JP3650799B2 - Retaining wall with groundwater flow protection function and method of construction of retaining wall - Google Patents

Retaining wall with groundwater flow protection function and method of construction of retaining wall Download PDF

Info

Publication number
JP3650799B2
JP3650799B2 JP2000205456A JP2000205456A JP3650799B2 JP 3650799 B2 JP3650799 B2 JP 3650799B2 JP 2000205456 A JP2000205456 A JP 2000205456A JP 2000205456 A JP2000205456 A JP 2000205456A JP 3650799 B2 JP3650799 B2 JP 3650799B2
Authority
JP
Japan
Prior art keywords
water
retaining wall
groundwater flow
water passage
passage hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000205456A
Other languages
Japanese (ja)
Other versions
JP2002021080A (en
Inventor
林 延 房 小
谷 常 松 向
栄 司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP2000205456A priority Critical patent/JP3650799B2/en
Publication of JP2002021080A publication Critical patent/JP2002021080A/en
Application granted granted Critical
Publication of JP3650799B2 publication Critical patent/JP3650799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土木または建築構造物の地下部分を施工するための遮水性山留め壁に関し、詳しくは遮水性山留め壁によって遮断される地下水流の通水保全技術に関する。
【0002】
【従来の技術】
地下鉄や地下道路など線状の地下構築物を造築する場合、大深度の遮水性山留め壁を連続して施工した場合、地域の自由な地下水流を遮断することがある。図10は、遮水性山留め壁100a、100bにより地下水流が遮断される状態を示す模式図である。ここで遮水性山留め壁100a、100bは掘削底面地盤を安定させるため床付け107よりも深く、透水層105a、105bを貫通して不透水層106bまでの長い根入れ108とされている。このため地下水流160a、160bは上流側の遮水性山留め壁100bに遮られる。
【0003】
遮水性山留め壁100a、bによって地下水流160a、bが遮られることにより、下流側の地表150aは地下水位の低下に伴う地盤沈下をおこす。また地下水位の低下により立木130aの立枯れ、井戸120の井戸枯れが発生する。さらに、建物などの構造物110aの沈下などの影響がでる。
【0004】
遮水性山留め壁100bの上流側では、地下水流が堰き止められることにより、水位の上昇をきたし、上流側地表150bの地盤湿潤化により立木130bに根腐れの障害を起こしたり、構造物110bの地下部分の漏水などが発生することがある。また、地下水流の循環がなくなるため地下水そのものの水質が低下することもある。このような周辺環境への影響が施工中から現れる。
【0005】
また、遮水性山留め壁100a、bは、床付け107がその下部の地下水の影響で地下構造物が浮き上がる浮上現象が起きないよう、床付け107より深い部分の透水層105bを貫通して不透水層106bまで根入されている。このため、構造物の造築のため開削される床付け107より深い地下水流160bも遮断される。
【0006】
前述の問題を解決するため、地下構築物の完成後に構築物の上部の遮水性山留め壁を撤去する方法で構築物の上部の地下水流を復旧する方法。
遮水性山留め壁の開削部の壁面を削孔し上流側の透水層地盤に集水パイプを挿入し下流側の透水層地盤に挿入した排水パイプと連結して地下水流を復旧させる方法。
遮水性山留め壁の開削部の両側に集排水井戸を掘り上流側の井戸と下流側の井戸を地中で連結して地下水流を復旧させる方法が知られている。
しかし、これらの地下水流動保全工法では、開削された床付け107の上部の地下水流160aを復旧させることはできるが床付け107より深い部分の地下水流160bの復旧はできない問題があった。
【0007】
また、施工後の井戸の目詰まりなどのメンテナンスに費用がかかる問題があった。
【0008】
【発明が解決しようとする課題】
本発明は、前述の問題に鑑みてなされたものであり、地下構築物の造築後に、透水層に設けられた遮水性山留め壁の通水を復旧させることのできる地下水流保全機能を有する遮水性山留め壁を提供することを目的とする。
【0009】
特に、床付け部以深の大深度の地下水流の復旧を、容易に、経済的に行える遮水性山留め壁の提供を目的とする。
【0010】
また、地上の復旧が急がれる施工立地において、埋め戻し後に地下水流を復旧させることを目的とする。
【0011】
【課題を解決するための手段】
前記課題を解決するため、本発明の地下水流保全機能を有する山留め壁は、地下開削構造物の造築のために施工される遮水性山留め壁であって、地下水流に対応した部分に任意の時期に地下水流を通過させるための水通過孔が形成され、前記水通過孔は、閉鎖された通水部を備え、該通水部は中空体の導電性金属からなる本体部と、本体部内の内壁近傍に設けられた一つまたは複数の電極と、本体部内部に電解質溶液と間隙充填物が充填され、任意の時期に前記電極に電圧を印加して本体部壁面を電食により脆性化して破壊貫通し地下水流が通過できる通水孔を形成することを特徴とする。
【0012】
請求項2の発明は、請求項1に記載の発明であって、前記遮水性山留め壁は、地下水流を遮断する任意の深度部分に前記水通過孔を備えた鋼矢板からなることを特徴とする。
【0013】
請求項3の発明は、請求項1に記載の発明であって、前記遮水性山留め壁は、地下水流を遮断する任意の深度部分に前記水通過孔を備えた鋼管矢板からなることを特徴とする。
【0014】
請求項4の発明は、請求項1に記載の発明であって、前記遮水性山留め壁は、地下水流を遮断する任意の深度部分に前記水通過孔を備えたソイルモルタル壁からなることを特徴とする。
【0015】
請求項5の発明は、請求項1に記載の発明であって、前記遮水性山留め壁は、地下水流を遮断する任意の深度部分に前記水通過孔を備える鉄筋コンクリート壁からなることを特徴とする。
【0016】
また、請求項6記載の発明は、請求項1から5に記載の発明であって、前記通水部は、電解質溶液供給パイプが連結されていることを特徴とする。
【0017】
また、請求項7の発明は、請求項1から6のいずれかに記載の発明であって、前記通水部は、電極近傍の電食部以外の内壁が絶縁層で覆われていることを特徴とする。
【0018】
請求項8の発明は、請求項1、4、5、6又は7のいずれかに記載の発明であって、請求項4及び5記載の水通過孔は、破壊貫通された前記通水部から漏出する電解質溶液と膨張性破砕材の水和反応により膨張して通水部周辺の山留め壁を形成するソイルモルタルまたはコンクリートを破砕し地下水流が通過できる通水孔を形成する破砕部をさらに備えることを特徴とする。
【0019】
請求項9の発明は、本発明の山留め壁の施工方法であって、地下開削構造物のため地盤を遮断するように請求項1記載の地下水流保全機能を有する山留め壁を施工し、地下開削構造物の造築を行ない、その後任意の時期に電極に電圧を印加して通水部の本体部壁面を電食により脆性化して破壊貫通し地下水流を通過させる水通過孔を形成することを特徴とする。
【0020】
請求項10の発明は、請求項9記載の発明であって、前記水通過孔は、開削された地下開削構造物の床付けよりさらに深い位置の遮水性山留め壁部分であって、地下開削構造物の施工後の任意の時期に通水部を破壊貫通することにより水通過孔を形成し、遮水性山留め壁で遮断されていた地下水流の通水を保全することを特徴とする。
【0021】
請求項11の発明は、請求項9記載の発明であって、前記水通過孔は、地下開削構造物の側面または上部の遮水性山留め壁部分であって、施工途中の任意の時期に通水部を破壊貫通して水通過孔を形成し、地下水流の上流部と下流部の通水口を連結管で連結することにより遮水性山留め壁で遮断されていた地下水流の通水を保全することを特徴とする。
【0022】
請求項12の発明は、請求項9記載の発明であって、前記水通過孔は、地下開削構造物の側面または上部の遮水性山留め壁部分の通水部であって、地下開削構造物の施工と埋め戻し地上復旧後の任意の時期に、通水部を破壊貫通することにより水通過孔を形成し、遮水性山留め壁で遮断されていた地下水流を保全をすることを特徴とする。
【0023】
【発明の実施の形態】
以下図面に基づいて本発明の実施の形態を詳細に説明する。図1及び図2は鋼矢板を用いた本発明の地下水流保全機能を有する山留め壁の一実施の形態を示す図である。
図3及び図4は鋼管矢板を用いた本発明の地下水流保全機能を有する山留め壁の一実施の形態を示す図である。
図5及び図6はソイルセメントを用いた本発明の地下水流保全機能を有する山留め壁の一実施の形態を示す図である。
図7及び図8は鉄筋コンクリートを用いた本発明の地下水流保全機能を有する山留め壁の一実施の形態を示す図である。
図9は本発明の地下水流保全機能を有する山留め壁の施工後の地下水流の復旧状況を示す模式図である。
【0024】
図1は、本発明の地下開削構造物の造築のために施工される鋼矢板15からなる遮水性山留め壁100が地下水流を遮断する深度部分に水通過孔1を配設した請求項2記載の一実施の形態を示す正面図である。図において隣り合う鋼矢板15、15は連結部15aで連結され、連結間隙には防水性の充填材で遮水性をさらに高める場合もある。
【0025】
水通過孔1は鋼矢板15の凹部に溶接で形成した中空体の通水部2で、筐体を形成する本体部3の底面である一方は鋼矢板15、上面である上板3aには開口部に透水性の間隙を有する金網3bが溶接されている。また、通水部2の上部には電解質溶液供給パイプ8が連結され、電解質溶液供給パイプ8は開削される床付け面107の上部まで伸びて電解質溶液供給口8aが設けられている。また、電解質溶液供給パイプ8内には直流電源13の陰極に接続された電線13bが挿通され通水部内の後述する電極に接続されている。
【0026】
前記電極に電圧を印可する際は直流電源13の陽極は電線13aにより鋼矢板15の接続端子14aに連結することにより行われる。
【0027】
図2は、図1のA−A断面を示す横断面図である。遮水性山留め壁100を形成する鋼矢板15の凹部に溶接で形成した中空体の通水部2の断面を示している。通水部2内部には鋼矢板15壁面に接着された絶縁性材料からなる電極支持部材4aに保持された電極4が電食により破壊貫通させて水通過孔1を形成する貫通部7と近接した位置に配置し、中空部分は透水間隙を有する砕石などの間隙充填物6で充填されている。
前記電極4には電解質溶液供給パイプ8内を挿通された電線13bが接続されている。
本体部3の両端にある貫通部7以外の内壁は電食を防止するため絶縁性塗料等の絶縁層9を設けてある。
【0028】
図3は、本発明の地下開削構造物の造築のために施工される鋼管矢板16からなる遮水性山留め壁100が地下水流を遮断する深度部分に水通過孔1を配設した請求項3記載の一実施の形態を示す平面図である。図において隣り合う鋼管矢板16、16は連結部16aで連結され、連結間隙には防水性の充填材(図示せず)で遮水性を保っている。
【0029】
水通過孔1は鋼管矢板16の円柱内部を横断するように設けられた中空体の通水部2で、鋼管矢板16の周壁に溶接固定されている。また、通水部2の上部には電解質溶液供給パイプ8が連結され、電解質溶液供給パイプ8は開削される床付け面107の上部まで伸びてバルブ8bと電解質溶液供給口8aが設けられている。また、電解質溶液供給パイプ8内には直流電源13の陰極に接続された電線13bが挿通され通水部内の後述する電極に接続されている。
【0030】
図4は、図3のB−B断面を示す縦断面図である。遮水性山留め壁100を形成する鋼管矢板16の円柱内部を横断するように設けられた中空体の通水部2の断面を示している。通水部2は導電性金属からなる長手方向両端が閉塞された本体部3で、本体部3内部には絶縁性材料からなる電極支持部材4aに保持された電極4が電食により破壊貫通させて水通過孔を形成する貫通部7と近接した位置に配置し、中空部分は透水間隙を有する砕石などの間隙充填物6で充填されている。前記電極4には電解質溶液供給パイプ8内を挿通された電線13bが接続端子14bで接続されている。
本体部3の両端にある貫通部7以外の内壁は電食を防止するため絶縁性塗料等の絶縁層9を設けてある。
前記電極に電圧を印可する際は直流電源13の陽極は電線13aにより鋼管矢板16の接続端子14aに連結することにより行われる。
【0031】
図5は、本発明の地下開削構造物の造築のために施工されるソイルモルタル壁17からなる遮水性山留め壁100が地下水流を遮断する深度部分に水通過孔1を配設した請求項4記載の一実施の形態を示す平面図である。図においてソイルモルタル壁17は、円周が重なり合うように穿孔された壁孔にソイルモルタル17bを充填しその中央に補強材としてH形鋼17aからなる杭芯材が挿入されて固化したものである。
【0032】
水通過孔1は、通水部2と破砕部10よりなり、通水部2は、H形鋼17aの片側の凹部を横断するように設けられた中空体の本体部3で、H形鋼17aの中央壁と両端翼に溶接固定されている。また、破砕部10は、H形鋼17aの両端翼の外壁面に溶接固定されている。さらに、通水部2の上部には電解質溶液供給パイプ8が連結され、電解質溶液供給パイプ8は開削される床付け面107の上部まで伸びて(図6参照)バルブ8bと電解質溶液供給口8aが設けられている。また、電解質溶液供給パイプ8内には直流電源13の陰極に接続された電線13bが挿通され通水部内の後述する電極に接続されている。
【0033】
図6は、図5のC−C断面を示す縦断面図である。遮水性山留め壁100を形成するソイルモルタル壁17の杭芯材のH形鋼17aの凹部を横断するように設けられた通水部2と、H形鋼17aの両端翼の外面に設けられた破砕部10の断面を示している。通水部2は導電性金属からなる上板3aと、下板3cと、側板3dとをH形鋼17aの中央壁と両端翼に溶接して形成した中空の閉塞された本体部3で、本体部3内部には絶縁性材料からなる電極支持部材4aに保持された電極4が電食により破壊貫通させて水通過孔を形成する貫通部7と近接した位置に配置し、中空部分は透水間隙を有する砕石などの間隙充填物6で充填されている。前記電極4には電解質溶液供給パイプ8内を挿通された電線13bが接続端子14bで接続されている。
本体部3の両端にある貫通部7以外の内壁は電食を防止するため絶縁性塗料等の絶縁層9を設けてある。
前記電極に電圧を印可する際は直流電源13の陽極は電線13aにより鋼管矢板16の接続端子14aに連結することにより行われる。
【0034】
前記破砕部10は、図6に示すように、H形鋼17aの両端翼の外面に溶接して形成した四角枠10a内部に膨張性破砕材包装体11を複数個収納し、打設されたソイルセメントの水分を遮断する防水性の材料からなる防水カバー10bで包装したものである。
【0035】
図7は、本発明の地下開削構造物の造築のために施工される鉄筋コンクリート壁18からなる遮水性山留め壁100が地下水流を遮断する深度部分に水通過孔1を配設した請求項5記載の一実施の形態を示す平面図である。
図において鉄筋コンクリート壁18は、穿孔された壁孔に鉄筋18a、18bを補強材としてコンクリート18cを充填固化したものである。18aは主筋、18bはフープ筋を示す。
【0036】
水通過孔1は、通水部2と通水部の両端内部に収納された破砕部10よりなり、通水部2は、前記コンクリート壁18を横断するように設けられた中空体の本体部3で、鉄筋18a、bに溶接固定されている。さらに、通水部2の上部には電解質溶液供給パイプ8が連結され、電解質溶液供給パイプ8は開削される床付け面107の上部まで伸びて(図8参照)バルブ8bと電解質溶液供給口8aが設けられている。また、電解質溶液供給パイプ8内には直流電源13の陰極に接続された電線13bが挿通され通水部内の後述する電極に接続されている。
【0037】
図8は、図7のD−D断面を示す縦断面図である。遮水性山留め壁100を形成するコンクリート壁18を横断するように設けられた通水部2と、通水部の両端内部に収納された破砕部10の断面を示している。通水部2は導電性金属からなる中空の閉塞された本体部3で、本体部3内部には絶縁性材料からなる電極支持部材4aに保持された電極4が電食により破壊貫通させて水通過孔1を形成する貫通部7と近接した位置に配置し、中空部分は透水間隙を有する砕石などの間隙充填物6で充填されている。前記電極4には電解質溶液供給パイプ8内を挿通された電線13bが接続端子14bで接続されている。
本体部3の両端にある貫通部7以外の内壁は電食を防止するため絶縁性塗料等の絶縁層9を設けてある。
前記電極に電圧を印可する際は直流電源13の陽極は電線13aにより鋼管矢板16の接続端子14aに連結することにより行われる。
【0038】
以上説明した4実施の形態において、水通過孔1を形成する通水部2は、予め地上で鋼矢板15、鋼管矢板16、ソイルセメント壁の杭芯材のH形鋼17a、または鉄筋コンクリート壁18の補強材である鉄筋18a、bに取付けておき、地中に立て込むことができる。このため従来の遮水性山留め壁100の施工行程の作業を遅延なく進めることができる。
【0039】
また、前記通水部2は、遮水性山留め壁100の施工時は閉鎖されており、地下水を遮水するため、遮水状態で地下構造物110cを造築することを可能にする。
【0040】
次に、本発明の地下水流保全機能を有する山留め壁における水通過孔1の形成作用について説明する。地下水流を保全したい任意の時期に、まず、電解質溶液供給口8aから、塩水などの電解質溶液5を電解質溶液供給パイプ8経由で通水部2に充填する。次に、直流電源13の陽極を接続端子14aに、陰極を電線13bに接続し、通水部2内部に設けた電極4に電圧を印可する。陰極の電極4と相対する陽極が接続された通水部2との間に電解質溶液を介して電流が流れ、貫通部7が電食されて破壊貫通される。この方法によれば、地表150または、開削された床付け面107から地中の通水部2に任意の時期に水通過孔1を形成することができる。
【0041】
さらに、破砕部10は、破壊貫通された通水部2からの電解質溶液との水和反応で膨張してソイルモルタル壁17や鉄筋コンクリート壁18の固化したソイルモルタル17bまたはコンクリート18cを破砕し水通過孔1を形成する。
【0042】
次に本発明の山留め壁の施工方法について詳細に説明する。
【0043】
請求項10の山留め壁の施工方法は、水通過孔1を、開削された地下開削構造物110cの床付け107よりさらに深い位置の遮水性山留め壁100部分に配設し、地下開削構造物110cの施工後の任意の時期に通水部2を破壊貫通することにより水通過孔1を形成し、遮水性山留め壁100で遮断されていた地下水流160の通水を保全する。この方法によれば、従来不可能であった開削部より深い位置の地下水流を復旧させることができる。
【0044】
請求項11の山留め壁の施工方法は、水通過孔1を、地下開削構造物110cの側面または上部の遮水性山留め壁100部分に配設し、施工途中の任意の時期に通水部2を破壊貫通して水通過孔1を形成し、地下水流の上流部と下流部の通水口を通水パイプ30で連結することにより遮水性山留め壁100で遮断されていた地下水流160の通水を保全する。この工法によれば、地下構築物の造築中から通水を復旧することができる。このため、地下水流の遮断による影響、被害を最小にすることができる。
【0045】
請求項12の山留め壁の施工方法は、水通過孔1を、地下開削構造物110cの側面または上部の遮水性山留め壁100部分の通水部2であって、地下開削構造物の施工と埋め戻し地上復旧後の任意の時期に、通水部2を破壊貫通することにより水通過孔1を形成し、遮水性山留め壁100で遮断されていた地下水流を保全をする。この工法によれば、交通遮断など地上部の復旧が急がれている現場においても、地上部の復旧後に地中の地下水流を復活させることができる。
【0046】
図9は、本発明の地下水流保全機能を有する遮水性山留め壁100の施工後の地下水流の復旧状況を示す模式図である。
【0047】
施工中は遮水性山留め壁100により遮水した状態で地下構築物110cを造築し、開削した構築物の上部を埋め戻した状態を示す。図に示すように、透水層105aに接する仮壁部1の内部には通水パイプ30を配置して埋め戻すことにより地下水流106aを復旧させている。
【0048】
さらに、本発明によれば床付け107より深い透水層105bに接する仮壁部1をも破壊することにより地下水流106bを復旧させることができる。
【0049】
【発明の効果】
本発明の地下水流保全機能を有する遮水性山留め壁によれば、地下構築物の造築後に、透水層に設けられた遮水性山留め壁の通水を埋め戻し工程と共に容易に復旧させることができる。特に、床付け部以深の大深度の地下水流の復旧を、容易に、経済的に行うことができる。
【0050】
請求項10の山留め壁の施工方法によれば、従来不可能であった開削部より深い位置の地下水流を復旧させることができる。
【0051】
請求項11の山留め壁の施工方法によれば、地下構築物の造築中から通水を復旧することができる。このため、地下水流の遮断による影響、被害を最小にすることができる。
【0052】
請求項12の山留め壁の施工方法によれば、交通遮断など地上部の復旧が急がれている現場においても、地上部の復旧後に地中の地下水流を復活させることができる。
【図面の簡単な説明】
【図1】 鋼矢板を用いた本発明の地下水流保全機能を有する山留め壁の一実施の形態を示す正面図である。
【図2】 図1のA−A断面を示す横断面図である。
【図3】 鋼管矢板を用いた本発明の地下水流保全機能を有する山留め壁の一実施の形態を示す平面図である。
【図4】 図3のB−B断面を示す縦断面図である。
【図5】 ソイルセメントを用いた本発明の地下水流保全機能を有する山留め壁の一実施の形態を示す平面図である。
【図6】 図5のC−C断面を示す縦断面図である。
【図7】 鉄筋コンクリートを用いた本発明の地下水流保全機能を有する山留め壁の一実施の形態を示す平面図である。
【図8】 図7のD−D断面を示す縦断面図である。
【図9】 本発明の地下水流保全機能を有する山留め壁の施工後の地下水流の復旧状況を示す模式図である。
【図10】 遮水性山留め壁により地下水流が遮断される状態を示す模式図である。
【符号の説明】
1 水通過孔
2 通水部
3 本体部
3a 上板
3b 金網
3c 下板
3d 側板
4 電極
4a 電極支持部材
5 電解質溶液
6 間隙充填物
7 貫通部(電食による破壊貫通部及び破砕による貫通部)
8 電解質溶液供給パイプ
8a 電解溶液供給口
8b バルブ
9 絶縁層
10 破砕部
10a 四角枠
10b 防水カバー
11 膨張性破砕材包装体
13 直流電源
13a、13b 電線
14a、14b 接続端子
15 鋼矢板
15a 連結部
16 鋼管矢板
16a 連結部
17 ソイルモルタル壁
17a H形鋼
17b ソイルモルタル
18 鉄筋コンクリート壁
18a、18b 鉄筋(主筋、フープ筋)
100、100a、100b 遮水性土留め壁
105a、b 透水層
106a、b 不透水層
107 床付け
110a、b 構築物
110c 地下構築物
120 井戸
130a、b 立木
150a、b 地表
160a、b 地下水流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-impervious retaining wall for constructing an underground part of a civil engineering or building structure, and more particularly to a water flow conservation technique for a groundwater flow blocked by the water-impervious retaining wall.
[0002]
[Prior art]
When building a linear underground structure such as a subway or an underground road, if a deep water-proof mountain retaining wall is continuously constructed, the free groundwater flow in the area may be blocked. FIG. 10 is a schematic diagram illustrating a state where the groundwater flow is blocked by the water-impervious mountain retaining walls 100a and 100b. Here, the impermeable walls 100a and 100b are deeper than the flooring 107 in order to stabilize the excavation bottom ground, and are long penetrations 108 that penetrate the permeable layers 105a and 105b to the impermeable layer 106b. For this reason, the groundwater flow 160a, 160b is blocked by the upstream water-impervious mountain retaining wall 100b.
[0003]
When the groundwater flow 160a, b is blocked by the water-impervious mountain retaining walls 100a, b, the ground surface 150a on the downstream side causes ground subsidence due to a decrease in the groundwater level. Further, the fall of the groundwater level causes the standing tree 130a to wither and the well 120 to wither. Further, there is an influence such as settlement of the structure 110a such as a building.
[0004]
On the upstream side of the water-impervious mountain retaining wall 100b, the groundwater flow is blocked and the water level rises, and due to the wetness of the ground on the upstream surface 150b, the root tree 130b is obstructed or the underground of the structure 110b Some parts may leak. In addition, since the circulation of groundwater flow is lost, the quality of the groundwater itself may deteriorate. Such influence on the surrounding environment appears during construction.
[0005]
In addition, the impermeable mountain retaining walls 100a and 100b are impermeable to the floor 107 through the water permeable layer 105b deeper than the floor 107 so that a floating phenomenon in which the underground structure rises due to the groundwater under the floor 107 does not occur. The layer 106b is embedded. For this reason, the underground water flow 160b deeper than the flooring 107 to be excavated for the construction of the structure is also blocked.
[0006]
In order to solve the above-mentioned problems, a method of restoring the groundwater flow at the upper part of the structure by removing the impermeable mountain retaining wall at the upper part of the structure after completion of the underground structure.
A method of drilling the wall of the excavation part of the impermeable mountain retaining wall, inserting a water collecting pipe into the upstream permeable layer ground, and connecting it with the drain pipe inserted into the downstream permeable layer ground to restore the groundwater flow.
There is known a method of recovering a groundwater flow by digging a drainage well on both sides of a cut-off portion of a water-blocking retaining wall and connecting an upstream well and a downstream well in the ground.
However, in these groundwater flow maintenance methods, there is a problem that the groundwater flow 160a in the upper part of the flooring 107 that has been cut can be restored, but the groundwater flow 160b in a portion deeper than the flooring 107 cannot be restored.
[0007]
In addition, there is a problem that maintenance costs such as clogging of wells after construction are expensive.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and has a water-impervious function having a groundwater flow maintenance function capable of restoring the water flow of the water-impervious retaining wall provided in the permeable layer after the construction of the underground structure. The purpose is to provide a retaining wall.
[0009]
In particular, the purpose is to provide a water-impervious mountain retaining wall that can easily and economically restore a deep underground water flow deeper than the flooring.
[0010]
The purpose of this project is to restore the groundwater flow after backfilling at construction sites where ground restoration is urgent.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the retaining wall having a groundwater flow maintenance function according to the present invention is a water-impervious retaining wall constructed for the construction of an underground excavation structure, and an arbitrary part of the retaining wall corresponding to the groundwater flow is provided. A water passage hole for allowing a groundwater flow to pass therethrough is formed, and the water passage hole includes a closed water passage portion, and the water passage portion includes a main body portion made of a conductive metal of a hollow body, One or a plurality of electrodes provided in the vicinity of the inner wall, and the body part is filled with an electrolyte solution and a gap filler, and a voltage is applied to the electrode at any time to make the body wall surface brittle by electrolytic corrosion. It is characterized by forming a water passage hole through which the groundwater flow can pass through .
[0012]
Invention of Claim 2 is invention of Claim 1, Comprising: The said water-impervious mountain retaining wall consists of a steel sheet pile provided with the said water passage hole in the arbitrary depth parts which interrupt | block a groundwater flow, It is characterized by the above-mentioned. To do.
[0013]
Invention of Claim 3 is invention of Claim 1, Comprising: The said water-impervious mountain retaining wall consists of a steel pipe sheet pile provided with the said water passage hole in the arbitrary depth part which interrupts | blocks groundwater flow, It is characterized by the above-mentioned. To do.
[0014]
Invention of Claim 4 is invention of Claim 1, Comprising: The said water-impervious mountain retaining wall consists of a soil mortar wall provided with the said water passage hole in the arbitrary depth parts which interrupt | block a groundwater flow. And
[0015]
Invention of Claim 5 is invention of Claim 1, Comprising: The said water-impervious mountain retaining wall consists of a reinforced concrete wall provided with the said water passage hole in the arbitrary depth parts which interrupt | block a groundwater flow. .
[0016]
The invention described in claim 6 is the invention described in claims 1 to 5, characterized in that the water flow part is connected to an electrolyte solution supply pipe.
[0017]
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the water passing portion has an inner wall other than the electrolytic corrosion portion near the electrode covered with an insulating layer. Features.
[0018]
Invention of Claim 8 is invention in any one of Claim 1, 4, 5, 6 or 7, Comprising: The water passage hole of Claim 4 and 5 is from the said water flow part by which destruction penetration was carried out. It further comprises a crushing part that crushes soil mortar or concrete that forms a retaining wall around the water-passing part by expanding the hydrated reaction between the leaked electrolyte solution and the explosive crushing material, and forms a water-flow hole through which the groundwater flow can pass It is characterized by that.
[0019]
Invention of Claim 9 is the construction method of the retaining wall of this invention, Comprising: The underground retaining wall which has the groundwater flow maintenance function of Claim 1 is constructed so that the ground may be interrupted for the underground excavation structure, and underground excavation performs granulation built structures, to form a water passage hole for passing the destroyed penetrating groundwater flow and brittle by the body portion wall electrolytic corrosion of the water passing portion by applying a voltage to the electrode at any time after that It is characterized by.
[0020]
Invention of Claim 10 is invention of Claim 9, Comprising: The said water passage hole is a water-proof mountain retaining wall part of a deeper position than the flooring of the excavated underground excavation structure, Comprising: Underground excavation structure A water passage hole is formed by destroying and penetrating the water passage at an arbitrary time after the construction of the object, and the passage of the groundwater flow blocked by the water-impervious retaining wall is preserved.
[0021]
Invention of Claim 11 is invention of Claim 9, Comprising: The said water passage hole is a water-impervious mountain retaining wall part of the side surface or upper part of an underground excavation structure, Comprising: To maintain the water flow of the groundwater flow that was blocked by the impermeable mountain retaining wall by connecting the upstream and downstream water flow ports with a connecting pipe. It is characterized by.
[0022]
Invention of Claim 12 is invention of Claim 9, Comprising: The said water passage hole is a water flow part of the water-proof mountain retaining wall part of the side surface or upper part of an underground excavation structure, Comprising: At any time after construction and backfilling, the water passage hole is formed by breaking through the water passage, and the groundwater flow that has been blocked by the impermeable mountain retaining wall is preserved.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG.1 and FIG.2 is a figure which shows one Embodiment of the retaining wall which has a groundwater flow maintenance function of this invention using the steel sheet pile.
3 and 4 are diagrams showing an embodiment of a retaining wall having a groundwater flow maintenance function of the present invention using a steel pipe sheet pile.
5 and 6 are views showing an embodiment of a retaining wall having a groundwater flow maintenance function of the present invention using soil cement.
FIG.7 and FIG.8 is a figure which shows one Embodiment of the retaining wall which has a groundwater flow maintenance function of this invention using reinforced concrete.
FIG. 9 is a schematic diagram showing the restoration status of the groundwater flow after construction of the retaining wall having the groundwater flow maintenance function of the present invention.
[0024]
FIG. 1 shows that a water-passage retaining wall 100 made of a steel sheet pile 15 constructed for the construction of an underground excavation structure according to the present invention is provided with a water passage hole 1 at a depth where the underground water flow is blocked. It is a front view which shows one embodiment of description. In the figure, the adjacent steel sheet piles 15 and 15 are connected by a connecting portion 15a, and the connecting gap may be further enhanced by a waterproof filler.
[0025]
The water passage hole 1 is a hollow water passage portion 2 formed by welding in a concave portion of the steel sheet pile 15, one of which is the bottom surface of the main body portion 3 forming the housing is the steel sheet pile 15, and the upper plate 3 a which is the upper surface. A wire mesh 3b having a water-permeable gap is welded to the opening. In addition, an electrolyte solution supply pipe 8 is connected to the upper part of the water flow part 2, and the electrolyte solution supply pipe 8 extends to the upper part of the flooring surface 107 to be cut off and is provided with an electrolyte solution supply port 8 a. Further, an electric wire 13b connected to the cathode of the DC power supply 13 is inserted into the electrolyte solution supply pipe 8, and is connected to an electrode to be described later in the water passage.
[0026]
When applying a voltage to the electrode, the anode of the DC power source 13 is connected to the connection terminal 14a of the steel sheet pile 15 by the electric wire 13a.
[0027]
FIG. 2 is a cross-sectional view showing the AA cross section of FIG. The cross section of the water flow part 2 of the hollow body formed by welding in the recessed part of the steel sheet pile 15 which forms the water-impervious mountain retaining wall 100 is shown. In the inside of the water passage portion 2, the electrode 4 held on the electrode support member 4 a made of an insulating material bonded to the wall surface of the steel sheet pile 15 is adjacent to the through portion 7 that forms the water passage hole 1 by breaking and penetrating by electrolytic corrosion. The hollow portion is filled with a gap filler 6 such as crushed stone having a water-permeable gap.
An electric wire 13b inserted through the electrolyte solution supply pipe 8 is connected to the electrode 4.
Inner walls other than the through-holes 7 at both ends of the main body 3 are provided with an insulating layer 9 such as an insulating paint to prevent electrolytic corrosion.
[0028]
FIG. 3 shows a water-passing hole 1 disposed at a depth where a water-impervious retaining wall 100 made of a steel sheet pile 16 constructed for the construction of an underground excavation structure according to the present invention blocks a groundwater flow. It is a top view which shows one embodiment of description. In the figure, adjacent steel pipe sheet piles 16 and 16 are connected by a connecting portion 16a, and a watertight property is maintained in a connecting gap by a waterproof filler (not shown).
[0029]
The water passage hole 1 is a hollow water passage portion 2 provided so as to traverse the inside of the cylinder of the steel pipe sheet pile 16 and is fixed to the peripheral wall of the steel pipe sheet pile 16 by welding. In addition, an electrolyte solution supply pipe 8 is connected to the upper part of the water flow part 2, and the electrolyte solution supply pipe 8 extends to the upper part of the flooring surface 107 to be cut and is provided with a valve 8 b and an electrolyte solution supply port 8 a. . Further, an electric wire 13b connected to the cathode of the DC power supply 13 is inserted into the electrolyte solution supply pipe 8, and is connected to an electrode to be described later in the water passage.
[0030]
FIG. 4 is a longitudinal sectional view showing a BB cross section of FIG. 3. The cross section of the water flow part 2 of the hollow body provided so that the cylinder inside of the steel pipe sheet pile 16 which forms the water-impervious retaining wall 100 may be crossed is shown. The water passing portion 2 is a main body portion 3 which is made of a conductive metal and closed at both ends in the longitudinal direction. Inside the main body portion 3, the electrode 4 held by the electrode support member 4 a made of an insulating material is broken and penetrated by electrolytic corrosion. The hollow portion is filled with a gap filler 6 such as a crushed stone having a water-permeable gap. An electric wire 13b inserted through the electrolyte solution supply pipe 8 is connected to the electrode 4 through a connection terminal 14b.
Inner walls other than the through-holes 7 at both ends of the main body 3 are provided with an insulating layer 9 such as an insulating paint to prevent electrolytic corrosion.
When applying a voltage to the electrode, the anode of the DC power source 13 is connected to the connection terminal 14a of the steel pipe sheet pile 16 by an electric wire 13a.
[0031]
FIG. 5 is a view showing that the water-impregnated mountain retaining wall 100 made of the soil mortar wall 17 constructed for the construction of the underground excavation structure of the present invention is provided with the water passage hole 1 in a depth portion where the underground water flow is blocked. FIG. 6 is a plan view showing an embodiment according to 4. In the figure, a soil mortar wall 17 is obtained by filling a wall hole drilled so that the circumferences overlap with each other with a soil mortar 17b and inserting a pile core material made of H-shaped steel 17a as a reinforcing material into the center to solidify.
[0032]
The water passage hole 1 includes a water passage portion 2 and a crushing portion 10, and the water passage portion 2 is a hollow body portion 3 provided so as to cross a concave portion on one side of the H shape steel 17 a, and is an H shape steel. It is fixed by welding to the central wall of 17a and both wings. Moreover, the crushing part 10 is welded and fixed to the outer wall surfaces of the both end blades of the H-section steel 17a. Furthermore, an electrolyte solution supply pipe 8 is connected to the upper part of the water flow part 2, and the electrolyte solution supply pipe 8 extends to the upper part of the flooring surface 107 to be cut (see FIG. 6), and the valve 8 b and the electrolyte solution supply port 8 a. Is provided. Further, an electric wire 13b connected to the cathode of the DC power supply 13 is inserted into the electrolyte solution supply pipe 8, and is connected to an electrode to be described later in the water passage.
[0033]
FIG. 6 is a longitudinal cross-sectional view showing a CC cross section of FIG. The water passing portion 2 provided so as to cross the concave portion of the H-shaped steel 17a of the pile core material of the soil mortar wall 17 forming the water-impervious retaining wall 100, and the crushing portion provided on the outer surface of the both ends of the H-shaped steel 17a 10 shows a cross section. The water passing portion 2 is a hollow closed main body portion 3 formed by welding an upper plate 3a, a lower plate 3c, and a side plate 3d made of a conductive metal to the central wall and both end blades of the H-shaped steel 17a. An electrode 4 held on an electrode support member 4a made of an insulating material is disposed in the main body 3 at a position close to a penetrating portion 7 that breaks and penetrates by electrolytic corrosion to form a water passage hole. It is filled with a gap filler 6 such as crushed stone having a gap. An electric wire 13b inserted through the electrolyte solution supply pipe 8 is connected to the electrode 4 through a connection terminal 14b.
Inner walls other than the through-holes 7 at both ends of the main body 3 are provided with an insulating layer 9 such as an insulating paint to prevent electrolytic corrosion.
When applying a voltage to the electrode, the anode of the DC power source 13 is connected to the connection terminal 14a of the steel pipe sheet pile 16 by an electric wire 13a.
[0034]
As shown in FIG. 6, the crushing part 10 accommodates a plurality of inflatable crushing material packaging bodies 11 in a square frame 10a formed by welding to the outer surfaces of both end blades of an H-shaped steel 17a, and was placed. It is packaged with a waterproof cover 10b made of a waterproof material that blocks moisture of the soil cement.
[0035]
FIG. 7 shows the water-passing hole 1 disposed in the depth portion where the water-impervious retaining wall 100 made of the reinforced concrete wall 18 constructed for the construction of the underground excavation structure of the present invention blocks the groundwater flow. It is a top view which shows one embodiment of description.
In the figure, a reinforced concrete wall 18 is obtained by filling and solidifying concrete 18c in a perforated wall hole using reinforcing bars 18a and 18b as reinforcing materials. 18a indicates a main muscle and 18b indicates a hoop muscle.
[0036]
The water passage hole 1 includes a water passage portion 2 and a crushing portion 10 housed inside both ends of the water passage portion, and the water passage portion 2 is a hollow body provided so as to cross the concrete wall 18. 3, it is fixed by welding to the reinforcing bars 18a, b. Further, an electrolyte solution supply pipe 8 is connected to the upper part of the water flow part 2, and the electrolyte solution supply pipe 8 extends to the upper part of the flooring surface 107 to be cut (see FIG. 8), and the valve 8 b and the electrolyte solution supply port 8 a. Is provided. Further, an electric wire 13b connected to the cathode of the DC power supply 13 is inserted into the electrolyte solution supply pipe 8, and is connected to an electrode to be described later in the water passage.
[0037]
FIG. 8 is a longitudinal sectional view showing a DD section of FIG. 7. The cross section of the crushing part 10 accommodated in the water flow part 2 provided so that the concrete wall 18 which forms the water-impervious mountain retaining wall 100 may be crossed, and the both ends inside a water flow part is shown. The water passing portion 2 is a hollow closed main body portion 3 made of a conductive metal, and the electrode 4 held by the electrode support member 4a made of an insulating material is broken and penetrated into the main body portion 3 by electrolytic corrosion. It arrange | positions in the position close | similar to the penetration part 7 which forms the passage hole 1, and the hollow part is filled with gap | interval fillers 6, such as a crushed stone which has a water-permeable gap | interval. An electric wire 13b inserted through the electrolyte solution supply pipe 8 is connected to the electrode 4 through a connection terminal 14b.
Inner walls other than the through-holes 7 at both ends of the main body 3 are provided with an insulating layer 9 such as an insulating paint to prevent electrolytic corrosion.
When applying a voltage to the electrode, the anode of the DC power source 13 is connected to the connection terminal 14a of the steel pipe sheet pile 16 by an electric wire 13a.
[0038]
In 4 embodiment described above, the water flow part 2 which forms the water passage hole 1 is reinforcement of the steel sheet pile 15, the steel pipe sheet pile 16, the H-shaped steel 17a of the pile core material of a soil cement wall, or the reinforced concrete wall 18 previously on the ground. It can be attached to the reinforcing bars 18a and 18b, which are materials, and stood in the ground. For this reason, the operation | work of the construction process of the conventional water-impervious mountain retaining wall 100 can be advanced without delay.
[0039]
Moreover, the said water flow part 2 is closed at the time of construction of the water-impervious mountain retaining wall 100, and in order to shield groundwater, it becomes possible to build the underground structure 110c in a water-blocking state.
[0040]
Next, the formation effect | action of the water passage hole 1 in the retaining wall which has the groundwater flow maintenance function of this invention is demonstrated. At any time when it is desired to preserve the groundwater flow, first, the electrolyte solution 5 such as salt water is filled into the water flow section 2 through the electrolyte solution supply pipe 8 from the electrolyte solution supply port 8a. Next, the anode of the DC power supply 13 is connected to the connection terminal 14a, the cathode is connected to the electric wire 13b, and a voltage is applied to the electrode 4 provided inside the water passage 2. A current flows through the electrolyte solution between the cathode electrode 4 and the water passing portion 2 to which the opposite anode is connected, and the penetrating portion 7 is eroded and broken through. According to this method, the water passage hole 1 can be formed at an arbitrary time from the ground surface 150 or the cut flooring surface 107 to the underground water passage portion 2.
[0041]
Furthermore, the crushing part 10 swells the soil mortar wall 17 or the reinforced concrete wall 18 solidified from the soil mortar wall 17 or the reinforced concrete wall 18 by the hydration reaction with the electrolyte solution from the water passing part 2 that has been punctured and passes through the water. Hole 1 is formed.
[0042]
Next, the construction method of the retaining wall of the present invention will be described in detail.
[0043]
According to the method for constructing a retaining wall of claim 10 , the water passage hole 1 is disposed in a portion of the impermeable retaining wall 100 located deeper than the flooring 107 of the excavated underground excavation structure 110c, and the underground excavation structure 110c. The water passage hole 1 is formed by destroying and penetrating the water passage portion 2 at an arbitrary time after the construction, and the water flow of the underground water flow 160 blocked by the water-impervious mountain retaining wall 100 is preserved. According to this method, it is possible to restore the groundwater flow at a position deeper than the excavated portion, which has been impossible in the past.
[0044]
The mountain retaining wall construction method according to claim 11 is characterized in that the water passage hole 1 is disposed on the side surface of the underground excavation structure 110c or the upper water-impervious mountain retaining wall 100 portion, and the water passing portion 2 is provided at any time during the construction. The water passage hole 1 is formed by breaking through, and the water flow of the groundwater flow 160 blocked by the water-impervious mountain retaining wall 100 is obtained by connecting the upstream and downstream water-flow ports with the water pipe 30. Conserve. According to this construction method, the water flow can be restored while the underground structure is being built. For this reason, it is possible to minimize the influence and damage caused by the blockage of the groundwater flow.
[0045]
The mountain retaining wall construction method according to claim 12 is the water passage portion 1 in the water passing portion 2 of the side of the underground excavation structure 110c or the water-impervious mountain retaining wall 100 portion of the underground excavation structure 110c. At any time after the return to the ground, the water passage hole 1 is formed by breaking and passing through the water passage portion 2, and the groundwater flow blocked by the water-impervious mountain retaining wall 100 is preserved. According to this construction method, the groundwater flow in the ground can be revived after restoration of the above-ground part even at a site where the restoration of the above-ground part is urgent, such as traffic interruption.
[0046]
FIG. 9 is a schematic diagram showing a state of restoration of the groundwater flow after the construction of the water-impervious mountain retaining wall 100 having the groundwater flow maintenance function of the present invention.
[0047]
During construction, the underground structure 110c is built in a state of being blocked by the water-impervious mountain retaining wall 100, and the upper part of the opened structure is backfilled. As shown in the figure, the underground water flow 106a is restored by placing a water passage pipe 30 in the temporary wall portion 1 in contact with the water permeable layer 105a and backfilling it.
[0048]
Furthermore, according to the present invention, the groundwater flow 106b can be restored by destroying the temporary wall portion 1 in contact with the water permeable layer 105b deeper than the flooring 107.
[0049]
【The invention's effect】
According to the water-impervious mountain retaining wall having the groundwater flow maintenance function of the present invention, the water flow of the water-impervious mountain retaining wall provided in the permeable layer can be easily restored together with the backfilling process after the construction of the underground structure. In particular, it is possible to easily and economically restore a deep underground water flow deeper than the flooring portion.
[0050]
According to the construction method of the mountain retaining wall of claim 10, it is possible to restore the groundwater flow at a position deeper than the cut portion which has been impossible in the past.
[0051]
According to the construction method of the mountain retaining wall of the eleventh aspect, it is possible to restore the water flow during the construction of the underground structure. For this reason, it is possible to minimize the influence and damage caused by the blockage of the groundwater flow.
[0052]
According to the construction method of the mountain retaining wall of claim 12, the underground groundwater flow can be revived after restoration of the above-ground part even at a site where restoration of the above-ground part is urgent such as traffic interruption.
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment of a retaining wall having a groundwater flow maintenance function of the present invention using a steel sheet pile.
FIG. 2 is a transverse cross-sectional view showing a cross section AA in FIG. 1;
FIG. 3 is a plan view showing an embodiment of a retaining wall having a groundwater flow maintenance function of the present invention using a steel pipe sheet pile.
4 is a longitudinal sectional view showing a BB cross section of FIG. 3. FIG.
FIG. 5 is a plan view showing an embodiment of a mountain retaining wall having a groundwater flow maintenance function according to the present invention using soil cement.
6 is a longitudinal sectional view showing a CC cross section of FIG. 5. FIG.
FIG. 7 is a plan view showing an embodiment of a retaining wall having a groundwater flow maintenance function of the present invention using reinforced concrete.
FIG. 8 is a longitudinal sectional view showing a DD section of FIG. 7;
FIG. 9 is a schematic diagram showing a state of restoration of a groundwater flow after construction of a retaining wall having a groundwater flow maintenance function of the present invention.
FIG. 10 is a schematic diagram showing a state where the groundwater flow is blocked by the water-impervious mountain retaining wall.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Water passage hole 2 Water passage part 3 Main body part 3a Upper plate 3b Metal mesh 3c Lower plate 3d Side plate 4 Electrode 4a Electrode support member 5 Electrolyte solution 6 Gap filling 7 Penetration part (fracture penetration part by electric corrosion and penetration part by crushing)
DESCRIPTION OF SYMBOLS 8 Electrolyte solution supply pipe 8a Electrolyte solution supply port 8b Valve 9 Insulating layer 10 Crushing part 10a Square frame 10b Waterproof cover 11 Expandable crushing material packaging body 13 DC power supply 13a, 13b Electric wire 14a, 14b Connection terminal 15 Steel sheet pile 15a Connection part 16 Steel pipe sheet pile 16a Connecting part 17 Soil mortar wall 17a H-shaped steel 17b Soil mortar 18 Reinforced concrete wall 18a, 18b Reinforcement (main reinforcement, hoop reinforcement)
100, 100a, 100b Impervious earth retaining wall 105a, b Permeable layer 106a, b Impervious layer 107 Flooring 110a, b Structure 110c Underground structure 120 Well 130a, b Standing tree 150a, b Ground surface 160a, b Groundwater flow

Claims (12)

地下開削構造物の造築のために施工される遮水性山留め壁であって、地下水流に対応した部分に任意の時期に地下水流を通過させるための水通過孔が形成され、
前記水通過孔は、
閉鎖された通水部を備え、該通水部は中空体の導電性金属からなる本体部と、本体部内の内壁近傍に設けられた一つまたは複数の電極と、本体部内部に電解質溶液と間隙充填物が充填され、任意の時期に前記電極に電圧を印加して本体部壁面を電食により脆性化して破壊貫通し地下水流が通過できる通水孔を形成することを特徴とする地下水流保全機能を有する山留め壁。
A water-impervious mountain retaining wall constructed for the construction of an underground excavation structure, and a water passage hole is formed in a portion corresponding to the groundwater flow to allow the groundwater flow to pass through at an arbitrary time.
The water passage hole is
A water passage portion that is closed, the water passage portion comprising a hollow body conductive metal, one or a plurality of electrodes provided in the vicinity of the inner wall of the body portion, and an electrolyte solution in the body portion. The groundwater flow is characterized in that it is filled with a gap filling, and a voltage is applied to the electrode at any time to make the wall surface of the main body brittle by electrolytic corrosion to break through and form a water passage hole through which the groundwater flow can pass. A retaining wall with a conservation function.
前記遮水性山留め壁は、地下水流を遮断する任意の深度部分に前記水通過孔を備えた鋼矢板からなることを特徴とする請求項1記載の地下水流保全機能を有する山留め壁。  2. The mountain retaining wall having a groundwater flow maintenance function according to claim 1, wherein the water shielding mountain retaining wall is made of a steel sheet pile having the water passage hole at an arbitrary depth portion that blocks the groundwater flow. 前記遮水性山留め壁は、地下水流を遮断する任意の深度部分に前記水通過孔を備えた鋼管矢板からなることを特徴とする請求項1記載の地下水流保全機能を有する山留め壁。  2. The mountain retaining wall having a groundwater flow maintenance function according to claim 1, wherein the water shielding mountain retaining wall is made of a steel pipe sheet pile having the water passage hole at an arbitrary depth portion that blocks the groundwater flow. 前記遮水性山留め壁は、地下水流を遮断する任意の深度部分に前記水通過孔を備えたソイルモルタル壁からなることを特徴とする請求項1記載の地下水流保全機能を有する山留め壁。  2. The mountain retaining wall having a groundwater flow maintenance function according to claim 1, wherein the water shielding mountain retaining wall comprises a soil mortar wall provided with the water passage hole at an arbitrary depth portion that blocks the groundwater flow. 前記遮水性山留め壁は、地下水流を遮断する任意の深度部分に前記水通過孔を備える鉄筋コンクリート壁からなることを特徴とする請求項1記載の地下水流保全機能を有する山留め壁。  2. The mountain retaining wall having a groundwater flow maintenance function according to claim 1, wherein the water shielding mountain retaining wall is formed of a reinforced concrete wall having the water passage hole at an arbitrary depth portion that blocks the groundwater flow. 前記通水部は、電解質溶液供給パイプが連結されていることを特徴とする請求項1から5のいずれかに記載の地下水流保全機能を有する山留め壁。The retaining wall having a groundwater flow maintenance function according to any one of claims 1 to 5 , wherein the water flow portion is connected to an electrolyte solution supply pipe. 前記通水部は、電極近傍の電食部以外の内壁が絶縁層で覆われていることを特徴とする請求項1から6のいずれかに記載の地下水流保全機能を有する遮水性山留め壁。The water-impervious mountain retaining wall having a groundwater flow maintenance function according to any one of claims 1 to 6 , wherein an inner wall other than the electrolytic corrosion portion near the electrode is covered with an insulating layer. 請求項4又は5記載の水通過孔は、破壊貫通された前記通水部から漏出する電解質溶液と膨張性破砕材の水和反応により膨張して通水部周辺の山留め壁を形成するソイルモルタルまたはコンクリートを破砕し地下水流が通過できる通水孔を形成する破砕部をさらに備えることを特徴とする請求項1、4、5、6又は7のいずれかに記載の地下水流保全機能を有する山留め壁。The water passage hole according to claim 4 or 5 is a soil mortar that expands by a hydration reaction between an electrolyte solution leaking from the water passage part that has been punctured and the explosive crushing material to form a retaining wall around the water passage part. Or the crushing part which crushes concrete and forms the water flow hole which a groundwater flow can pass through is further provided, The mountain retaining which has a groundwater flow maintenance function in any one of Claim 1, 4, 5, 6 or 7 characterized by the above-mentioned wall. 地下開削構造物のため地盤を遮断するように請求項1記載の地下水流保全機能を有する山留め壁を施工し、地下開削構造物の造築を行ない、その後任意の時期に電極に電圧を印加して通水部の本体部壁面を電食により脆性化して破壊貫通し地下水流を通過させる水通過孔を形成することを特徴とする山留め壁の施工方法。 The earth retaining wall having a groundwater flow maintenance function according to claim 1, wherein to block the ground for the underground digging structure was construction performs granulation built underground excavation construction, applying a voltage to the electrode at any time after that Then, the method of constructing the retaining wall is characterized in that a water passage hole is formed in which the wall surface of the main body portion of the water flow portion becomes brittle by electrolytic corrosion and breaks through to allow passage of the groundwater flow. 前記水通過孔は、開削された地下開削構造物の床付けよりさらに深い位置の遮水性山留め壁部分の通水部であって、地下開削構造物の施工後の任意の時期に通水部を破壊貫通することにより水通過孔を形成し、遮水性山留め壁で遮断されていた地下水流の通水を保全することを特徴とする請求項9記載の山留め壁の施工方法。The water passage hole is a water-permeable portion of a water-impervious retaining wall at a deeper position than the flooring of the excavated underground excavation structure, and the water-passage portion is provided at any time after the construction of the underground excavation structure. The method for constructing a retaining wall according to claim 9 , wherein a water passage hole is formed by breaking and penetrating to maintain the water flow of the groundwater flow blocked by the water-impervious retaining wall. 前記水通過孔は、地下開削構造物の側面または上部の遮水性山留め壁部分の通水部であって、施工途中の任意の時期に通水部を破壊貫通して水通過孔を形成し、地下水流の上流部と下流部の通水口を連結管で連結することにより遮水性山留め壁で遮断されていた地下水流の通水を保全することを特徴とする請求項9記載の山留め壁の施工方法。The water passage hole is a water passage portion of the side wall of the underground excavation structure or the upper impermeable mountain retaining wall portion, and forms a water passage hole by breaking through the water passage portion at any time during construction, The construction of the retaining wall according to claim 9, wherein the passage of the groundwater flow blocked by the water-impervious retaining wall is preserved by connecting the upstream and downstream water inlets with a connecting pipe. Method. 前記水通過孔は、地下開削構造物の側面または上部の遮水性山留め壁部分の通水部であって、地下開削構造物の施工と埋め戻し地上復旧後の任意の時期に、通水部を破壊貫通することにより水通過孔を形成し、遮水性山留め壁で遮断されていた地下水流の通水を保全をすることを特徴とする請求項9記載の山留め壁の施工方法。The water passage hole is a water passage portion of the side wall of the underground excavation structure or the upper impermeable mountain retaining wall portion, and the water passage portion is formed at any time after the construction of the underground excavation structure and backfilling. The method for constructing a retaining wall according to claim 9 , wherein a water passage hole is formed by breaking and penetrating to maintain the water flow of the groundwater flow blocked by the water-impervious retaining wall.
JP2000205456A 2000-07-06 2000-07-06 Retaining wall with groundwater flow protection function and method of construction of retaining wall Expired - Fee Related JP3650799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000205456A JP3650799B2 (en) 2000-07-06 2000-07-06 Retaining wall with groundwater flow protection function and method of construction of retaining wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000205456A JP3650799B2 (en) 2000-07-06 2000-07-06 Retaining wall with groundwater flow protection function and method of construction of retaining wall

Publications (2)

Publication Number Publication Date
JP2002021080A JP2002021080A (en) 2002-01-23
JP3650799B2 true JP3650799B2 (en) 2005-05-25

Family

ID=18702538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000205456A Expired - Fee Related JP3650799B2 (en) 2000-07-06 2000-07-06 Retaining wall with groundwater flow protection function and method of construction of retaining wall

Country Status (1)

Country Link
JP (1) JP3650799B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648850B2 (en) * 2011-02-28 2015-01-07 清水建設株式会社 Groundwater collection structure and groundwater flow structure

Also Published As

Publication number Publication date
JP2002021080A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
EP0722016B1 (en) Method for constructing an impermeable protective membrane underwater on a hydraulic structure
CN106351230B (en) Soft clay area basement construction method for supporting
CN103882881A (en) Underwater construction method for bearing platform deeply embedded in rock
KR101531799B1 (en) Repair reinforcement method of the waterfront structure
CN108797641A (en) A kind of structure and its construction method of Underground Subway Station construction period full station sealing
JP2006204965A (en) Method of constructing impervious layer
CN107489106B (en) A kind of rocky bed subaqueous bearing platform construction method
CN105040707B (en) Combine the construction method of close pile deep foundation pit support building enclosure
CN211948580U (en) Subway station construction structures and existing underground passage junction antiseep construction structures
JP3650799B2 (en) Retaining wall with groundwater flow protection function and method of construction of retaining wall
KR100257083B1 (en) Dry method or rubber gasket apparatus of a pier of a bridge
JP3245537B2 (en) Method of forming permeable section in continuous underground wall
Milanovic Prevention and remediation in karst engineering
CN214497606U (en) Prevention of seepage water reinforced structure based on independent basis of frame post
WO2009139510A1 (en) Construction method for continuous cut-off wall using overlap casing
JPH03281826A (en) Excavation method in cohesive soil ground
JP3650809B2 (en) Water flow hole forming apparatus and method for forming water flow holes used for water flow hole formation for maintaining groundwater flow in impermeable walls
JP3318495B2 (en) Method of forming a permeable layer on soil cement underground wall
JP3253868B2 (en) Forming method of water passage section in continuous underground wall
JP3684394B2 (en) Water flow hole forming apparatus and method for forming water flow holes used for water flow hole formation for maintaining groundwater flow in impermeable walls
CN109763518A (en) A kind of construction method of basement post-pouring zone
JP3650808B2 (en) A water hole forming apparatus and method for forming a water hole used for forming a water flow hole for maintaining a groundwater flow in a water shielding wall.
JPS5936058B2 (en) How to construct a structure using underground continuous walls
CN218175855U (en) Storehouse section of thick bamboo type secant pile underground lattice wall underground structure for protecting foundation pit
CN216515675U (en) A protective structure that is used for shield to invade tubular pile and clears away when wearing river course revetment down

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3650799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150304

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees