JP3648350B2 - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP3648350B2
JP3648350B2 JP10241797A JP10241797A JP3648350B2 JP 3648350 B2 JP3648350 B2 JP 3648350B2 JP 10241797 A JP10241797 A JP 10241797A JP 10241797 A JP10241797 A JP 10241797A JP 3648350 B2 JP3648350 B2 JP 3648350B2
Authority
JP
Japan
Prior art keywords
optical element
reinforcing rib
reflecting surface
optical
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10241797A
Other languages
Japanese (ja)
Other versions
JPH10282445A (en
Inventor
尚亘 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10241797A priority Critical patent/JP3648350B2/en
Publication of JPH10282445A publication Critical patent/JPH10282445A/en
Application granted granted Critical
Publication of JP3648350B2 publication Critical patent/JP3648350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はレーザービームによって感光体上に静電潜像を形成する画像形成装置に用いられる光学素子に関し、特に、熱膨張等による歪を防止する技術に関する。
【0002】
【従来の技術】
レーザビームを用いたビーム走査光学系は、レーザプリンタ、デジタル複写機、普通紙ファクス等の光学系として利用されているが、近年のビーム走査光学系の特徴として、長尺の光学素子が多用されている。このように長尺の光学素子が多用されるのは、レンズの樹脂化によるコストダウンが背景にあり、また、屈折力の小さい樹脂材料を使うこと及び短冊状の形成が比較的に容易なことにあり、従来用いられていたガラスレンズより主走査方向に長尺化する傾向がある。
【0003】
図6は従来用いられてきたビーム走査光学系の一例を示す図である。同図において、レーザユニット1で発生したレーザビーム9は、シリンドリカルレンズ2に入射し、回転多面鏡3上に結像する。この回転多面鏡3は、一定方向に等角速度で回転し、レーザビーム9は主走査方向(感光体6に示す矢印方向)に偏向し、結像レンズ4及び結像レンズ5により感光体6の走査線上で等速走査となるようfθ特性を持たせるとともに、所定のビームスポット径となるように結像させる。ミラー7は走査線の一部を反射し、同期検知センサ8に導くもので、同期検知センサ8は走査ビーム9が所定位置に達したことを検知し、画像の書き出し位置の同期信号を生成する。
【0004】
これらの光学素子のいくつかは通常、所望の位置精度を安定して保つため、光学ハウジングと呼ばれる光学素子の位置決め部、取付面を有する一体形成の保持部材に固定されるのが普通である。このような保持部材は、従来、高強度の合成樹脂、たとえば、ガラス繊維入りのPC樹脂、PPE樹脂、不飽和ポリエステル樹脂や、アルミ・亜鉛ダイカストで作られることが多い。
【0005】
結像レンズ4は、透明な合成樹脂製で、例えばPC、PMMAから構成され、これらの樹脂の屈折率がガラスに比べて小さいことから、同じ性能を持つガラスレンズより口径を大きくする(すなわち、長尺化する)ことにより対応している。一方、結像レンズ5は、副走査方向にも屈折率を有するアナモフィックな非球面を有する長尺レンズであり、加工上、ガラスで製作することが困難で、上記結像レンズ4と同様に透明な合成樹脂で、例えば、PC、PMMA等により構成している。
【0006】
このように長尺な光学素子は、使用中の温度上昇による熱膨張や、合成樹脂の吸湿による部品の変形を受けるので、剛性アップが重要となる。そこで、図6の結像レンズ5は、補強構造としてレンズ前方(入射側)に伸びる箱型の補強リブ5aを備えている。
【0007】
図7は、反射型光学素子10に、図6と同様の補強リブ10bを形成した状態を示す図である。このように、反射型光学素子に透過型光学素子と同様の箱型の補強リブ10bを形成すると、この補強リブ10bのために、反射面10aに蒸着模を形成する時に、補強リブ10bの根本にムラができ、有効に利用できる反射面が狭くなる。また、補強リブ10bによりレーザ光線の周辺がけられ、入射角が制限され、反射面10a中のある範囲しか有効に使用できない。図7の2点鎖線は、この有効領域10cを図示したものである。有効領域10cは、光学素子10の両端では広いが中央では狭くなっている。すなわち、補強リブ10bを反射面10aの前方に形成したので、有効領域10cが補強リブ10bに妨害されて光軸に近づくに連れて著しく狭められている。
【0008】
そこで、このような光学素子10では、図8に示すように、補強リブ10dは反射面10aと反対側、すなわち光学素子10の後方に形成しているが、この構成では、光学素子10の中央部分の剛性が弱い。
【0009】
断面形状から考えて上記の曲げに対してもっとも有効なのが、図7の形状であることはいうまでもないが、反射面10aの有効領域10cが狭まるので、レーザービームの位置合わせが困難になる。もし、有効領域10cの範囲を広く取れるよう部品高さH(図7)を大きくすると、装置の大型化、コストアップを招くばかりでなく、光学素子10自身の成形の困難(型温のばらつきによるひけ、残留ひずみなど)の度合いをさらに増幅することになる。
【0010】
【発明が解決しようとする課題】
本発明は、上記の事実から考えられたもので、長尺の合成樹脂製の凹の反射面を有する光学素子において、温湿度の変化による膨張・収縮や振動による座屈的変形と反射面の曲率変化に対して十分な剛性を持たせるとともに、良好な蒸着面を得るためのリブ構造を備えた光学素子を提案することを目的としている。
【0011】
【課題を解決するための手段】
上記の目的を達成するためには、請求項1では、光ビーム走査装置に用いる合成樹脂製で主走査方向における凹の反射面を有する長尺の光学素子において、上記反射面の前方に光軸とほぼ平行に延びる補強リブを形成し、該補強リブと光学素子の長手方向軸線との距離を、光学素子の両端側より中心側で大きくなるようにしたことを特徴としている。
【0012】
請求項2では、請求項1記載の光学素子において、上記補強リブを光学素子の長手方向に沿って階段状に形成したことを特徴とする。
【0013】
請求項3では、請求項1又は2記載の光学素子において、上記凹の反射面の有効領域が光学素子の長手方向について少なくともほぼ同じ幅を確保できることを特徴とする。
【0014】
請求項4では、請求項1乃至3のいずれか1に記載の光学素子において、上記補強リブを上記反射面の後方に光軸と平行に延長したことを特徴とする。
請求項5では、請求項1乃至4のいずれか1に記載の光学素子において、上記反射面を長手方向に一定の幅とし、反射面と補強リブとの間を反射面より後退した接続面で接続したことを特徴とする
【0015】
【発明の実施の形態】
以下に本発明の実施例を図面により説明する。
図1は、本発明の第1実施例で、凹の反射面を有する光学素子11を示す。この光学素子11は、反射面11aの裏面側(この裏面側を光学素子の「後方」ということにする)に補強リブ11bを設けている。ただし、従来のものとは異なり、この補強リブ11bは光学素子11の特に中央部での剛性を上げるため、光軸方向の高さhが反射面のいずれの位置からもほぼ同一となるように形成されている。このような構成であれば、反射面11aの形状精度に影響を及ぼさないで、剛性を上げることができ、熱膨張や振動による縦線よたり、バンディングなどの画質の劣化を防ぐことができる。
【0016】
図2は、本発明の第2実施例を示す。図1の後方の補強リブ11bだけでは、全体としてまだ弓なりで取付け部から受ける曲げの力に対して剛性が充分でない場合もある。そこで、この第2実施例の光学素子12では、補強リブ12bを反射面12a側(こちらを「前方」ということにする)にも延長している。図2(b)に2点鎖線で示す有効領域12cがリブに妨害されず蒸着が正常に行われ、かつ、光線も入反射できる領域である。すなわち、補強リブ12bの根元近傍は使用できない領域になるが、補強リブ12bを光学素子12の前後双方に形成したので、補強リブ12bの前方側の高さh′を低くすることができ、有効領域12cの面積を大きくとることが可能となる。
【0017】
図3は本発明の第3実施例の図である。この実施例では、光学素子13の反射面13aの前後に、補強リブ13bを形成している。補強リブ13bの後方側の光軸方向高さhは反射面の全体に渡ってほぼ同一としている。これに対し、補強リブ13bの前方縁13dは光軸cと直角な直線で、高さh′は光学素子13の中心に向かうほど大きくなっている。そして、さらに、この実施例では、補強リブ13bは、光学素子13の長手方向の軸線aからの距離Lが、両端側のL1より中心部のL0の方が広くなる曲線状になっている。したがって、光学素子13の剛性は向上し、さらに、2点鎖線で示す有効領域13cの面積も大きくとることができる。
【0018】
また結果として光学素子13の中央部における断面の高さHが高くなるので光学素子13の曲げ剛性が中央部に向かうにしたがって大きくなる。したがって、従来例に比べ、x方向、z方向への振動、変形に対してより変位を小さく抑えることができ、画像上の縦線よれ、バンディングを低減できる。
【0019】
図4は本発明の第4実施例を示す。図3の補強リブ13bが曲面になっているのに対し、この光学素子14の補強リブ14bは、階段状に変化している。そのため、補強リブ14bの高さ変化にもかかわらず補強リブ14bの配置位置が段階的に変化するので、図示のように、反射面14aの有効領域14cは不連続に変化する。実際には、レーザ光線は滑らかに走査されるので、最低限の幅dを有するほぼ矩形の有効範囲14dが確保されるように補強リブ14bの配置を決めればよい。本実施例の効果は、型を製作する際に、型を構成するブロックの合わせが平面になるため、加工が容易になることである。また、剛性向上による部品の大型化を部分的に止めることができ、成形の効率を抑えるとともに、部品を組み込むユニットの大型化を抑えることができる。
【0020】
図5は本発明の第5実施例を示す。図3、図4の光学素子13,14が反射面13a,14aの延長上に補強リブ13b,14bを形成しているが、本実施例では反射面15aを光学素子の長手方向にほぼ一定の幅とし、補強リブ15bと反射面15aとの間を反射面から後退した不連続な接続面15dで接続している。本実施例の利点は、高精度が必要な反射面に対応する型部材を必要最小限にとどめかつ加工の容易な矩形断面状にすることにより、型製作コストを抑えられることである。
【0021】
【発明の効果】
以上に説明したように、本発明によれば、光ビーム走査装置に用いる合成樹脂製で凹の反射面を有する長尺の光学素子において、上記凹の反射面の後方に光軸と平行に延びる補強リブを光軸方向の高さが同一になるように形成したので、反射型光学素子の曲げ剛性を大きくすることができ、熱膨張や振動による縦線よたり、バンディングなどの画質の劣化を防ぐことができる。
【0022】
上記補強リブを反射面の前方に延長し、反射面の前方における補強リブの光軸方向の高さがほぼ同一になるようにすれば、さらに曲げ剛性を大きくできる。また、補強リブが前後にあるので、反射面前方のリブの高さを低くすることができ、有効領域を大きく確保でくる。
【0023】
また、光ビーム走査装置に用いる合成樹脂製で凹の反射面を有する長尺の光学素子において、上記反射面の前方に光軸とほぼ平行に延びる補強リブを形成し、該補強リブと光学素子の長手方向軸線との距離を、光学素子の両端側より中心側で大きくなるようにしたので、光学素子の曲げ剛性を大きくできるとともに、リブの高さを高くしても反射面の有効領域を大きく確保できる。
【0024】
上記補強リブを光学素子の長手方向に沿って階段状に形成すれば、型の合わせ面を平面にすることができる。
上記補強リブを上記反射面の後方にも延長すれば、前方側の高さを低くすることができ、有効領域を大きくすることができる。
上記反射面を長手方向に一定の幅とし、反射面と補強リブとの間を反射面より後退した接続面で接続した構成とすれば、高精度が必要な反射面の範囲がほぼ矩形に限定されるので、対応する型部材を必要最小限にとどめかつ加工が容易になるため、型製作コストを抑える効果がある。
【図面の簡単な説明】
【図1】本発明の長尺で反射型の光学素子の第1実施例の構成を示す図で、(a)は上面図、(b)は正面図、(c)は(a)のI−I断面図である。
【図2】本発明の長尺で反射型の光学素子の第2実施例の構成を示す図で、(a)は上面図、(b)は正面図、(c)は(a)のII−II断面図である。
【図3】本発明の長尺で反射型の光学素子の第3実施例の構成を示す図で、(a)は上面図、(b)は正面図、(c)は(a)のIII−III断面図である。
【図4】本発明の長尺で反射型の光学素子の第4実施例の構成を示す図で、(a)は上面図、(b)は正面図、(c)は(a)のIV−IV断面図である。
【図5】本発明の長尺で反射型の光学素子の第5実施例の構成を示す図で、(a)は上面図、(b)は正面図、(c)は(a)のV−V断面図である。
【図6】従来の走査光学系の構成を示す斜視図である。
【図7】長尺で反射型の光学素子に、透過型と同じ補強リブを形成した状態を示す図で、(a)は上面図、(b)は正面図、(c)は(a)のVII−VII断面図である。
【図8】長尺で反射型の光学素子を用いた従来の走査光学系の構成を示す斜視図である。
【符号の説明】
11,12,13,14,15 光学素子
11a,12a,13a,14a,15a 反射面
11b,12b,13b,14b,15b 補強リブ
12c,13c,14c,15c 有効領域
15d 接続面
h 補強リブの光軸方向の後方側高さ
h′ 補強リブの光軸方向の前方側高さ
a 光学素子の長手方向軸線
c 光軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical element used in an image forming apparatus that forms an electrostatic latent image on a photoreceptor with a laser beam, and more particularly to a technique for preventing distortion due to thermal expansion or the like.
[0002]
[Prior art]
A beam scanning optical system using a laser beam is used as an optical system such as a laser printer, a digital copying machine, and a plain paper fax machine. As a feature of the recent beam scanning optical system, a long optical element is often used. ing. The long optical elements are frequently used because of the cost reduction due to the resinization of lenses, and the use of resin materials with low refractive power and the formation of strips is relatively easy. Therefore, the glass lens tends to be longer in the main scanning direction than the conventionally used glass lens.
[0003]
FIG. 6 is a diagram showing an example of a beam scanning optical system conventionally used. In the figure, a laser beam 9 generated by the laser unit 1 enters the cylindrical lens 2 and forms an image on the rotary polygon mirror 3. The rotating polygon mirror 3 rotates at a constant angular velocity in a fixed direction, the laser beam 9 is deflected in the main scanning direction (the arrow direction shown in the photosensitive member 6), and the imaging lens 4 and the imaging lens 5 An fθ characteristic is provided so as to perform constant speed scanning on the scanning line, and an image is formed so as to have a predetermined beam spot diameter. The mirror 7 reflects a part of the scanning line and guides it to the synchronization detection sensor 8. The synchronization detection sensor 8 detects that the scanning beam 9 has reached a predetermined position, and generates a synchronization signal of the image writing position. .
[0004]
Some of these optical elements are usually fixed to an integrally formed holding member having an optical element positioning portion and mounting surface called an optical housing in order to stably maintain a desired positional accuracy. Conventionally, such a holding member is often made of a high-strength synthetic resin, for example, a PC resin containing glass fiber, a PPE resin, an unsaturated polyester resin, or an aluminum / zinc die-cast.
[0005]
The imaging lens 4 is made of a transparent synthetic resin and is made of, for example, PC or PMMA. Since the refractive index of these resins is smaller than that of glass, the aperture is made larger than that of a glass lens having the same performance (that is, This can be done by increasing the length). On the other hand, the imaging lens 5 is a long lens having an anamorphic aspherical surface having a refractive index also in the sub-scanning direction, and is difficult to manufacture with glass for processing, and is transparent like the imaging lens 4 described above. For example, it is made of PC, PMMA or the like.
[0006]
Such a long optical element is subject to thermal expansion due to a temperature rise during use and deformation of parts due to moisture absorption of the synthetic resin, so that it is important to increase rigidity. Therefore, the imaging lens 5 of FIG. 6 includes a box-shaped reinforcing rib 5a that extends in front of the lens (incident side) as a reinforcing structure.
[0007]
FIG. 7 is a diagram showing a state in which the same reinforcing rib 10b as that in FIG. 6 is formed on the reflective optical element 10. FIG. When the box-shaped reinforcing rib 10b similar to the transmissive optical element is formed on the reflective optical element in this way, the root of the reinforcing rib 10b is formed when forming a vapor deposition pattern on the reflective surface 10a for the reinforcing rib 10b. And the reflective surface that can be used effectively becomes narrow. Further, the periphery of the laser beam is provided by the reinforcing rib 10b, the incident angle is limited, and only a certain range in the reflecting surface 10a can be used effectively. A two-dot chain line in FIG. 7 illustrates the effective region 10c. The effective area 10c is wide at both ends of the optical element 10 but narrow at the center. That is, since the reinforcing rib 10b is formed in front of the reflecting surface 10a, the effective area 10c is obstructed by the reinforcing rib 10b and is remarkably narrowed as it approaches the optical axis.
[0008]
Therefore, in such an optical element 10, as shown in FIG. 8, the reinforcing rib 10 d is formed on the side opposite to the reflecting surface 10 a, that is, on the rear side of the optical element 10. The rigidity of the part is weak.
[0009]
It is needless to say that the shape shown in FIG. 7 is the most effective for the above bending in view of the cross-sectional shape, but the effective area 10c of the reflecting surface 10a is narrowed, so that it is difficult to align the laser beam. . If the component height H (FIG. 7) is increased so as to widen the effective area 10c, not only will the apparatus be increased in size and cost, but also the optical element 10 itself will be difficult to mold (due to variations in mold temperature). The degree of sink, residual strain, etc.) is further amplified.
[0010]
[Problems to be solved by the invention]
The present invention was conceived from the above facts. In an optical element having a long synthetic resin concave reflecting surface, buckling deformation due to expansion / contraction or vibration due to a change in temperature and humidity and the reflection surface An object of the present invention is to propose an optical element having a rib structure for giving a sufficient vapor deposition surface while giving sufficient rigidity to a change in curvature.
[0011]
[Means for Solving the Problems]
In order to achieve the above object , in claim 1, in a long optical element made of a synthetic resin and having a concave reflecting surface in the main scanning direction for use in a light beam scanning device, an optical axis is provided in front of the reflecting surface. And a distance between the reinforcing rib and the longitudinal axis of the optical element is greater on the center side than on both ends of the optical element .
[0012]
According to a second aspect of the present invention, in the optical element according to the first aspect, the reinforcing ribs are formed stepwise along the longitudinal direction of the optical element.
[0013]
According to a third aspect of the present invention, in the optical element according to the first or second aspect, the effective area of the concave reflecting surface can ensure at least substantially the same width in the longitudinal direction of the optical element .
[0014]
According to a fourth aspect of the present invention, in the optical element according to any one of the first to third aspects, the reinforcing rib extends behind the reflecting surface in parallel with the optical axis.
According to a fifth aspect of the present invention, in the optical element according to any one of the first to fourth aspects, the reflective surface has a constant width in the longitudinal direction, and the connection surface recedes from the reflective surface between the reflective surface and the reinforcing rib. It is connected .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an optical element 11 having a concave reflecting surface in the first embodiment of the present invention. The optical element 11 is provided with reinforcing ribs 11b on the back surface side of the reflecting surface 11a (this back surface side is referred to as “rear side” of the optical element). However, unlike the conventional one, this reinforcing rib 11b increases the rigidity of the optical element 11, particularly at the center, so that the height h in the optical axis direction is substantially the same from any position on the reflecting surface. Is formed. With such a configuration, the rigidity can be increased without affecting the shape accuracy of the reflecting surface 11a, and deterioration of image quality such as vertical lines due to thermal expansion or vibration, or banding can be prevented.
[0016]
FIG. 2 shows a second embodiment of the present invention. In some cases, the rear reinforcing rib 11b in FIG. 1 may not be sufficiently rigid with respect to the bending force received from the mounting portion as a whole as a bow. Therefore, in the optical element 12 of the second embodiment, the reinforcing rib 12b is also extended to the reflecting surface 12a side (this is referred to as “front”). An effective area 12c shown by a two-dot chain line in FIG. 2B is an area where vapor deposition is performed normally without being obstructed by the ribs, and light rays can also be incident and reflected. That is, although the vicinity of the base of the reinforcing rib 12b is an unusable region, the reinforcing rib 12b is formed on both the front and rear sides of the optical element 12, so that the height h 'on the front side of the reinforcing rib 12b can be reduced, and effective It is possible to increase the area of the region 12c.
[0017]
FIG. 3 is a diagram of a third embodiment of the present invention. In this embodiment, reinforcing ribs 13b are formed before and after the reflecting surface 13a of the optical element 13. The height h in the optical axis direction on the rear side of the reinforcing rib 13b is substantially the same over the entire reflecting surface. In contrast, the front edge 13d of the reinforcing rib 13b is a straight line perpendicular to the optical axis c, and the height h 'increases toward the center of the optical element 13. Further, in this embodiment, the reinforcing rib 13b has a curved shape in which the distance L from the longitudinal axis a of the optical element 13 is wider at the center L0 than at both ends L1. Therefore, the rigidity of the optical element 13 is improved, and the area of the effective region 13c indicated by the two-dot chain line can be increased.
[0018]
As a result, the height H of the cross section at the central portion of the optical element 13 is increased, so that the bending rigidity of the optical element 13 increases toward the central portion. Therefore, compared to the conventional example, the displacement can be suppressed to be smaller with respect to vibration and deformation in the x direction and the z direction, and banding due to vertical lines on the image can be reduced.
[0019]
FIG. 4 shows a fourth embodiment of the present invention. While the reinforcing rib 13b of FIG. 3 is a curved surface, the reinforcing rib 14b of the optical element 14 changes in a step shape. For this reason, the arrangement position of the reinforcing ribs 14b changes stepwise regardless of the height change of the reinforcing ribs 14b, so that the effective area 14c of the reflecting surface 14a changes discontinuously as shown in the figure. Actually, since the laser beam is scanned smoothly, the arrangement of the reinforcing ribs 14b may be determined so as to ensure a substantially rectangular effective range 14d having a minimum width d. The effect of the present embodiment is that when the mold is manufactured, the alignment of the blocks constituting the mold becomes a flat surface, so that the processing becomes easy. Further, the increase in size of the component due to the improvement in rigidity can be partially stopped, so that the molding efficiency can be suppressed and the increase in the size of the unit in which the component is incorporated can be suppressed.
[0020]
FIG. 5 shows a fifth embodiment of the present invention. The optical elements 13 and 14 of FIGS. 3 and 4 have reinforcing ribs 13b and 14b formed on the extension of the reflecting surfaces 13a and 14a. In this embodiment, the reflecting surface 15a is substantially constant in the longitudinal direction of the optical element. The width of the reinforcing rib 15b and the reflecting surface 15a are connected by a discontinuous connecting surface 15d that recedes from the reflecting surface. The advantage of this embodiment is that the mold manufacturing cost can be reduced by minimizing the mold member corresponding to the reflective surface requiring high accuracy and making it a rectangular cross-section that is easy to process.
[0021]
【The invention's effect】
As described above, according to the present invention, in a long optical element made of a synthetic resin and having a concave reflecting surface used for a light beam scanning device, it extends in parallel with the optical axis behind the concave reflecting surface. Since the reinforcing ribs are formed so that the height in the optical axis direction is the same, the bending rigidity of the reflective optical element can be increased, resulting in vertical lines due to thermal expansion and vibration, and deterioration of image quality such as banding. Can be prevented.
[0022]
If the reinforcing rib is extended to the front of the reflecting surface and the height of the reinforcing rib in the optical axis direction in front of the reflecting surface is substantially the same, the bending rigidity can be further increased. Further, since the reinforcing ribs are provided at the front and rear, the height of the rib in front of the reflecting surface can be reduced, and a large effective area can be secured.
[0023]
Further, in a long optical element made of a synthetic resin and having a concave reflecting surface used for a light beam scanning device, a reinforcing rib extending substantially parallel to the optical axis is formed in front of the reflecting surface, and the reinforcing rib and the optical element Since the distance from the longitudinal axis of the optical element is larger on the center side than the both ends of the optical element, the bending rigidity of the optical element can be increased, and the effective area of the reflecting surface can be increased even if the height of the rib is increased. Largely secured.
[0024]
If the reinforcing ribs are formed stepwise along the longitudinal direction of the optical element, the mating surfaces of the molds can be made flat.
If the reinforcing rib is extended to the rear of the reflecting surface, the height on the front side can be reduced and the effective area can be increased.
If the reflecting surface has a constant width in the longitudinal direction and the reflecting surface and the reinforcing rib are connected by a connecting surface that is recessed from the reflecting surface, the range of the reflecting surface that requires high accuracy is limited to a substantially rectangular shape. As a result, the corresponding mold member is kept to the minimum necessary and the processing becomes easy, so that there is an effect of suppressing the mold manufacturing cost.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing the configuration of a first embodiment of a long and reflective optical element according to the present invention, where (a) is a top view, (b) is a front view, and (c) is an I of (a). It is -I sectional drawing.
FIGS. 2A and 2B are diagrams showing a configuration of a second embodiment of the long and reflective optical element of the present invention, where FIG. 2A is a top view, FIG. 2B is a front view, and FIG. 2C is II of FIG. It is -II sectional drawing.
FIGS. 3A and 3B are diagrams showing the configuration of a third embodiment of the long and reflective optical element of the present invention, where FIG. 3A is a top view, FIG. 3B is a front view, and FIG. 3C is III of FIG. It is -III sectional drawing.
FIGS. 4A and 4B are diagrams showing the configuration of a fourth embodiment of the long and reflective optical element of the present invention, where FIG. 4A is a top view, FIG. 4B is a front view, and FIG. 4C is an IV of FIG. It is -IV sectional drawing.
FIGS. 5A and 5B are diagrams showing the configuration of a fifth embodiment of the long and reflective optical element of the present invention, where FIG. 5A is a top view, FIG. 5B is a front view, and FIG. It is -V sectional drawing.
FIG. 6 is a perspective view showing a configuration of a conventional scanning optical system.
FIGS. 7A and 7B are diagrams showing a state in which the same reinforcing rib as that of the transmission type is formed on the long and reflective optical element, where FIG. 7A is a top view, FIG. 7B is a front view, and FIG. It is VII-VII sectional drawing.
FIG. 8 is a perspective view showing a configuration of a conventional scanning optical system using a long and reflective optical element.
[Explanation of symbols]
11, 12, 13, 14, 15 Optical elements 11a, 12a, 13a, 14a, 15a Reflective surfaces 11b, 12b, 13b, 14b, 15b Reinforcement ribs 12c, 13c, 14c, 15c Effective area 15d Connection surface h Light of reinforcement ribs Rear height h ′ in the axial direction Front height a in the optical axis direction of the reinforcing rib a Longitudinal axis c of the optical element Optical axis

Claims (5)

光ビーム走査装置に用いる合成樹脂製で主走査方向における凹の反射面を有する長尺の光学素子において、上記反射面の前方に光軸とほぼ平行に延びる補強リブを形成し、該補強リブと光学素子の長手方向軸線との距離を、光学素子の両端側より中心側で大きくなるようにしたことを特徴とする光学素子。In a long optical element made of a synthetic resin and used in a light beam scanning apparatus and having a concave reflecting surface in the main scanning direction , a reinforcing rib extending substantially parallel to the optical axis is formed in front of the reflecting surface, and the reinforcing rib An optical element characterized in that the distance from the longitudinal axis of the optical element is larger on the center side than on both ends of the optical element. 請求項1記載の光学素子において、上記補強リブを光学素子の長手方向に沿って階段状に形成したことを特徴とする光学素子。2. The optical element according to claim 1, wherein the reinforcing rib is formed in a step shape along the longitudinal direction of the optical element. 請求項1又は2記載の光学素子において、上記凹の反射面の有効領域が光学素子の長手方向について少なくともほぼ同じ幅を確保できることを特徴とする光学素子。 3. The optical element according to claim 1, wherein the effective area of the concave reflecting surface can ensure at least substantially the same width in the longitudinal direction of the optical element. 請求項1乃至3のいずれか1に記載の光学素子において、上記補強リブを上記反射面の後方に光軸と平行に延長したことを特徴とする光学素子。 4. The optical element according to claim 1, wherein the reinforcing rib is extended behind the reflecting surface in parallel with the optical axis . 請求項1乃至4のいずれか1に記載の光学素子において、上記反射面を長手方向に一定の幅とし、反射面と補強リブとの間を反射面より後退した接続面で接続したことを特徴とする光学素子。 5. The optical element according to claim 1, wherein the reflective surface has a constant width in the longitudinal direction, and the reflective surface and the reinforcing rib are connected by a connection surface that is recessed from the reflective surface. An optical element.
JP10241797A 1997-04-07 1997-04-07 Optical element Expired - Fee Related JP3648350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10241797A JP3648350B2 (en) 1997-04-07 1997-04-07 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10241797A JP3648350B2 (en) 1997-04-07 1997-04-07 Optical element

Publications (2)

Publication Number Publication Date
JPH10282445A JPH10282445A (en) 1998-10-23
JP3648350B2 true JP3648350B2 (en) 2005-05-18

Family

ID=14326881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10241797A Expired - Fee Related JP3648350B2 (en) 1997-04-07 1997-04-07 Optical element

Country Status (1)

Country Link
JP (1) JP3648350B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8201954B2 (en) * 2009-01-08 2012-06-19 Coherent, Inc. Compensation for transient heating of laser mirrors
WO2021203294A1 (en) * 2020-04-08 2021-10-14 深圳市大疆创新科技有限公司 Optical device, detection method for optical device, laser radar, and mobile device

Also Published As

Publication number Publication date
JPH10282445A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
JP3939896B2 (en) Optical scanning device
JP3463294B2 (en) Optical scanning device
US6829104B2 (en) Resin-made non-spherical optical element, optical scanning device using the optical element, and image forming apparatus using the optical scanning device
JPH10232347A (en) Scanning optical device
US5631763A (en) Fθ lens system in a laser scanning unit
JP2005004208A (en) Ftheta LENS FOR OPTICAL SCANNING DEVICE, AND OPTICAL SCANNING DEVICE
JP3648350B2 (en) Optical element
US5255112A (en) Optical scanning apparatus and system
JPH1010445A (en) Synchronous detecting optical system
JP3365869B2 (en) Scanning optical system
US6665103B2 (en) Optical scanning apparatus and image forming apparatus using the same
EP0441350A2 (en) Optical system for light beam scanning
JP3215764B2 (en) Reflective scanning optical system
JP3453887B2 (en) Beam scanning device
JP3293345B2 (en) Optical beam scanning optical device
JP3254367B2 (en) Optical scanning optical system
JP3411661B2 (en) Scanning optical system
JP3748715B2 (en) Scanning imaging lens
JP3420439B2 (en) Optical scanning optical system and laser beam printer including the same
JP2730443B2 (en) Light beam scanning device
JP3404204B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP3594274B2 (en) Optical scanning optical system and apparatus using this optical system
JP4387521B2 (en) Scanning optical system and image forming apparatus
JP4028693B2 (en) Optical scanning apparatus and image forming apparatus
JPH04119313A (en) Optical scanner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees