密に拘らず、各極板耳部にまんべんなく当てることができる。
【0013】
また、同様の課題を解決するために、前記請求項2に記載の発明に係る鉛蓄電池の極板耳部を加熱する方法は、複数枚の陽極板、これら各陽極板と1枚ずつ交互に配置される複数枚の陰極板、およびこれら各陽極板と各陰極板との間に挟まれて配置されるセパレータを備えて構成される極板群の前記各極板のそれぞれに設けられている各極板耳部を、高周波の電流が作る磁界を用いて加熱する方法であって、複数の前記極板群の姿勢を揃えて一列に並べるとともに、これら複数の極板群を把持治具により把持し、前記磁界を発生する高周波発生装置、もしくは前記把持治具およびこれにより把持された前記各極板群のうちの少なくとも一方を、他方に対して、前記並び方向の一端部に位置している極板群から他端部に位置している極板群の各極板耳部が前記磁界を相対的に横切るように、少なくとも1回往復移動させつつ、前記各極板耳部を加熱することを特徴とする鉛蓄電池の極板耳部を加熱することを特徴とするものである。
【0014】
この発明の鉛蓄電池の極板耳部を加熱する方法においては、複数の極板群の姿勢を揃えて一列に並べるとともに、各極板群の各極板耳部が磁界を相対的に1往復以上横切るように、高周波発生装置、もしくは把持治具およびこれによって把持された複数の極板群のうちの少なくとも一方を、他方に対して、並び方向の一端部に位置している極板群から他端部に位置している極板群まで往復移動させるので、高周波発生装置が発生する磁力線を、その密度の疎密に拘らず、各極板群の各極板耳部にまんべんなく連続して当てることができる。
【0015】
また、前記請求項1または2に記載の発明を実施するにあたって、これらの発明に従属する前記請求項3に記載の発明は、前記高周波発生装置、もしくは前記各極板耳部のうちの少なくとも一方が、他方に対して往復移動する相対的な速さを、100〜200(mm/sec)とするとよい。
【0016】
この発明の鉛蓄電池の極板耳部を加熱する方法によれば、高周波発生装置が発生する磁界を各極板耳部が相対的に横切る速さを、100〜200(mm/sec)としたので、各極板耳部に迅速に磁力線を当てることができる。
【0017】
さらに、同様の課題を解決するために、前記請求項4に記載の発明に係る鉛蓄電池の極板耳部を加熱する装置は、複数枚の陽極板、これら各陽極板と1枚ずつ交互に配置される複数枚の陰極板、およびこれら各陽極板と各陰極板との間に挟まれて配置されるセパレータを備えて構成される鉛蓄電池用の極板群を、それらの姿勢が揃えられて一列に並べられた状態で把持する把持治具と、前記各極板のそれぞれに設けられている各極板耳部を、高周波の電流により磁力線を発生させることにより、この磁力線が作る磁界を用いて加熱する高周波発生装置と、この高周波発生装置、もしくは前記把持治具およびこれに把持された前記極板群のうちの少なくとも一方を、他方に対して相対的に横切るように、少なくとも1回往復移動させる駆動装置とを具備することを特徴とするものである。
【0018】
この発明の鉛蓄電池の極板耳部を加熱する装置においては、各極板群を、それらの姿勢を揃えて一列に並べて把持する把持治具と、各極板群の各極板耳部を加熱するための高周波の磁界を発生させる高周波発生装置と、高周波発生装置、もしくは各極板耳部のうちの少なくとも一方を、他方に対して1往復以上横切るように移動させる駆動装置とを具備しているので、高周波発生装置が発生する磁力線を、その密度の疎密に拘らず、各極板耳部に円滑に、かつ、まんべんなく当てることができる。
【0019】
【発明の実施の形態】
以下、本発明の一実施形態に係る鉛蓄電池の極板耳部を加熱する方法および加熱装置1を、図1および図2に基づいて説明する。
【0020】
極板群5は、本実施形態においては、その1個が5枚の陽極板6と、6枚の陰極板7とを、2枚の陰極板7が両外側に位置するように、各陽極板6と各陰極板7とを1枚ずつ交互に積層するとともに、これら各陽極板6と各陰極板7との間にセパレータ8を配置して挟み込むことにより形成されている。各陽極板6および各陰極板7は、本実施形態においては、それぞれ鉛−カルシウム合金からなる鋳造格子基板に陽極または陰極活物質ペーストを充填して形成されている。また、陽極板6および陰極板7のそれぞれに設けられている各陽極板耳部6aおよび各陰極板耳部7aは、その正面視が略正方形状に形成されており、それらの縦および横方向の寸法は9(mm)に、また、それらの厚さ方向の寸法は1.5(mm)に形成されている。
【0021】
把持治具2は、図1に示すように、本実施形態においては、複数枚の陽極板6、同じく複数枚の陰極板7、およびこれら各陽極板6および各陰極板7との挟まれて配置されるセパレータ8などから構成されている極板群5を、1セル分ごと個別に、かつ、等間隔で挟んで保持することにより、合計6セル分の極板群5を把持できるように6個設けられている。各極板群5は、図1および図2に示すように、これら6個の把持治具2によって、それぞれの積層方向が長円形状(楕円渦巻き形状)に形成されている後述する高周波発生装置3の短径方向と一致するように、かつ、陽極板6および陰極板7のそれぞれに設けられている各陽極板耳部6aおよび各陰極板耳部7aが、高周波発生装置3と対向するように、それらの姿勢を揃えられて一列に並べられた状態で把持される。
【0022】
高周波発生装置3は、図2に示すように、導体に高周波の電流を流されることにより磁力線9を発生し、この磁力線9が作る磁界10を用いて各陽極板耳部6aおよび各陰極板耳部7aを加熱するものである。この高周波発生装置は、図1に示すように、本実施形態においては、長円形状(楕円渦巻き形状)に形成された高周波電磁誘導コイル3などから構成されている。本実施形態においては、図示しない高周波発生装置本体により周波数が20〜30(kHz)の高周波の電流が高周波電磁誘導コイル3に流されるとともに、その出力は15kW以下に設定されている。また、この高周波電磁誘導コイル3は、本実施形態においては、各把持治具2、およびこれらによって把持された各極板群5に対して、各極板群5が高周波電磁誘導コイル3の略真上に位置した際に、これと各陽極板耳部6aおよび各陰極板耳部7aとの間隔が1〜3(mm)となるような位置に固定されて設置されている。この高周波電磁誘導コイル3は、前記設置状態、および高周波発生の諸元によって、各陽極板耳部6aおよび各陰極板耳部7aを、200〜220(℃)の略一様な温度分布となるように加熱(予熱)できる。
【0023】
駆動装置4は、図1に示すように、6個の極板群5、およびこれらを把持した6個の把持治具2をまとめて駆動することができるように構成されている。具体的には、この駆動装置4は、6個の極板群5、およびこれらを把持した6個の把持治具2を、それらの上方から支持した状態で、互いに同期させつつ、図1中矢印で示すように、高周波電磁誘導コイル3の短径方向に沿って、まとめて100〜200(mm/sec)で往復移動させることができるように設定されている。これにより、各極板群5の各陽極板6および各陰極板7のそれぞれに設けられている各陽極板耳部6aおよび各陰極板耳部7aは、固設されている高周波電磁誘導コイル3の上方において、これに対して100〜200(mm/sec)で往復移動できる。すなわち、各把持治具2、およびこれらによって把持された各極板群5は、図2に示すように、その高周波電磁誘導コイル3が発生する磁力線9によって作られる磁界10を相対的に横切るように、少なくとも1回往復移動できる。また、この駆動装置4は、6個の極板群5、およびこれらを把持した6個の把持治具2を、上下方向に往復昇降移動などさせることができる。
【0024】
以上説明した構成からなる鉛蓄電池の極板耳部の加熱装置1によれば、6個の極板群5を互いに同期させつつ略一定の条件下において連続して加熱することにより、各極板群5の各陽極板6および各陰極板7のそれぞれに設けられている各陽極板耳部6aおよび各陰極板耳部7aを迅速に、かつ、その温度分布が略均一となるように加熱できる。よって、各陽極板耳部6a同士および各陰極板耳部7a同士を、キャスト・オン・ストラップ方式により迅速に、かつ、溶接不良を抑制して溶接(接続)できる。すなわち、鉛蓄電池の生産効率を上げることができるとともに、その品質を向上できる。
【0025】
次に、本実施形態の鉛蓄電池の極板耳部の加熱装置1を用いた鉛蓄電池の極板耳部の加熱方法を適用した鉛蓄電池の極板耳部の溶接(接続)作業の概略を説明する。
【0026】
各陽極板耳部6a同士および各陰極板耳部7a同士が未溶接状態の6個の極板群5を、それぞれの積層方向が同じ向きを向くようにそれらの姿勢を揃えて一列に並べるとともに、各陽極板耳部6aおよび各陰極板耳部7aを下側に向けた状態で6個の把持治具2によってそれぞれ個別に把持する。まず、各把持治具2に把持された状態の各極板群5を、それらの各陽極板耳部6aおよび各陰極板耳部7aが図示しないフラックス浴に浸漬されるように移動させ、各陽極板耳部6aおよび各陰極板耳部7aにまんべんなくフラックスを塗布する。次いで、駆動装置4を作動させて、前記一列の一端部に位置している極板群5が、高周波電磁誘導コイル3の付近に位置するように、各極板群5を6個まとめて移動させる。続けて駆動装置4を作動させて、6個の極板群5を、それらの各陽極板耳部6aおよび各陰極板耳部7aが、高周波電磁誘導コイル3が発生する磁力線9が作る磁界10の中を前述した各設定条件で通過できるように、高周波電磁誘導コイル3付近の上方に配置させた1個目の極板群5から、前記一列の他端部に位置している6個目の極板群5まで、高周波電磁誘導コイル3の上方を1往復移動させる。その後、駆動装置4を作動させて、6個の極板群5を、図示しない溶融鉛が注がれた、同じく図示しない溶融槽のストラップキャビティー内に、各陽極板耳部6aおよび各陰極板耳部7aがストラップキャビティー内の溶融鉛に浸漬するように移動させる。溶融槽のストラップキャビティー内において、各陽極板耳部6aおよび各陰極板耳部7aと図示しない鉛蓄電池の極柱などとを、溶融鉛とともに冷却して固化することにより、図示しないストラップを形成して、同極性の各陽極板耳部6a同士および各陰極板耳部7a同士を接続する。
【0027】
以上説明した鉛蓄電池の極板耳部の加熱装置1を用いた鉛蓄電池の極板耳部の加熱方法を適用した鉛蓄電池の極板耳部の溶接作業によれば、高周波電磁誘導コイル3上で、例えば、極板群を左右方向に移動させずに静止させた状態で加熱した従来法(この場合は、各極板群の下方にそれぞれ高周波電磁誘導コイルを配置。)においては30個の極板群中2個の極板群に発見された極板耳部の未溶接部分が、1箇所も発見されなかった。すなわち、本実施形態の鉛蓄電池の極板耳部の加熱装置1を用いた鉛蓄電池の極板耳部の加熱方法を適用した鉛蓄電池の極板耳部の溶接作業によれば、溶接部分における溶接不良を殆どなくして、耐腐食性が高く、強固かつ電気伝導度の高い(電気抵抗の低い)ストラップを迅速に形成できる。よって、極板群5、ひいてはこの極板群5が取り付けられる鉛蓄電池の品質を向上できるとともに、その生産効率を向上できる。
【0028】
なお、本発明に係る鉛蓄電池の極板耳部を加熱する方法および加熱装置1は、前述した一実施形態には制約されない。例えば、静止している1個の高周波電磁誘導コイル3に対して、その上方において6個の把持治具2によって把持された6個の極板群5を往復移動させる代わりに、各把持治具2により各極板群5を静止させた吊り下げ状態で把持しつつ、それらの下方において高周波電磁誘導コイル3を往復移動させても構わない。これにより、前述した加熱方法と同様の効果を得ることができるとともに、この加熱装置の駆動機構を簡単にでき、製造コストなどを抑制できる。また、高周波電磁誘導コイル3に対する各極板群5の向きは、図3に示すように、高周波電磁誘導コイル3の短径方向と直交する姿勢でも構わない。6個の各極板群5を、前述した移動方法と同様に、一列の一端部に位置している1個の極板群5から他端部に位置している1個の極板群5まで少なくとも1往復移動させることにより、前述した加熱方法と同様の効果を得ることができる。さらに、各極板群5の下方にそれぞれ1個ずつ高周波電磁誘導コイル3を配置しても構わない。これにより、加熱作業する際の各極板群5同士の温度差を殆どなくすことができる。
【0029】
【発明の効果】
請求項1〜4に記載の発明に係る鉛蓄電池の極板耳部を加熱する方法および加熱装置によれば、高周波発生装置に流される高周波の電流が発生する磁力線が作る磁界を相対的に1往復以上横切るように、各極板耳部を往復移動させて、磁力線をその密度の疎密に拘らず、各極板耳部にまんべんなく当てることができるので、各極板耳部を、その温度分布が略均一となるように加熱できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る鉛蓄電池の極板耳部の加熱装置の概略を示す斜視図。
【図2】図1に示されている鉛蓄電池の極板耳部と加熱装置の高周波電磁誘導コイルの発生磁界との関係を示す図。
【図3】本発明の他の実施形態に係る鉛蓄電池の極板耳部と加熱装置の高周波電磁誘導コイルの発生磁界との関係を示す図。
【符号の説明】
1…鉛蓄電池の極板耳部の加熱装置
2…把持治具
3…高周波電磁誘導コイル(高周波発生装置)
4…駆動装置
5…極板群
6…陽極板
6a…陽極板耳部
7…陰極板
7a…陰極板耳部
8…セパレータ
9…磁力線
10…磁界
[0001]
BACKGROUND OF THE INVENTION
The present invention heats the electrode plate ears of the lead storage battery using magnetic fields generated by high-frequency currents on the electrode plate ears provided on each of the anode plate and the cathode plate constituting the electrode plate group of the lead storage battery. Regarding the method.
[0002]
[Prior art]
The electrode plate group housed in the battery case of the lead storage battery needs to connect a plurality of anode plates and a plurality of cathode plates to each other so that the lead storage battery can generate a predetermined power. In this case, in order to connect the electrode plates of the same polarity, for example, the electrode plate ears of the anode plates are immersed in molten lead. In this state, the electrode plate ears of each anode plate and the molten lead are integrally cooled and solidified, so that the electrode plate ears of each anode plate are welded so as to be connected with a lead strap. . Similarly, the cathode plates are also welded by cooling and solidifying their electrode plate ears together with molten lead. Such a connection method is generally called a cast-on-strap method.
[0003]
When welding each anode plate and each cathode plate by this cast-on-strap method, in order to eliminate welding defects between the electrode plate ears of each electrode plate and the molten lead, usually, After each electrode plate ear is heated to a predetermined temperature in advance, each electrode plate ear is welded to each other with welding lead. That is, before the electrode plate ears are welded to each other with molten lead, the electrode plate ears and the molten lead can be uniformly welded by preheating the electrode plate ears to a predetermined temperature in advance.
[0004]
As a method of preheating the electrode plate ear, a method of scoring the electrode plate ear with a burner, a method of blowing hot air locally to the electrode plate ear, or a low temperature molten metal such as tin A method of immersing in a fixed time is known.
[0005]
In the electrode plate group, as an insulator (separator), the anode plate and the cathode plate, each of which is a plurality, are in contact with each other so that they do not contact and cause a short circuit in the lead acid battery. A separator is arranged. Therefore, as described above, in the method of scoring the electrode plate ears with a burner or the like, there is a risk that the separator will be burnt by the flame of the burner. In addition, in the method in which hot air is blown locally to the electrode plate ears or the electrode plate ears are immersed in a low-temperature molten metal such as tin for a certain time, it takes time until the electrode plate ears reach a predetermined temperature. Therefore, the efficiency of heating work, and thus the production efficiency of lead-acid batteries is low. In particular, in the latter case, there is a possibility that molten metal may adhere to the electrode plate ears, which may impair the quality and performance of the electrode plate group produced by such a preheating method, and consequently the lead storage battery.
[0006]
[Problems to be solved by the invention]
As a method for preheating the electrode plate ears that overcomes the problems of the respective preheating methods described above, for example, a method for manufacturing a lead-acid battery disclosed in Japanese Patent Application Laid-Open No. 8-255608 has been proposed. This is because the molten lead that becomes a strap for welding the electrode plate ears, the radiant heat of the molten bath that is heated by pouring this molten lead, and the heating action by electromagnetic induction of the high frequency induction coil itself A method of preheating the electrode plate ear is also known. This method will be described in detail. Around the melting tank, a high-frequency induction coil is provided so as to surround a strap cavity for storing molten lead or the like provided in the melting tank. The molten lead is poured into the strap cavity, and the electrode plate ears are placed stationary on the strap cavity, and then a current is applied to the high frequency induction coil to induce high frequency magnetic field lines. Thus, the electrode plate ear is preheated by the radiation heat of the molten lead in the melting tank and the strap cavity and the heating action by electromagnetic induction of the high frequency induction coil itself. After confirming that the electrode plate ear has reached a preset temperature, the electrode plate ear is immersed in molten lead stored in a strap cavity disposed below the electrode plate ear. Thereafter, the electrode plate ears are cooled together with the molten lead stored in the strap cavity, so that the electrode plate ears are welded to each other and connected by a lead strap.
[0007]
According to this method, as the distance from the high frequency induction coil increases, the magnetic field lines generated by the high frequency induction coil are remarkably divided into a dense area and a dense area. Therefore, the difference in heat generation efficiency due to the eddy current generated by the magnetic field lines between the area where the density of the magnetic field lines generated by the high frequency induction coil is low and the area where the magnetic field lines are dense becomes remarkable. Specifically, the heat generation efficiency of the eddy current in the region where the density of magnetic lines of force is low is lower than that in the area where the density of magnetic lines of force is low. Therefore, in this preheating method, since the melting tank is disposed between the electrode plate ear portion and the high frequency induction coil, the electrode plate ear is placed in a region where the density of the magnetic field lines formed by the high frequency induction coil is high. The part cannot be placed and stopped. In this case, the electrode plate ear is heated in a region where the density of the magnetic lines of force generated by the high frequency induction coil is low. That is, since the electrode plate ear is heated in a region where the heat generation efficiency due to the eddy current is low, the heating work takes time and the work efficiency is low. At the same time, the heating operation of the electrode plate ears by the radiant heat of the molten lead in the melting tank and the cavity takes time as in the case of using the hot air described above, and the working efficiency is low.
[0008]
Therefore, as in the invention disclosed in Japanese Patent Application Laid-Open No. 8-255608, the radiant heat of the molten lead in the melting tank and the strap cavity and the heating action by electromagnetic induction of the high frequency induction coil itself are used. In the method of preheating the part, it takes a long time to heat the electrode plate ear until it reaches a predetermined temperature, and there is a risk that the production efficiency of the electrode plate group and, consequently, the lead storage battery will be significantly reduced.
[0009]
Further, in the method of preheating the electrode plate ear using the heating effect of electromagnetic induction of the high frequency induction coil itself, in order to bring the electrode plate ear close to the coil for high frequency induction, for example, from the above-described coil for high frequency induction The melting tank is removed, and the electrode plate ears are placed close enough from this upper side to be stationary. Thereafter, when a current is applied to the high frequency induction coil to induce high frequency magnetic field lines, the magnetic field generated by the magnetic field lines generated by the high frequency induction coil, as described above, has a dense area and a sparse area. Since there is a region, the number of lines of magnetic force hitting the electrode plate ears varies depending on the region. As a result, a difference occurs in the heat distribution between the electrode tabs and the temperature becomes non-uniform. In this way, when the electrode plate ear portion and the molten lead having different temperatures depending on the part are welded, the welded portion between the electrode plate ear portion and the molten lead after the molten lead is solidified, Uneven welding due to the portion where welding could not be performed, that is, poor welding occurs. The electrode plate group connected by the lead-made strap including defective welding is weakened in strength, and an unwelded portion where welding could not be performed becomes a resistance, resulting in poor electrical conductivity. Therefore, the electrode plate group produced through such welding work may impair the quality and performance. As a result, the quality and performance of the lead storage battery produced through such welding work may be impaired.
[0010]
Therefore, the problem to be solved by the present invention is provided in each of a plurality of anode plates and cathode plates constituting a group of electrode plates of a lead-acid battery using a magnetic field generated by a high-frequency current. It is to obtain a method and a heating device for heating an electrode plate ear portion of a lead-acid battery that can heat the electrode plate ear portion that is heated so that the temperature distribution thereof is substantially uniform.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the method for heating the electrode plate ear portion of the lead-acid battery according to the invention described in claim 1 uses a plurality of sheets of lead-acid battery using a magnetic field generated by a high-frequency current. A method of heating each electrode plate ear provided on each of an anode plate and a cathode plate, wherein at least one of the high frequency generator for generating the magnetic field, or each electrode plate ear, On the other hand, the electrode plate ear portion of the lead storage battery, wherein the electrode plate ear portion is heated while reciprocating at least once so that each electrode plate ear portion crosses the magnetic field relatively. It is characterized by heating.
[0012]
In the method for heating the electrode plate ears of the lead storage battery according to the present invention, at least one of the high-frequency generator and each electrode plate ear so that each electrode plate ear crosses the magnetic field relatively more than once. Is reciprocated with respect to the other, so that the magnetic field lines generated by the high-frequency generator can be applied evenly to each electrode plate ear regardless of the density of the magnetic field lines.
[0013]
In order to solve the same problem, the method of heating the electrode plate ear portion of the lead storage battery according to the second aspect of the present invention comprises a plurality of anode plates, each of these anode plates and one each alternately. Provided on each of the electrode plates of the electrode plate group configured to include a plurality of cathode plates to be arranged, and a separator arranged to be sandwiched between the anode plates and the cathode plates. A method of heating each electrode plate ear using a magnetic field generated by a high-frequency current, aligning the postures of the plurality of electrode plate groups in a line, and using a jig to hold the plurality of electrode plate groups. A high-frequency generator that grips and generates the magnetic field, or at least one of the gripping jig and each of the electrode plate groups gripped by the gripping jig, is positioned at one end in the alignment direction with respect to the other. Each electrode plate group located at the other end from the electrode plate group Heating each electrode plate ear portion while reciprocating at least once so that the plate ear portion crosses the magnetic field relatively, heating the electrode plate ear portion of the lead-acid battery, To do.
[0014]
In the method of heating the electrode plate ears of the lead storage battery according to the present invention, the electrode plate ears of each electrode plate group are arranged in a line with the postures of the electrode plate groups aligned, and the magnetic field is relatively reciprocated once. As described above, at least one of the high-frequency generator or the holding jig and the plurality of electrode plates held by the high-frequency generator is separated from the electrode plate group located at one end in the arrangement direction with respect to the other. Because it reciprocates to the electrode plate group located at the other end, the magnetic field lines generated by the high-frequency generator are continuously applied evenly to the electrode plate ears of each electrode plate group, regardless of the density of the density. be able to.
[0015]
In carrying out the invention according to claim 1 or 2, the invention according to claim 3 subordinate to these inventions is characterized in that at least one of the high-frequency generator and each of the electrode plate ears. However, the relative speed of the reciprocating movement with respect to the other may be 100 to 200 (mm / sec).
[0016]
According to the method of heating the electrode plate ears of the lead storage battery of the present invention, the speed at which each electrode plate ear relatively crosses the magnetic field generated by the high-frequency generator is set to 100 to 200 (mm / sec). Therefore, it is possible to quickly apply a magnetic line of force to each electrode plate ear.
[0017]
Furthermore, in order to solve the same problem, an apparatus for heating the electrode plate ear portion of the lead storage battery according to the invention described in claim 4 comprises a plurality of anode plates, and each of these anode plates and one by one alternately. A plurality of cathode plates to be arranged, and an electrode plate group for a lead storage battery comprising a separator arranged to be sandwiched between each of these anode plates and each of the cathode plates are aligned in posture. The magnetic field generated by the magnetic field lines is generated by generating magnetic lines of force with a high-frequency current between the gripping jigs that are gripped in a line and the electrode plate ears provided on each of the electrode plates. At least once so as to traverse at least one of the high-frequency generator to be used and heated, the high-frequency generator, or the holding jig and the electrode plate group held by the high-frequency generator relative to the other. Reciprocating drive device It is characterized in that it comprises a.
[0018]
In the apparatus for heating the electrode plate ears of the lead storage battery of the present invention, each electrode plate group is held in a line with the posture thereof aligned, and a holding jig and each electrode plate ear of each electrode plate group are arranged. A high-frequency generator that generates a high-frequency magnetic field for heating, and a driving device that moves at least one of the high-frequency generator and each electrode plate ear so as to cross the other one or more times. Therefore, the magnetic field lines generated by the high-frequency generator can be applied smoothly and evenly to each electrode plate ear regardless of the density of the magnetic field lines.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method and a heating device 1 for heating an electrode plate ear portion of a lead storage battery according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
[0020]
In this embodiment, the electrode plate group 5 includes five anode plates 6 and six cathode plates 7, and each anode plate 5 is positioned so that the two cathode plates 7 are positioned on both outer sides. The plates 6 and the cathode plates 7 are alternately stacked one by one, and the separators 8 are arranged between the anode plates 6 and the cathode plates 7 and sandwiched therebetween. In the present embodiment, each anode plate 6 and each cathode plate 7 are formed by filling a cast lattice substrate made of a lead-calcium alloy with an anode or cathode active material paste. Each anode plate ear 6a and each cathode plate ear 7a provided on each of the anode plate 6 and the cathode plate 7 are formed in a substantially square shape when viewed from the front, and their vertical and horizontal directions. The dimension of is formed in 9 (mm), and the dimension in the thickness direction thereof is formed in 1.5 (mm).
[0021]
As shown in FIG. 1, the holding jig 2 is sandwiched between a plurality of anode plates 6, a plurality of cathode plates 7, and each of these anode plates 6 and each cathode plate 7 in this embodiment. By holding the electrode plate group 5 composed of the separators 8 and the like arranged for each cell individually and at equal intervals, the electrode plate group 5 for a total of six cells can be gripped. Six are provided. As shown in FIG. 1 and FIG. 2, each electrode plate group 5 is formed by the six gripping jigs 2 so that the respective stacking directions are formed in an oval shape (elliptical spiral shape). 3, and the anode plate ear portions 6 a and the cathode plate ear portions 7 a provided on the anode plate 6 and the cathode plate 7, respectively, so as to face the high frequency generator 3. Then, they are held in a state where their postures are aligned and arranged in a line.
[0022]
As shown in FIG. 2, the high-frequency generator 3 generates magnetic lines 9 by flowing a high-frequency current through the conductor, and each anode plate ear 6 a and each cathode plate ear using a magnetic field 10 created by the magnetic lines 9. The part 7a is heated. As shown in FIG. 1, this high frequency generator is composed of a high frequency electromagnetic induction coil 3 formed in an oval shape (elliptical spiral shape) in the present embodiment. In the present embodiment, a high-frequency current having a frequency of 20 to 30 (kHz) is passed through the high-frequency electromagnetic induction coil 3 by a high-frequency generator main body (not shown), and the output is set to 15 kW or less. In addition, in the present embodiment, the high frequency electromagnetic induction coil 3 is configured such that each electrode plate group 5 is an abbreviation of the high frequency electromagnetic induction coil 3 with respect to each holding jig 2 and each electrode plate group 5 held by them. When it is positioned directly above, it is fixed and installed at such a position that the distance between it and each anode plate ear 6a and each cathode plate ear 7a is 1 to 3 (mm). The high-frequency electromagnetic induction coil 3 has a substantially uniform temperature distribution of 200 to 220 (° C.) in each anode plate ear portion 6a and each cathode plate ear portion 7a depending on the installation state and specifications of high-frequency generation. Can be heated (preheated).
[0023]
As shown in FIG. 1, the driving device 4 is configured so that six electrode plate groups 5 and six gripping jigs 2 that grip these groups can be driven together. Specifically, the driving device 4 is configured to synchronize the six electrode plate groups 5 and the six gripping jigs 2 gripping them with each other in the state shown in FIG. As indicated by the arrows, it is set so that the high-frequency electromagnetic induction coil 3 can be reciprocated at 100 to 200 (mm / sec) collectively along the minor axis direction. Thereby, each anode plate ear | edge part 6a and each cathode plate ear | edge part 7a provided in each of each anode plate 6 and each cathode plate 7 of each electrode plate group 5 are fixed to the high frequency electromagnetic induction coil 3 fixed. Can be reciprocated at 100 to 200 (mm / sec). That is, as shown in FIG. 2, each gripping jig 2 and each electrode plate group 5 gripped by these are relatively traversed by a magnetic field 10 generated by the magnetic field lines 9 generated by the high-frequency electromagnetic induction coil 3. Furthermore, it can reciprocate at least once. In addition, the drive device 4 can reciprocate the six electrode plate groups 5 and the six gripping jigs 2 gripping them in the up-down direction.
[0024]
According to the heating device 1 of the electrode plate ear portion of the lead storage battery having the above-described configuration, each electrode plate can be obtained by continuously heating the six electrode plate groups 5 under substantially constant conditions while synchronizing with each other. Each anode plate ear 6a and each cathode plate ear 7a provided on each anode plate 6 and each cathode plate 7 of group 5 can be heated quickly and so that their temperature distribution is substantially uniform. . Therefore, the anode plate ears 6a and the cathode plate ears 7a can be welded (connected) quickly and with reduced welding defects by the cast-on-strap method. That is, the production efficiency of the lead storage battery can be increased and the quality can be improved.
[0025]
Next, the outline of the welding (connection) operation of the electrode plate ear portion of the lead storage battery to which the heating method of the electrode plate ear portion of the lead storage battery using the heating device 1 of the electrode plate ear portion of the lead storage battery of this embodiment is applied. explain.
[0026]
The six electrode plate groups 5 in which the anode plate ear portions 6a and the cathode plate ear portions 7a are unwelded are aligned in a line so that their stacking directions face the same direction. Each of the anode plate ears 6a and each of the cathode plate ears 7a is individually gripped by the six gripping jigs 2 in a state of facing downward. First, each electrode plate group 5 held by each holding jig 2 is moved so that each anode plate ear portion 6a and each cathode plate ear portion 7a is immersed in a flux bath (not shown), The flux is evenly applied to the anode plate ear 6a and each cathode plate ear 7a. Next, the driving device 4 is operated to move the six electrode plate groups 5 together so that the electrode plate group 5 positioned at one end of the row is positioned in the vicinity of the high frequency electromagnetic induction coil 3. Let Subsequently, the driving device 4 is operated, and the six electrode plate groups 5 are divided into the magnetic field 10 formed by the magnetic field lines 9 generated by the high-frequency electromagnetic induction coil 3 by the respective anode plate ear portions 6a and the respective cathode plate ear portions 7a. From the first electrode plate group 5 arranged above the vicinity of the high frequency electromagnetic induction coil 3 so as to be able to pass through each of the setting conditions described above, the sixth electrode located at the other end of the row. The electrode plate group 5 is reciprocated once above the high-frequency electromagnetic induction coil 3. Thereafter, the driving device 4 is operated, and the six electrode plate groups 5 are placed in the strap cavities of the melting tank (not shown) into which the molten lead (not shown) is poured. The plate ear portion 7a is moved so as to be immersed in the molten lead in the strap cavity. In the strap cavity of the melting tank, each anode plate ear portion 6a and each cathode plate ear portion 7a and a pole column of a lead storage battery (not shown) are cooled and solidified together with molten lead to form a strap (not shown). Then, the anode plate ear portions 6a and the cathode plate ear portions 7a having the same polarity are connected to each other.
[0027]
According to the welding operation of the electrode plate ear portion of the lead storage battery to which the heating method of the electrode plate ear portion of the lead storage battery using the heating device 1 of the electrode plate ear portion of the lead storage battery described above is applied, on the high frequency electromagnetic induction coil 3 Thus, for example, in the conventional method in which the electrode plate group is heated without moving in the left-right direction (in this case, a high-frequency electromagnetic induction coil is disposed below each electrode plate group), 30 pieces are used. None of the unwelded portions of the electrode plate ears found in the two electrode plate groups in the electrode plate group were found. That is, according to the welding operation of the electrode plate ear portion of the lead storage battery to which the heating method of the electrode plate ear portion of the lead storage battery using the heating device 1 of the electrode plate ear portion of the lead storage battery of the present embodiment is applied. Straps with high corrosion resistance, strong and high electrical conductivity (low electrical resistance) can be quickly formed with almost no weld failure. Therefore, the quality of the electrode plate group 5 and by extension, the lead storage battery to which this electrode plate group 5 is attached can be improved, and the production efficiency can be improved.
[0028]
In addition, the method and the heating apparatus 1 for heating the electrode tab portion of the lead storage battery according to the present invention are not limited to the above-described embodiment. For example, instead of reciprocating six electrode plate groups 5 held by six holding jigs 2 above one stationary high-frequency electromagnetic induction coil 3, each holding jig 2, the high-frequency electromagnetic induction coil 3 may be reciprocated below the electrode plate group 5 while being held in a suspended state. As a result, the same effects as those of the heating method described above can be obtained, the drive mechanism of the heating device can be simplified, and the manufacturing cost can be suppressed. Further, the orientation of each electrode plate group 5 with respect to the high frequency electromagnetic induction coil 3 may be a posture orthogonal to the minor axis direction of the high frequency electromagnetic induction coil 3, as shown in FIG. In the same manner as the movement method described above, each of the six electrode plate groups 5 is changed from one electrode plate group 5 located at one end of a row to one electrode plate group 5 located at the other end. The effect similar to that of the heating method described above can be obtained by reciprocating at least once. Further, one high frequency electromagnetic induction coil 3 may be arranged below each electrode plate group 5. Thereby, the temperature difference between each electrode plate group 5 at the time of a heating operation can be almost eliminated.
[0029]
【The invention's effect】
According to the method and the heating device for heating the electrode plate ear portion of the lead-acid battery according to the first to fourth aspects of the invention, the magnetic field generated by the lines of magnetic force generated by the high-frequency current flowing through the high-frequency generator is relatively 1 Each electrode plate ear can be reciprocated so that it crosses more than reciprocatingly, and the magnetic field lines can be applied evenly to each electrode plate ear regardless of the density of the density. Can be heated so as to be substantially uniform.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a heating device for an electrode plate ear portion of a lead storage battery according to an embodiment of the present invention.
FIG. 2 is a diagram showing the relationship between the electrode tabs of the lead storage battery shown in FIG. 1 and the magnetic field generated by the high frequency electromagnetic induction coil of the heating device.
FIG. 3 is a diagram showing a relationship between a pole plate ear portion of a lead-acid battery according to another embodiment of the present invention and a magnetic field generated by a high-frequency electromagnetic induction coil of a heating device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heating device 2 of the electrode plate ear | edge part of lead acid battery ... Gripping jig 3 ... High frequency electromagnetic induction coil (high frequency generator)
DESCRIPTION OF SYMBOLS 4 ... Drive apparatus 5 ... Electrode board group 6 ... Anode plate 6a ... Anode plate ear | edge part 7 ... Cathode plate 7a ... Cathode plate ear | edge part 8 ... Separator 9 ... Magnetic field line 10 ... Magnetic field

Claims (4)

高周波の電流が作る磁界を用いて鉛蓄電池が有している複数枚の陽極板および陰極板のそれぞれに設けられている各極板耳部を加熱する方法であって、
前記磁界を発生する高周波発生装置、もしくは前記各極板耳部のうちの少なくとも一方を、他方に対して、前記各極板耳部が前記磁界を相対的に横切るように、少なくとも1回往復移動させつつ、前記各極板耳部を加熱することを特徴とする鉛蓄電池の極板耳部を加熱する方法。
A method of heating each electrode plate ear provided on each of a plurality of anode plates and cathode plates of a lead storage battery using a magnetic field generated by a high-frequency current,
The high-frequency generator that generates the magnetic field or at least one of the electrode plate ears is reciprocated at least once so that the electrode plate ears cross the magnetic field relative to the other. And heating the electrode plate ears of the lead-acid battery, wherein the electrode plate ears are heated.
複数枚の陽極板、これら各陽極板と1枚ずつ交互に配置される複数枚の陰極板、およびこれら各陽極板と各陰極板との間に挟まれて配置されるセパレータを備えて構成される極板群の前記各極板のそれぞれに設けられている各極板耳部を、高周波の電流が作る磁界を用いて加熱する方法であって、
複数の前記極板群の姿勢を揃えて一列に並べるとともに、これら複数の極板群を把持治具により把持し、前記磁界を発生する高周波発生装置、もしくは前記把持治具およびこれにより把持された前記各極板群のうちの少なくとも一方を、他方に対して、前記並び方向の一端部に位置している極板群から他端部に位置している極板群の各極板耳部が前記磁界を相対的に横切るように、少なくとも1回往復移動させつつ、前記各極板耳部を加熱することを特徴とする鉛蓄電池の極板耳部を加熱する方法。
It comprises a plurality of anode plates, a plurality of cathode plates arranged alternately with each of these anode plates, and a separator placed between each of these anode plates and each cathode plate. Each electrode plate ear provided in each electrode plate of the electrode plate group is heated using a magnetic field generated by a high-frequency current,
The plurality of electrode plate groups are aligned and arranged in a line, and the plurality of electrode plate groups are held by a holding jig, and the high-frequency generator that generates the magnetic field, or the holding jig and the holding jig Each electrode plate ear portion of the electrode plate group positioned at the other end from the electrode plate group positioned at one end portion in the alignment direction with respect to at least one of the electrode plate groups with respect to the other. A method of heating electrode plate ears of a lead-acid battery, wherein each electrode plate ear portion is heated while reciprocating at least once so as to cross the magnetic field relatively.
前記高周波発生装置、もしくは前記各極板耳部のうちの少なくとも一方が、他方に対して往復移動する相対的な速さを、100〜200(mm/sec)とすることを特徴とする請求項1または2に記載の鉛蓄電池の極板耳部を加熱する方法。The relative speed at which at least one of the high-frequency generator or each of the electrode plate ears reciprocates with respect to the other is set to 100 to 200 (mm / sec). A method of heating an electrode plate ear portion of the lead storage battery according to 1 or 2. 複数枚の陽極板、これら各陽極板と1枚ずつ交互に配置される複数枚の陰極板、およびこれら各陽極板と各陰極板との間に挟まれて配置されるセパレータを備えて構成される鉛蓄電池用の極板群を、それらの姿勢が揃えられて一列に並べられた状態で把持する把持治具と、
前記各極板のそれぞれに設けられている各極板耳部を、高周波の電流により磁力線を発生させることにより、この磁力線が作る磁界を用いて加熱する高周波発生装置と、
この高周波発生装置、もしくは前記把持治具およびこれに把持された前記極板群のうちの少なくとも一方を、他方に対して相対的に横切るように、少なくとも1回往復移動させる駆動装置とを具備することを特徴とする鉛蓄電池の極板耳部を加熱する装置。
It comprises a plurality of anode plates, a plurality of cathode plates arranged alternately with each of these anode plates, and a separator placed between each of these anode plates and each cathode plate. A gripping jig for gripping the electrode plate group for lead-acid batteries in a state in which their postures are aligned and aligned.
A high-frequency generator that heats each electrode plate ear provided in each of the electrode plates using a magnetic field generated by the magnetic lines of force by generating magnetic lines of force with a high-frequency current;
A high-frequency generator, or a driving device that reciprocates at least one of the gripping jig and the electrode plate group gripped by the high-frequency generator at least once so as to cross the other relative to the other. The apparatus which heats the electrode plate ear | edge part of the lead storage battery characterized by the above-mentioned.
JP2000214573A 2000-07-14 2000-07-14 Method and apparatus for heating electrode plate ear of lead-acid battery Expired - Fee Related JP3651368B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000214573A JP3651368B2 (en) 2000-07-14 2000-07-14 Method and apparatus for heating electrode plate ear of lead-acid battery
TW090116162A TW531913B (en) 2000-07-14 2001-07-02 Method for heating plate lug of lead storage battery and its heating device
CNB011224932A CN1196212C (en) 2000-07-14 2001-07-13 Method and device for heating convex edge of polar board of lead accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000214573A JP3651368B2 (en) 2000-07-14 2000-07-14 Method and apparatus for heating electrode plate ear of lead-acid battery

Publications (2)

Publication Number Publication Date
JP2002033095A JP2002033095A (en) 2002-01-31
JP3651368B2 true JP3651368B2 (en) 2005-05-25

Family

ID=18710127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000214573A Expired - Fee Related JP3651368B2 (en) 2000-07-14 2000-07-14 Method and apparatus for heating electrode plate ear of lead-acid battery

Country Status (3)

Country Link
JP (1) JP3651368B2 (en)
CN (1) CN1196212C (en)
TW (1) TW531913B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100592059C (en) * 2007-12-20 2010-02-24 中国重型机械研究院 Slab casting machine double-cold spray nozzle thermal state characteristic test plate type casting blank heating means
CN103628040B (en) * 2012-08-28 2016-08-10 北京北方微电子基地设备工艺研究中心有限责任公司 MOCVD device and MOCVD heating means
CN103240404A (en) * 2013-05-29 2013-08-14 向阳 Heating equipment and heating method of cast-welding iron hard die

Also Published As

Publication number Publication date
TW531913B (en) 2003-05-11
CN1196212C (en) 2005-04-06
JP2002033095A (en) 2002-01-31
CN1333573A (en) 2002-01-30

Similar Documents

Publication Publication Date Title
US9375804B2 (en) Low pressure electron beam welding of Li-ion battery connections
US20130189560A1 (en) Materials And Methods For Joining Battery Cell Terminals And Interconnector Busbars
EP2449619B1 (en) Method of assembling a bipolar battery
KR100192098B1 (en) Lead acid storage battery and method for making same
WO1999025035A1 (en) Method of manufacturing enclosed battery and enclosed battery
JP3526730B2 (en) Manufacturing equipment for electrode assembly for lead-acid batteries
JP3651368B2 (en) Method and apparatus for heating electrode plate ear of lead-acid battery
US6440182B1 (en) Method for bonding collector plates to end faces of electrode plates
US4037077A (en) Battery welding method
CN205764427U (en) A kind of oblique angle multi-head device for ultrasonic welding
US20230241705A1 (en) Method and device for impact welding of battery terminals
CN210052783U (en) Homonymy collection flow structure, battery module and electric motor car
CN113172306A (en) Hollow electrode wire feeding electric arc additive manufacturing system and method
US20230246315A1 (en) Device for impact welding of battery terminals
CN105817757A (en) Oblique-angle multi-welding-head ultrasonic welding equipment
CN217618252U (en) Welding equipment
CN220761295U (en) Brazing welding device for energy storage element
KR20170126108A (en) Resistance Welding Device Including Electrode Bar Employed with High Melting Point Metal and Method Using the Same
JPH06290770A (en) Forming method of strap for lead acid battery
CN108390005B (en) High-conductivity busbar structure for lead-acid storage battery
WO2023021266A1 (en) Electron beam welding method and apparatus
JPS5981865A (en) Formation method of strap for lead storage battery
CN108907436A (en) Accumulator terminal hyperfrequency welder
CN116135398A (en) Improvement method, welding method, processing system, control device, and program product
CN113909660A (en) Resistance spot welding method and resistance spot welding device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3651368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees