JP3649363B2 - Optical position detector - Google Patents

Optical position detector Download PDF

Info

Publication number
JP3649363B2
JP3649363B2 JP29577096A JP29577096A JP3649363B2 JP 3649363 B2 JP3649363 B2 JP 3649363B2 JP 29577096 A JP29577096 A JP 29577096A JP 29577096 A JP29577096 A JP 29577096A JP 3649363 B2 JP3649363 B2 JP 3649363B2
Authority
JP
Japan
Prior art keywords
signal
origin
displacement
grating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29577096A
Other languages
Japanese (ja)
Other versions
JPH10122908A (en
Inventor
嚆二 鈴木
雄司 有永
耕二 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP29577096A priority Critical patent/JP3649363B2/en
Publication of JPH10122908A publication Critical patent/JPH10122908A/en
Application granted granted Critical
Publication of JP3649363B2 publication Critical patent/JP3649363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学格子を形成したメインスケールと、それに対応する光学格子を形成したインデックススケールとの相対変位によって生じる光電変換信号の変化から、二つの部材の相対位置を検出する光学式位置検出器に関する。
【0002】
【従来の技術】
従来、光学格子を利用して二つの部材の相対位置を検出する光学式位置検出器には、例えば図4および図5に示すような構成を備えたものがある(例えば、特開昭64−74414号公報)。
すなわち、1は相対的に移動し得る二つの部材の内の一方に固定された光源、2は光源1と共に一方の部材に固定された第2のスケールである。
第2のスケール2には、変位信号用光源格子4A、4B、原点信号用光源スリット7を備えている。また、原点信号用インデックススリット8、互いに90度位相の異なる変位信号用インデックス格子5A〜5D、原点信号用受光素子9、変位信号用受光素子6A〜6Dを備えている。
3は二つの部材のうちの他方の部材に固定された第1のスケールで、第2のスケール2に空隙を介して平行に設置され、一定のピッチの周期的格子からなる変位信号用メイン格子10と原点信号用パターン11を備えている。
このような構成により、変位信号用光源格子4A、4B、変位信号用インデックス格子5A〜5D、変位信号用受光素子6A〜6D、および変位信号用メイン格子10によって変位信号生成手段を形成し、原点信号用光源スリット7、原点信号用インデックススリット8、原点信号用受光素子9、および原点信号用パターン11によって原点信号生成手段を形成してある。
120は変位信号用受光素子6A〜6Dからの出力信号を受けて位置信号A,Bを出力する変位信号生成回路である。130は原点信号用受光素子9からの出力信号を受けて原点信号Zを出力する原点信号生成回路である。
【0003】
光源1からの照射光は、変位信号用光源格子4A,4Bおよび原点信号用光源スリット7を通して、それぞれ変位信号用メイン格子10および原点信号用パターン11を照射する。
第1スケール3上の変位信号用メイン格子10で反射された光は、変位信号用インデックス格子5A〜5Dを通して、それぞれ変位信号用受光素子6A〜6Dを照射し、図5に示した変位信号生成回路部120の増幅器12A〜12Dで光量に応じた電圧信号に変換される。
この電圧信号は、図6(a),(b)に示すように、検出対象部材の移動に対して、それぞれ90度づつ位相の異なる正弦波状の周期的な信号va,vb,va’,vb’となる。さらに、比較器12Eで信号vaと信号va’が、比較器12Fで信号vbと信号vb’が比較され、図6(c),(d)に示すように、それぞれデジタル化された変位信号A,Bに変換される。
第1スケール3上の原点信号用パターン11で反射された光は、第2スケール2上の原点信号用インデックススリット8を通して、原点信号用受光素子9を照射し、原点信号生成回路部130の増幅器131で光量に応じた電圧信号に変換される。
検出対象部材が所定の位置を通過すると、所定の位置で、図6(e)に示すようにパルス状の信号vzが得られる。さらに、比較器132によって基準信号vcと比較され、図6(f)に示すように、デジタル化された原点信号Zに変換される。
【0004】
【発明が解決しようとする課題】
ところが、上記の従来技術では、一定ピッチの周期的格子によって生成される変位信号に対しては、第1のスケールと第2のスケールの間のギャップが広くても信号振幅が大きく、SN比の高い信号が得られる。
しかし、原点信号は所定の位置で急峻なパルス信号が必要であり、従来の原点信号生成手段では、急峻なパルス信号を得るために、原点信号用パターン11の幅を小さくし原点信号用インデックススリット8のスリット幅を小さくするが、回折効果や受光素子への光量が小さくなるため検出信号のレベルが低くなる。
また、格子幅を大きくすると、パルス状の検出信号の幅が広くなり、急峻なパルス信号が得られず、精度の良い原点信号を得ることができないという問題があった。
本発明は、スケール間のギャップが広くても、急峻なパルス状の原点信号が得られる光学式位置検出器を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明は、光源と、相対移動する検出対象部材の相対的変位に対して前記光源からの光を受けて周期的な変位信号を発生する変位信号生成手段と、前記光源からの光を受けて前記検出対象部材の原点信号を生成する原点信号生成手段とからなり、
前記変位信号生成手段は、相対移動する一方の部材に固定された第1のスケールと、前記第1のスケールに空隙を介して対向して相対移動する他方の部材に固定された第2のスケールと、前記第1のスケール上に形成され、かつ一定のピッチの周期的格子を持つ変位信号用メイン格子と、前記第2のスケール上に形成され、前記光源からの照射光を制限して線光源を形成する変位信号用光源格子と、前記変位信号用メイン格子に反射された光を更に制限する変位信号用インデックス格子と、前記変位信号用インデックス格子によって制限された照射光を受光して電気信号に変換する変位信号用受光素子と、前記変位信号用受光素子の出力から前記変位信号を生成する変位信号生成回路とで構成され、
前記原点信号生成手段は、前記検出対象部材の原点位置の近傍で前記変位信号の周期より長く、かつ互いに周期の異なる複数の一定周期の原点補助信号を生成する原点補助信号生成手段と、前記変位信号と前記原点補助信号とから前記原点信号を生成する原点信号生成回路とを備えた光学式位置検出器において、前記原点補助信号生成手段は、前記変位信号用メイン格子より長い格子ピッチを備え、かつ前記第1のスケール上の少なくとも2か所に形成された互いに異なるピッチの原点信号用メイン格子と、前記第2のスケール上に形成され、前記光源からの照射光を制限して線光源を形成する少なくとも2か所に形成された互いに異なるピッチの原点信号用光源格子と、前記原点信号用メイン格子に反射された光を更に制限する少なくとも2か所に形成された互いに異なるピッチの原点信号用インデックス格子と、前記原点信号用インデックス格子によって制限された照射光を受光して電気信号に変換する原点信号用受光素子とで構成され、前記原点信号生成回路は、前記原点補助信号生成手段によって生成された少なくとも周期の異なる2種類の原点補助信号を合成して原点補助合成信号を生成する原点補助信号生成回路と、前記原点補助合成信号と前記変位信号とを合成して原点アナログ信号を生成する原点信号合成回路と、前記原点アナログ信号からパルス状の原点信号を生成する比較器とを備えたものである。また、前記原点補助信号は、前記変位信号の2〜4倍および4〜7倍の2種類の周期の信号からなるものである。
【0006】
【発明の実施の形態】
以下、本発明を図に示す実施例について説明する。
図1は本発明の実施例を示す斜視図である。
図において、光源1、第2のスケール2、第1のスケール3、変位信号用光源格子4A,4B、変位信号用インデックス格子5A〜5D、変位信号用メイン格子10、変位信号用受光素子6A〜6D、および変位信号生成回路部12で構成される変位信号生成手段は従来例で示した構成とほぼ同様である。
従来例と異なるのは、原点信号生成手段および原点信号生成回路の構成である。
すなわち、7Aは第2スケール2に設けた第1の原点信号用光源格子、7Bは第2の原点信号用光源格子、8Aは第1の原点信号用インデックス格子、8Bは第2の原点信号用インデックス格子、9Aは第1の原点信号用受光素子、9Bは第2の原点信号用受光素子である。
11Aは第1のスケール3に設けた第1の原点信号用メイン格子、11Bは、第1のスケール3に設けた第2の原点信号用メイン格子である。
【0007】
図2は原点信号生成回路部13を示すブロック図である。
原点信号生成回路部13は、原点補助信号生成回路13Xと、原点信号合成回路13Yと、比較器13Fから構成されている。
原点補助信号生成回路13Xは、第1の原点信号用受光素子9Aおよび第2の原点信号用受光素子9Bからの出力を増幅器13A,13Bを介して原点補助信号vz1,vz2を出力する。原点補助信号vz1,vz2は演算器13Cにより差動信号である原点補助合成信号Vzを出力する。
一方、原点信号合成回路13Yは、変位信号生成回路部6の増幅器12A,12Bから出力される信号va,va’を入力とする演算増幅器13Dから図3(a)に示すような変位信号Vaを出力し、さらに、比較器13Eで原点補助合成信号Vzと加算されて、原点アナログ信号Vzaを出力する。
原点アナログ信号Vzaは比較器13Fで直流レベルVcと比較され、パルス状の原点信号Zを出力する。
【0008】
光源1から第1の原点信号用光源格子7Aを通る光は、第1の原点信号用メイン格子11Aで反射して第1の原点信号用インデックス格子8Aを通り、第1の原点信号用受光素子9Aを照射する。
このとき、第1の原点信号用光源格子7A、第1の原点信号用メイン格子11Aおよび第1の原点信号用インデックス格子8Aの格子ピッチ、格子数および位相は、第1の原点信号用受光素子9Aから、変位信号生成回路部6で得られた変位信号vaの3倍の周期を持つ原点補助信号vz1(図3(b))を出力するように、かつ検出対象部材の変位に対して、原点位置で信号振幅が最大となり、原点近傍でのみで信号が生成されるように形成されている。
一方、光源1から第2の原点信号用光源格子7Bを通る光は、第2の原点信号用メイン格子11Bで反射して第2の原点信号用インデックス格子8Bを通り、第2の原点信号用受光素子9Bを照射する。
このとき、第1の原点信号用光源格子7B、第1の原点信号用メイン格子11Bおよび第1の原点信号用インデックス格子8Bの格子ピッチ、格子数および位相は、第2の原点信号用受光素子9Bから変位信号vaの5倍の周期を持つ原点補助信号vz2(図3(c))を出力し、かつ検出対象部材の変位に対して、原点位置で信号振幅が最大となり、原点近傍でのみで信号が生成されるように形成されている。
【0009】
このような構成により、光源1からの光を第1の原点信号用受光素子9Aおよび第2の原点信号用受光素子9Bが受光し、互いに異なる周期を持った二つの原点補助信号vz1、vz2を出力して、その差動信号として図3(d)に示すような、原点補助合成信号Vzが得られる。更に、周期の短い変位信号Vaと合成して、図3(e)に示すような、原点位置で急峻なピークを持つ原点アナログ信号Vzaが得られる。
したがって、スケール間のギャップが広くても、図3(f)に示すように、幅の狭いパルス状の原点信号Zが得られ、高分解能に対応できる精度の高い原点信号が得られる。
なお、上記実施例では原点補助信号vz1、vz2の周期は変位信号vaの3倍および5倍に形成した例について説明したが、原点補助信号vz1の周期は変位信号vaの2〜4倍、原点補助信号vz2の周期は変位信号vaの4〜7倍の周期の信号の範囲で、原点位置で急峻なピーク信号を持ち、かつ原点位置以外では信号レベルが小さくなるように本検出器の特性に応じて選定する。
また、上記実施例は、本発明を光学式リニアエンコーダに適用した例について説明したが、第1のスケールを円板状に、第2のスケールを扇形に形成することにより、光学式ロータリエンコーダに適用することもできる。
【0010】
【発明の効果】
以上述べたように、本発明によれば、複数の一定ピッチの周期的格子によって生成された原点補助信号と変位信号を合成して、原点位置で急峻なピークを持つ原点信号を得るようにしてあるので、スケール間のギャップが広くても、幅の狭いパルス状の原点信号が得られる光学式位置検出器を提供できる効果がある。
【図面の簡単な説明】
【図1】 本発明の実施例を示す斜視図である。
【図2】 本発明の実施例の変位信号生成回路部および原点信号生成回路部を示すブロック図である。
【図3】 本発明の実施例の動作波形を示す説明図である。
【図4】 従来例を示す斜視図である。
【図5】 従来例の変位信号生成回路および原点信号生成回路を示すブロック図である。
【図6】 従来例の動作波形を示す説明図である。
【符号の説明】
1:光源、2:第2のスケール、3:第1のスケール、4A,4B:変位信号用光源格子、5A,5B,5C,5D:変位信号用インデックス格子、6A,6B,6C,6D:変位信号用受光素子、7A:第1の原点信号用光源格子、7B:第2の原点信号用光源格子、8A:第1の原点信号用インデックス格子、8B:第2の原点信号用インデックス格子、9A:第1の原点信号用受光素子、9B:第2の原点信号用受光素子、10:変位信号用メイン格子、11A:第1の原点信号用メイン格子、11B:第2の原点信号用メイン格子、12:変位信号生成回路部、13:原点信号生成回路部、13X:原点補助信号生成回路、13Y:原点信号合成回路、13F:比較器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical position detector for detecting the relative position of two members from a change in photoelectric conversion signal caused by relative displacement between a main scale having an optical grating and an index scale having an optical grating corresponding thereto. About.
[0002]
[Prior art]
Conventionally, there are optical position detectors that detect the relative positions of two members using an optical grating, for example, having a configuration as shown in FIGS. No. 74414).
That is, 1 is a light source fixed to one of two members that can move relatively, and 2 is a second scale fixed together with the light source 1 to one member.
The second scale 2 includes displacement signal light source grids 4A and 4B and an origin signal light source slit 7. In addition, an origin signal index slit 8, displacement signal index gratings 5 </ b> A to 5 </ b> D having phases different from each other by 90 degrees, an origin signal light receiving element 9, and displacement signal light receiving elements 6 </ b> A to 6 </ b> D are provided.
Reference numeral 3 denotes a first scale fixed to the other of the two members. A main grid for displacement signal, which is installed in parallel to the second scale 2 via a gap and is composed of a periodic grating having a constant pitch. 10 and an origin signal pattern 11 are provided.
With such a configuration, the displacement signal light source gratings 4A and 4B, the displacement signal index gratings 5A to 5D, the displacement signal light receiving elements 6A to 6D, and the displacement signal main grating 10 form the displacement signal generating means. Origin signal generating means is formed by the signal light source slit 7, origin signal index slit 8, origin signal light receiving element 9, and origin signal pattern 11.
Reference numeral 120 denotes a displacement signal generation circuit for receiving position signals A and B in response to output signals from the displacement signal light receiving elements 6A to 6D. Reference numeral 130 denotes an origin signal generation circuit that receives an output signal from the origin signal light receiving element 9 and outputs an origin signal Z.
[0003]
Irradiation light from the light source 1 irradiates the displacement signal main lattice 10 and the origin signal pattern 11 through the displacement signal light source lattices 4A and 4B and the origin signal light source slit 7, respectively.
The light reflected by the displacement signal main grating 10 on the first scale 3 irradiates the displacement signal light receiving elements 6A to 6D through the displacement signal index gratings 5A to 5D, respectively, and generates the displacement signal shown in FIG. The signal is converted into a voltage signal corresponding to the amount of light by the amplifiers 12A to 12D of the circuit unit 120.
As shown in FIGS. 6A and 6B, this voltage signal is a sinusoidal periodic signal va, vb, va ′, vb each having a phase difference of 90 degrees with respect to the movement of the detection target member. 'Become. Further, the signal va and the signal va ′ are compared with each other by the comparator 12E, and the signal vb and the signal vb ′ are compared with each other by the comparator 12F. As shown in FIGS. , B.
The light reflected by the origin signal pattern 11 on the first scale 3 irradiates the origin signal light receiving element 9 through the origin signal index slit 8 on the second scale 2, and the amplifier of the origin signal generation circuit unit 130. In 131, a voltage signal corresponding to the amount of light is converted.
When the detection target member passes a predetermined position, a pulse-like signal vz is obtained at the predetermined position as shown in FIG. Further, it is compared with the reference signal vc by the comparator 132 and converted to a digitized origin signal Z as shown in FIG.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional technique, the displacement signal generated by the periodic grating having a constant pitch has a large signal amplitude even if the gap between the first scale and the second scale is wide, and the SN ratio is large. A high signal is obtained.
However, the origin signal requires a steep pulse signal at a predetermined position, and the conventional origin signal generation means reduces the width of the origin signal pattern 11 and obtains an origin signal index slit in order to obtain a steep pulse signal. Although the slit width of 8 is reduced, the level of the detection signal is lowered because the diffraction effect and the amount of light to the light receiving element are reduced.
Further, when the grating width is increased, there is a problem that the width of the pulse-like detection signal becomes wide, a steep pulse signal cannot be obtained, and an accurate origin signal cannot be obtained.
An object of the present invention is to provide an optical position detector capable of obtaining a steep pulsed origin signal even when a gap between scales is wide.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a light source, a displacement signal generating means for receiving a light from the light source and generating a periodic displacement signal with respect to a relative displacement of a detection target member that moves relatively, Comprising origin signal generating means for receiving the light from the light source and generating the origin signal of the detection target member ,
The displacement signal generating means includes a first scale fixed to one member that moves relative to the second scale, and a second scale fixed to the other member that moves relative to the first scale while facing a gap. A displacement signal main grating formed on the first scale and having a periodic grating with a constant pitch, and a line formed by limiting the irradiation light from the light source formed on the second scale. A displacement signal light source grating that forms a light source, a displacement signal index grating that further restricts light reflected by the displacement signal main grating, and irradiation light that is restricted by the displacement signal index grating are received and electrically received. A displacement signal light-receiving element for converting into a signal, and a displacement signal generation circuit for generating the displacement signal from the output of the displacement signal light-receiving element,
The origin signal generation means generates origin auxiliary signal generation means for generating a plurality of constant period origin auxiliary signals having a period longer than the displacement signal in the vicinity of the origin position of the detection target member and having different periods, and the displacement In an optical position detector comprising an origin signal generation circuit that generates the origin signal from a signal and the origin auxiliary signal , the origin auxiliary signal generation means has a grating pitch longer than the displacement signal main grating, In addition, origin signal main gratings having different pitches formed in at least two locations on the first scale, and a linear light source formed on the second scale, limiting the irradiation light from the light source. Origin signal light source gratings having different pitches formed in at least two places to be formed, and at least further limiting light reflected by the origin signal main grating The origin signal index gratings formed at different locations and the origin signal light receiving element that receives the irradiation light limited by the origin signal index grating and converts it into an electrical signal, The signal generation circuit includes an origin auxiliary signal generation circuit that generates an origin auxiliary synthesis signal by synthesizing at least two types of origin auxiliary signals having different periods generated by the origin auxiliary signal generation unit; the origin auxiliary synthesis signal; and An origin signal synthesizing circuit that synthesizes the displacement signal and generates an origin analog signal, and a comparator that generates a pulsed origin signal from the origin analog signal. The origin auxiliary signal is composed of signals having two types of cycles, 2 to 4 times and 4 to 7 times the displacement signal.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to embodiments shown in the drawings.
FIG. 1 is a perspective view showing an embodiment of the present invention.
In the figure, a light source 1, a second scale 2, a first scale 3, displacement signal light source gratings 4A and 4B, displacement signal index gratings 5A to 5D, a displacement signal main grating 10, and a displacement signal light receiving element 6A to 6A. The displacement signal generating means including 6D and the displacement signal generating circuit unit 12 is substantially the same as the configuration shown in the conventional example.
What is different from the conventional example is the configuration of the origin signal generating means and the origin signal generating circuit.
That is, 7A is a first origin signal light source grid provided on the second scale 2, 7B is a second origin signal light source grid, 8A is a first origin signal index grid, and 8B is a second origin signal grid. The index grating, 9A is a first origin signal light receiving element, and 9B is a second origin signal light receiving element.
11A is a first origin signal main grid provided on the first scale 3, and 11B is a second origin signal main grid provided on the first scale 3.
[0007]
FIG. 2 is a block diagram showing the origin signal generation circuit unit 13.
The origin signal generation circuit unit 13 includes an origin auxiliary signal generation circuit 13X, an origin signal synthesis circuit 13Y, and a comparator 13F.
The origin auxiliary signal generation circuit 13X outputs the origin auxiliary signals vz1 and vz2 from the outputs from the first origin signal light receiving element 9A and the second origin signal light receiving element 9B via the amplifiers 13A and 13B. As for the origin auxiliary signals vz1 and vz2, the calculator 13C outputs an origin auxiliary synthesized signal Vz which is a differential signal.
On the other hand, the origin signal synthesizing circuit 13Y generates a displacement signal Va as shown in FIG. 3A from the operational amplifier 13D that receives the signals va and va ′ output from the amplifiers 12A and 12B of the displacement signal generation circuit section 6. Further, it is added to the origin auxiliary composite signal Vz by the comparator 13E to output the origin analog signal Vza.
The origin analog signal Vza is compared with the DC level Vc by the comparator 13F, and a pulsed origin signal Z is output.
[0008]
The light passing from the light source 1 through the first origin signal light source grating 7A is reflected by the first origin signal main grating 11A, passes through the first origin signal index grating 8A, and passes through the first origin signal index grating 8A. Irradiate 9A.
At this time, the grating pitch, the number of gratings, and the phase of the first origin signal light source grating 7A, the first origin signal main grating 11A, and the first origin signal index grating 8A are as follows. From 9A, the origin auxiliary signal vz1 (FIG. 3B) having a period three times that of the displacement signal va obtained by the displacement signal generation circuit unit 6 is output, and with respect to the displacement of the detection target member, The signal amplitude is maximized at the origin position, and the signal is generated only near the origin.
On the other hand, the light passing from the light source 1 through the second origin signal light source grating 7B is reflected by the second origin signal main grating 11B, passes through the second origin signal index grating 8B, and passes through the second origin signal index grating 8B. The light receiving element 9B is irradiated.
At this time, the grating pitch, the number of gratings, and the phase of the first origin signal light source grating 7B, the first origin signal main grating 11B, and the first origin signal index grating 8B are the same as those of the second origin signal light receiving element. 9B outputs an origin auxiliary signal vz2 (FIG. 3C) having a period five times that of the displacement signal va, and the signal amplitude becomes maximum at the origin position relative to the displacement of the detection target member, and only near the origin. In this way, a signal is generated.
[0009]
With such a configuration, the light from the light source 1 is received by the first origin signal light receiving element 9A and the second origin signal light receiving element 9B, and two origin auxiliary signals vz1 and vz2 having different periods are obtained. As a differential signal, the origin auxiliary composite signal Vz as shown in FIG. 3D is obtained. Furthermore, by combining with the displacement signal Va having a short cycle, an origin analog signal Vza having a steep peak at the origin position as shown in FIG. 3E is obtained.
Therefore, even if the gap between the scales is wide, as shown in FIG. 3 (f), a narrow pulse-like origin signal Z is obtained, and an origin signal with high accuracy that can cope with high resolution is obtained.
In the above-described embodiment, the example in which the periods of the origin auxiliary signals vz1 and vz2 are formed to be 3 times and 5 times the displacement signal va has been described. However, the period of the origin assistance signal vz1 is 2 to 4 times the displacement signal va. The period of the auxiliary signal vz2 is in the signal range of 4 to 7 times the period of the displacement signal va, has a steep peak signal at the origin position, and the characteristics of this detector so that the signal level becomes small at other positions than the origin position. Select according to your needs.
Moreover, although the said Example demonstrated the example which applied this invention to the optical linear encoder, an optical rotary encoder is formed by forming a 1st scale in disk shape and a 2nd scale in a fan shape. It can also be applied.
[0010]
【The invention's effect】
As described above, according to the present invention, the origin auxiliary signal and displacement signal generated by a plurality of constant pitch periodic gratings are combined to obtain an origin signal having a steep peak at the origin position. Therefore, even if the gap between the scales is wide, there is an effect that it is possible to provide an optical position detector that can obtain a narrow pulse-like origin signal.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of the present invention.
FIG. 2 is a block diagram illustrating a displacement signal generation circuit unit and an origin signal generation circuit unit according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram showing operation waveforms according to the embodiment of the present invention.
FIG. 4 is a perspective view showing a conventional example.
FIG. 5 is a block diagram illustrating a conventional displacement signal generation circuit and an origin signal generation circuit.
FIG. 6 is an explanatory diagram showing operation waveforms of a conventional example.
[Explanation of symbols]
1: Light source, 2: Second scale, 3: First scale, 4A, 4B: Displacement signal light source grating, 5A, 5B, 5C, 5D: Displacement signal index grating, 6A, 6B, 6C, 6D: Displacement signal light receiving element, 7A: first origin signal light source grating, 7B: second origin signal light source grating, 8A: first origin signal index grating, 8B: second origin signal index grating, 9A: first origin signal light receiving element, 9B: second origin signal light receiving element, 10: displacement signal main grid, 11A: first origin signal main grid, 11B: second origin signal main 12: Displacement signal generation circuit unit, 13: Origin signal generation circuit unit, 13X: Origin auxiliary signal generation circuit, 13Y: Origin signal synthesis circuit, 13F: Comparator

Claims (2)

光源と、相対移動する検出対象部材の相対的変位に対して前記光源からの光を受けて周期的な変位信号を発生する変位信号生成手段と、前記光源からの光を受けて前記検出対象部材の原点信号を生成する原点信号生成手段とからなり、
前記変位信号生成手段は、相対移動する一方の部材に固定された第1のスケールと、前記第1のスケールに空隙を介して対向して相対移動する他方の部材に固定された第2のスケールと、前記第1のスケール上に形成され、かつ一定のピッチの周期的格子を持つ変位信号用メイン格子と、前記第2のスケール上に形成され、前記光源からの照射光を制限して線光源を形成する変位信号用光源格子と、前記変位信号用メイン格子に反射された光を更に制限する変位信号用インデックス格子と、前記変位信号用インデックス格子によって制限された照射光を受光して電気信号に変換する変位信号用受光素子と、前記変位信号用受光素子の出力から前記変位信号を生成する変位信号生成回路とで構成され、
前記原点信号生成手段は、前記検出対象部材の原点位置の近傍で前記変位信号の周期より長く、かつ互いに周期の異なる複数の一定周期の原点補助信号を生成する原点補助信号生成手段と、前記変位信号と前記原点補助信号とから前記原点信号を生成する原点信号生成回路とを備えた光学式位置検出器において、
前記原点補助信号生成手段は、前記変位信号用メイン格子より長い格子ピッチを備え、かつ前記第1のスケール上の少なくとも2か所に形成された互いに異なるピッチの原点信号用メイン格子と、前記第2のスケール上に形成され、前記光源からの照射光を制限して線光源を形成する少なくとも2か所に形成された互いに異なるピッチの原点信号用光源格子と、前記原点信号用メイン格子に反射された光を更に制限する少なくとも2か所に形成された互いに異なるピッチの原点信号用インデックス格子と、前記原点信号用インデックス格子によって制限された照射光を受光して電気信号に変換する原点信号用受光素子とで構成され、
前記原点信号生成回路は、前記原点補助信号生成手段によって生成された少なくとも周期の異なる2種類の原点補助信号を合成して原点補助合成信号を生成する原点補助信号生成回路と、前記原点補助合成信号と前記変位信号とを合成して原点アナログ信号を生成する原点信号合成回路と、前記原点アナログ信号からパルス状の原点信号を生成する比較器とを備えたことを特徴とする光学式位置検出器。
A light source, a displacement signal generating means for generating a periodic displacement signal by receiving light from the light source with respect to a relative displacement of the relative detection target member; and the detection target member receiving light from the light source Origin signal generating means for generating the origin signal of
The displacement signal generating means includes a first scale fixed to one member that moves relative to the second scale, and a second scale fixed to the other member that moves relative to the first scale while facing a gap. A displacement signal main grating formed on the first scale and having a periodic grating with a constant pitch, and a line formed by limiting the irradiation light from the light source formed on the second scale. A displacement signal light source grating that forms a light source, a displacement signal index grating that further restricts light reflected by the displacement signal main grating, and irradiation light that is restricted by the displacement signal index grating are received and electrically received. A displacement signal light-receiving element for converting into a signal, and a displacement signal generation circuit for generating the displacement signal from the output of the displacement signal light-receiving element,
The origin signal generation means generates origin auxiliary signal generation means for generating a plurality of constant period origin auxiliary signals having a period longer than the displacement signal in the vicinity of the origin position of the detection target member and having different periods, and the displacement In an optical position detector comprising an origin signal generation circuit that generates the origin signal from a signal and the origin auxiliary signal ,
The origin auxiliary signal generating means has a grating pitch longer than that of the displacement signal main grating and is formed at least at two places on the first scale with origin grating main gratings having different pitches, 2 is formed on the scale of 2 and restricts the light emitted from the light source to form a linear light source, and is reflected on at least two origin signal light source gratings having different pitches and reflected on the origin signal main grating. Origin signal index gratings having different pitches formed in at least two places for further restricting the emitted light, and origin signal for receiving irradiation light restricted by the origin signal index gratings and converting them into electrical signals It consists of a light receiving element,
The origin signal generating circuit includes an origin auxiliary signal generating circuit for generating an origin auxiliary synthesized signal by synthesizing at least two types of origin auxiliary signals having different periods generated by the origin auxiliary signal generating means, and the origin auxiliary synthesized signal. An optical position detector comprising: an origin signal synthesizing circuit that generates an origin analog signal by synthesizing the displacement signal and the displacement signal; and a comparator that generates a pulsed origin signal from the origin analog signal . .
前記原点補助信号は、前記変位信号の2〜4倍および4〜7倍の2種類の周期の信号からなる請求項記載の光学式位置検出器。The origin auxiliary signal is 2 to 4 times and 4-7 times two optical position detector according to claim 1, wherein comprising a periodic signal of the displacement signal.
JP29577096A 1996-10-16 1996-10-16 Optical position detector Expired - Fee Related JP3649363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29577096A JP3649363B2 (en) 1996-10-16 1996-10-16 Optical position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29577096A JP3649363B2 (en) 1996-10-16 1996-10-16 Optical position detector

Publications (2)

Publication Number Publication Date
JPH10122908A JPH10122908A (en) 1998-05-15
JP3649363B2 true JP3649363B2 (en) 2005-05-18

Family

ID=17824949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29577096A Expired - Fee Related JP3649363B2 (en) 1996-10-16 1996-10-16 Optical position detector

Country Status (1)

Country Link
JP (1) JP3649363B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3659029B2 (en) * 1998-11-04 2005-06-15 富士電機機器制御株式会社 Absolute encoder
DE19921309A1 (en) * 1999-05-07 2000-11-09 Heidenhain Gmbh Dr Johannes Scanning unit for an optical position measuring device
JP2002013949A (en) * 2000-06-27 2002-01-18 Sokkia Co Ltd Absolute type encoder
DE10043828B4 (en) * 2000-09-06 2016-11-10 Dr. Johannes Heidenhain Gmbh Scanning unit for an optical position-measuring device
CN103278097A (en) * 2013-05-22 2013-09-04 南京信息职业技术学院 Test system for automobile sideslip test

Also Published As

Publication number Publication date
JPH10122908A (en) 1998-05-15

Similar Documents

Publication Publication Date Title
JP5113000B2 (en) Photoelectric encoder
JP5286584B2 (en) Absolute position measuring encoder
US6392224B1 (en) Scanning unit for an optical position measuring device
JP4503822B2 (en) Position measuring device
JP5641746B2 (en) Photoelectric encoder
JPH05133769A (en) Interference-position measuring apparatus
JP5479255B2 (en) Optical encoder
US8993954B2 (en) Optical encoder having a high resolution detection mode to detect a fine pitch pattern and a low resolution detection mode to detect a coarse pitch pattern
JP3649363B2 (en) Optical position detector
JP5391115B2 (en) Photoelectric encoder
JP2007040996A (en) Optical encoder
JP2007304097A (en) Optical encoder
JP3881339B2 (en) Position measuring device
US5530543A (en) Detector array for use in interferometric metrology systems
JP2888482B2 (en) Device for filtering harmonic signal components
JP2005502036A5 (en)
JP2004309366A (en) Position detecting device
JPH06174424A (en) Length measuring and angle measuring device
US7196319B2 (en) Position-measuring device
JPH08261795A (en) Method for detecting reference position of encoder
JPH0626817A (en) Optical displacement detector
JP3999274B2 (en) Optical position measuring device
JPH09126818A (en) Device for photoelectric length measurement or angle measurement
JP3345559B2 (en) High division encoder device
JPS61221616A (en) Optical measuring method for fine displacement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees