JP3648157B2 - Destructor - Google Patents

Destructor Download PDF

Info

Publication number
JP3648157B2
JP3648157B2 JP2000398039A JP2000398039A JP3648157B2 JP 3648157 B2 JP3648157 B2 JP 3648157B2 JP 2000398039 A JP2000398039 A JP 2000398039A JP 2000398039 A JP2000398039 A JP 2000398039A JP 3648157 B2 JP3648157 B2 JP 3648157B2
Authority
JP
Japan
Prior art keywords
tank
weir
inlet
pipe
depressurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000398039A
Other languages
Japanese (ja)
Other versions
JP2002201706A (en
Inventor
裕英 中川
学 大久保
哲生 長江
保幸 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000398039A priority Critical patent/JP3648157B2/en
Publication of JP2002201706A publication Critical patent/JP2002201706A/en
Application granted granted Critical
Publication of JP3648157B2 publication Critical patent/JP3648157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、傾斜地に配管された下水管(傾斜配管)などの管渠から放流される高速水流を減勢するのに用いられる減勢工に関する。
【0002】
【従来の技術】
傾斜地に配管された下水管などから放流される下水は高速であるため、そのまま放流すると、公共管やポンプ塔などの施設を損傷するおそれがある。このため高速水流のエネルギを減勢する設備を設ける必要がある。
【0003】
高速水流の放流水脈を減勢する設備としては減勢工が知られている。減勢工としては、例えば図16に示すように、減勢槽(減勢池)101の下流部に堰102を設け、傾斜下水管などの管渠103から流出する水流の運動エネルギを跳水現象により減勢させる跳水型減勢工がある。なお、このような跳水式減勢工では、堰102の上流側の跳水渦領域に、バッフルピアやシルなど、水流を衝突分散させる補助構造物を設けて減勢効果を高めるという方法も採られている。
【0004】
【発明が解決しようとする課題】
ところで、図16に示す構造の減勢工において、十分な減勢効果を得るには、跳水長L(跳水を起こさせるために必要な長さ)を大きくとる必要があるため、減勢工全体の規模が大きくなってしまうという問題がある。
【0005】
また、図16に示す構造の減勢工では、管渠103から流出する水流が減勢槽101内に噴射状に開放されるので、管渠103から減勢槽101内に連行される空気量が多い。特に、管渠103に流入する下水等が多量で、管内の水流が射流(ジェット流)状態となる場合、減勢槽101内への空気連行量が非常に多くなるため、減勢槽101に通気孔などの排気設備が必要となる。しかも、下水管等からの連行空気は臭いため、外部への排気を行うと減勢工の周辺に悪臭が漂うという問題もある。
【0006】
ここで、跳水型減勢工では、減勢槽内に堰を設けているため、減勢槽内に汚水等が滞留する可能性がある。減勢槽内で滞留が生じても減勢のメカニズム上の問題はないが、悪臭の発生や衛生面等において好ましい状況とは言えないので、滞留が起こらないような構造が望まれる。
【0007】
本発明はそのような実情に鑑みてなされたもので、規模が小さくて減勢槽への空気連行量が少ない構造で、しかも下水等の滞留が生じ難い構造の減勢工の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明の減勢工は、傾斜地に配管された下水管などの管渠から放流される高速水流を減勢するのに用いられる減勢工であって、流入口及び流出口を有する減勢槽と、その減勢槽の流出口の前方に所定の間隔をあけて配置された堰を備え、その堰には、流入口側と流出口側とを連通する貫通穴またはスリットが形成されているとともに、前記減勢槽の流入口及び流出口の双方が前記堰の上端よりも下方に配置されていることによって特徴づけられる。
【0009】
本発明の減勢工において、流入管を流れる下水等は、減勢槽の流入口を通じて内部に流入する。減勢槽に流入した水流は、減勢槽内の堰によって上昇渦流となり、堰に沿って上方にせり上がってゆき、堰を越流して流出管に流入する。
【0010】
このように本発明の減勢工では、減勢槽に流入した水流を、堰によって強制的にせり上がらせることにより、減勢槽の高さ方向において水流の運動エネルギを発散(減勢)させているので、減勢槽の流入口と堰との間の距離が短くても、十分な減勢効果を得ることができる。
【0012】
しかも、本発明の減勢工において、減勢槽の流入口を堰の上端よりも下方に配置しているので、減勢槽への流入水が堰を越流している状態では、管渠からの噴流水は減勢槽内に溜まっている溜水の水中に流入することになる。これにより、射流により多量の空気が管渠から連行されても、その連行空気は、減勢槽内の溜水の存在によって減勢槽内への浸入が阻止され、その殆どが管渠に戻される。なお、連行空気の一部は減勢槽内の溜水中に浸入し水面から破泡するが、その量はごく僅かであるので、特に排気設備などを設ける必要はない。
【0013】
以上のように、管渠内に下水等が流れる場合、下水等は減勢槽内の堰の前部で水位上昇し、堰に設けた貫通穴(またはスリット)から流出し、流入管に入る。なお、大量の下水等が減勢槽内に流入する場合、堰に設けた貫通穴(またはスリット)の存在に関係なく、堰を越流して流出管に流れる。
【0014】
一方、管渠から減勢槽内に流入する水量が少量(堰の前部で水位上昇しない水量)である場合には、減勢槽内に流入した下水等は、堰に設けた貫通穴(またはスリット)を通過して流出管に流れるので、減勢槽内に下水等が滞留することはない。
【0015】
なお、堰に設ける貫通穴またはスリットは、下水等に含まれる汚物などが通過できる程度の大きさとすることが好ましい。
【0016】
本発明の減勢工において、減勢槽内に配置する堰として、流入口側の面が湾曲している堰を用いると、水流の拡散効果が大きくなり、減勢槽内での減勢効果をより一層高めることができる。
【0017】
本発明の減勢工において、減勢槽の流入口の上流側に、流入口に向けて水平に延びる水平流路を形成することが好ましい。このような水平流路を設けておくと、流入管を流れる下水等が、減勢槽内に水平な流れとして流入するので、減勢効果を更に高めることができる。
【0018】
本発明の減勢工において、減勢槽内の上部と減勢槽の流入口に接続される流入管の管内部とを連通する空気バイパス用通路を設けておいてもよいし、また、減勢槽内の上部と減勢槽の流出口に接続される流出管の管内部とを連通する空気バイパス用通路を設けておいてもよい。さらに、それら流入側の空気バイパス用通路と流出側の空気バイパス用通路の双方を設けておいてもよい。
【0019】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0020】
図1は本発明の減勢工の実施形態の縦断面図である。図2はその実施形態の水平断面図である。図3は図2のX−X断面図である。
【0021】
この例の減勢工は、傾斜地に配管された下水管(傾斜配管)に敷設される減勢工であって、減勢槽1と、その内部に配置された堰2を備えている。
【0022】
減勢槽1はコンクリート製で、流入口1a及び流出口1bが設けられている。なお、減勢槽1はコンクリート製に限定されるものではない。
【0023】
堰2は、流出口1bの前方に所定の間隔をあけて配置されている。堰2の底部には傾斜面2aが形成されている。この傾斜面2aは、流入口1aから減勢槽1内に流入した水流の向きを上方(鉛直方向)に効率良く誘導することを目的として形成される。
【0024】
堰2には貫通穴2bが設けられており、この貫通穴2bを介して堰2の上流側と下流側とが連通している。なお、貫通穴2bの大きさは、下水等に含まれる汚物などが通過できる程度の大きさ、例えばφ50mm〜φ100mm程度とする。また、貫通穴の形状は、円形のほか楕円や四角形等であってもよい。
【0025】
減勢槽1の流入口1a及び流出口1bにはそれぞれ流入管(下水管)3及び流出管4が接続される。流入管3には、減勢槽1の流入口1aに向けて水平に延びる水平管路30が形成されている。
【0026】
流入管3の管底3aは減勢槽1の底面と略一致する高さに設定されている。また、流出管4の管底4aも減勢槽1の底面と略一致する高さに設定されている。
【0027】
次に、本実施形態の作用を述べる。
【0028】
まず、流入管3を流れる下水は、減勢槽1の流入口1aの手前の水平管路30にて方向が変更され、減勢槽1内に水平な流れとして流入する。減勢槽1に流入した水流は、減勢槽1内の堰2によって上昇渦流となり、堰2に沿って上方にせり上がってゆき、堰2を越流して流出管4に流入する。その越流状態のときに、図1に示すような水面形が形成され、跳水高さHが非常に高くなる。
【0029】
このように本実施形態では、減勢槽1内に流入した水流を、堰2によって強制的にせり上がらせることにより、減勢槽1の高さ方向において水流の運動エネルギを発散(減勢)させているので、減勢槽1の流入口1aと堰2との間の距離が短くても、十分な減勢効果を得ることができる。従って、減勢槽1の高さは少し高くなるものの、減勢工全体の規模を小さくすることができる。
【0030】
さらに、本実施形態では、図1に示すように、減勢槽1への流入水が堰2を越流している状態、つまり減勢槽1内に多量の下水が流入している状態では、流入管3からの噴流水は減勢槽1内に溜まっている溜水の水中に流入するので、流入管3を流れる噴流により多量の空気が減勢槽1に向けて連行されても、その連行空気は、減勢槽1内の溜水の存在によって減勢槽1内への浸入が阻止され、その殆どが流入管3に戻される。なお、連行空気の一部は減勢槽1内の溜水中に浸入し水面から破泡するが、その量はごく僅かであるので、特に排気設備などを設ける必要はない。
【0031】
また、本実施形態において、流入管3から減勢槽1内に流入する下水の水量が少量(堰を越えない水量)である場合、減勢槽1内に流入した下水は、堰2の貫通穴2bを通過して流出管に流れるので、減勢槽1内に下水が滞留することはない。
【0032】
なお、以上の実施形態において、図4に示すように、堰2の流入口1b側の面を、緩やかに傾斜する形状に加工しておいてもよい。
【0033】
また、以上の実施形態では、堰に貫通穴を形成しているが、これに替えて、図5〜図7に示すように、堰20の上端から減勢槽1の底部まで切れ込むスリット21を設けておいてもよい。スリット21の幅は、下水等に含まれる汚物などの大きさを考慮して決定する。
【0034】
以上の実施形態において、図8及び図9に示すように、堰2の中央部に三角ブロック5を設けておいてもよい。このような三角ブロック5を設けておくと、流出管4の内部で跳水が生じることを防止することができ、減勢槽1内に流入した水流のエネルギをより効果的に減勢することができる。なお、ブロックの断面形状としては三角形のほか、台形等であってもよい。
【0035】
また、図10及び図11に示すように、堰22の壁面(流入口1a側の面)を略球状の湾曲面とすれば、水流の拡散効果が大きくなり、減勢槽内での減勢効果をより一層高めることができる。
【0036】
以上の実施形態において、図12に示すように、減勢槽1内の上部と、減勢槽1に接続される流入管3の管内部とを連通する空気バイパス管6を設けて、減勢槽1内の溜水中に浸入し水面から破泡した空気(連行空気)を、流入管3に戻すようにしてもよい。また、図13に示すように、減勢槽1内の上部と、減勢槽1に接続される流出管4の管内部とを連通する空気バイパス管7を設けて、減勢槽1内の溜水中に浸入し水面から破泡した空気(連行空気)を、流出管4に逃がすようにしてもよい。これら図12及び図13に示すような空気バイパス管6と空気バイパス管7の双方を減勢槽1に設けておいてもよい。なお、空気バイパス用通路としては、コンクリートに形成した通気孔などであってもよい。
【0037】
ここで、以上の実施形態では、減勢槽1の流入口1aに向けて水平に延びる水平管路30を形成しているが、本発明はこれに限定されることなく、例えば図14に示すように、傾斜配管(流入管)31をそのまま減勢槽1の流入口1aに接続するようにしてもよい。
【0038】
また、以上の実施形態では、減勢槽1に設ける流入口1aの位置を、堰2(流出口1b)と対向する位置としているが、これに限られることなく、例えば図15の平面図に示すように、流入口1aを減勢槽1の側部に設けてもよい。
【0039】
なお、本発明の減勢工は、下水管に限られることなく、高速水流を放流する各種配管・管渠に適用可能である。
【0040】
【発明の効果】
以上説明したように、本発明の減勢工によれば、減勢槽内に堰を設け、減勢槽に流入した水流を、堰にて強制的にせり上がらせることにより、減勢槽の高さ方向において水流の運動エネルギを減勢するように構成しているので、減勢槽の流入部から堰までの距離を短くすることができ、減勢工全体の規模を小さくすることができる。また、減勢槽内の堰に、流入口側と流出口側とを連通する貫通穴またはスリットを設けているので、減勢槽内に下水等が滞留し難い。
【0041】
しかも、減勢槽の流入口を堰の上端よりも下方に配置しているので、減勢槽への流入水が堰を越流している状態のときに、下水管等の管渠(流入管)からの噴流水が、減勢槽内に溜まっている溜水の水中に流入することになり、これにより、管渠を流れる射流により多量の空気が管渠から連行されても、その連行空気が減勢槽内に入り込む量は少なくて済み、排気設備・悪臭等の問題を解消することができる。
【図面の簡単な説明】
【図1】本発明の減勢工の実施形態の縦断面図である。
【図2】図1の実施形態の水平断面図である。
【図3】図2のX−X断面図である。
【図4】減勢槽に設ける堰の例を示す縦断面図である。
【図5】本発明の減勢工の他の実施形態の縦断面図である。
【図6】図5の実施形態の水平断面図である。
【図7】図6のY−Y断面図である。
【図8】本発明の減勢工の別の実施形態の縦断面図である。
【図9】図8の実施形態の水平断面図である。
【図10】減勢槽に設ける堰の別の例を示す縦断面図である。
【図11】図10のZ−Z断面図である。
【図12】本発明の減勢工の別の実施形態の縦断面図である。
【図13】本発明の減勢工の更に別の実施形態の縦断面図である。
【図14】本発明の減勢工の更に別の実施形態の縦断面図である。
【図15】本発明の減勢工の更に別の実施形態の水平断面図である。
【図16】跳水型減勢工の一例を模式的に示す図である。
【符号の説明】
1 減勢槽
1a 流入口
1b 流出口
2,20 堰
2a 傾斜面
2b 貫通穴
21 スリット
3 流入管
30 水平管路
3a 管底
4 流出管
4a 管底
5 三角ブロック
6,7 空気バイパス管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a depressurization method used for depressurizing a high-speed water flow discharged from a pipe rod such as a sewer pipe (inclined pipe) piped on an inclined ground.
[0002]
[Prior art]
Since the sewage discharged from the sewage pipes piped on the slope is high-speed, if it is discharged as it is, there is a risk of damaging facilities such as public pipes and pump towers. For this reason, it is necessary to provide equipment for reducing the energy of the high-speed water flow.
[0003]
Reduction equipment is known as equipment to reduce the discharge water vein of high-speed water flow. For example, as shown in FIG. 16, a weir 102 is provided in the downstream part of the depressing tank (reducing pond) 101, and the kinetic energy of the water flowing out from the pipe 103 such as an inclined sewage pipe is used for the jumping phenomenon. There is a jumping type depressurizer that depressurizes by. In such a water jump type depressurization method, an auxiliary structure that collides and disperses the water flow such as a baffle pier or a sill is provided in the water jump vortex region upstream of the weir 102 to increase the derating effect. Yes.
[0004]
[Problems to be solved by the invention]
By the way, in the energy reducing work having the structure shown in FIG. 16, in order to obtain a sufficient power reducing effect, it is necessary to increase the water jump length L (the length necessary for causing the water jump). There is a problem that the scale of will become large.
[0005]
In addition, in the depressurization work having the structure shown in FIG. 16, the water flow flowing out from the pipe rod 103 is released in a jetting manner into the depressurization tank 101, so that the amount of air taken from the pipe rod 103 into the depressurization tank 101 There are many. In particular, when there is a large amount of sewage flowing into the pipe rod 103 and the water flow in the pipe is in a jet (jet flow) state, the amount of air entrained into the depressurization tank 101 becomes very large. Exhaust equipment such as ventilation holes is required. In addition, since the entrained air from the sewage pipe or the like has an odor, there is a problem that if the exhaust air is exhausted to the outside, a bad odor will drift around the depressurizer.
[0006]
Here, in the jump water type depressurization work, since the weir is provided in the depressurization tank, there is a possibility that sewage or the like stays in the depressurization tank. There is no problem in the mechanism of depressurization even if staying occurs in the depressurization tank, but it cannot be said that the situation is favorable in terms of generation of malodors, hygiene, etc. Therefore, a structure that does not cause staying is desired.
[0007]
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a reducer having a structure that is small in size and has a small amount of air entrainment in a reducer tank and that is unlikely to cause retention of sewage or the like. To do.
[0008]
[Means for Solving the Problems]
The depressurizer of the present invention is a depressurizer that is used to depressurize a high-speed water flow discharged from a pipe such as a sewer pipe piped on an inclined land, and has a flow inlet and an outlet. And a weir disposed at a predetermined interval in front of the outflow port of the depressurization tank, and the weir has a through hole or a slit communicating the inflow port side and the outflow port side. with both the inlet and outlet of the energy dissipation tank characterized by Rukoto are located below the upper end of the weir.
[0009]
In the energy reducing work of the present invention, the sewage flowing through the inflow pipe flows into the inside through the inlet of the energy reducing tank. The water flow that flows into the depressurization tank becomes a rising vortex by the weir in the depressurization tank, rises upward along the weir, flows over the weir and flows into the outflow pipe.
[0010]
As described above, in the energy reducing work of the present invention, the water flow that has flowed into the power reducing tank is forcibly raised by the weir, thereby diverging (decreasing) the kinetic energy of the water flow in the height direction of the power reducing tank. Therefore, even if the distance between the inlet of the depressurization tank and the weir is short, a sufficient demagnetization effect can be obtained.
[0012]
Moreover, in the energy dissipator of the present invention, since the disposed below the upper end of the weir the inlet of stilling tank, in the state in which flowing water to the stilling tank is flowed overflow weirs, Kanmizo The jet water from the water flows into the water stored in the depressurization tank. As a result, even if a large amount of air is entrained from the pipe rod by the jet, the entrained air is prevented from entering the depressing tank due to the presence of water in the depressurizing tank, and most of it is returned to the pipe rod. It is. A part of the entrained air enters into the stored water in the depressurization tank and breaks off from the surface of the water. However, since the amount is very small, it is not necessary to provide an exhaust facility.
[0013]
As described above, when sewage flows into the pipe, the sewage rises at the front of the weir in the reduction tank, flows out from the through hole (or slit) provided in the weir, and enters the inflow pipe. . When a large amount of sewage or the like flows into the reduction tank, the sewage flows over the weir and flows into the outflow pipe regardless of the presence of the through hole (or slit) provided in the weir.
[0014]
On the other hand, when the amount of water that flows from the pipe rod into the suppression tank is small (the amount of water that does not rise at the front of the weir), the sewage that flows into the suppression tank can pass through the through holes ( Or, it passes through the slit) and flows into the outflow pipe, so that sewage or the like does not stay in the depressurization tank.
[0015]
In addition, it is preferable that the through hole or slit provided in the weir has a size that allows filth contained in sewage or the like to pass through.
[0016]
In the de-energization work of the present invention, if a weir whose surface on the inlet side is curved is used as a weir to be arranged in the de-energization tank, the diffusion effect of the water flow increases, and the de-energization effect in the de-energization tank Can be further increased.
[0017]
In the energy reducing work of the present invention, it is preferable to form a horizontal flow path extending horizontally toward the inlet on the upstream side of the inlet of the energy reducing tank. If such a horizontal flow path is provided, sewage or the like flowing through the inflow pipe flows as a horizontal flow into the depressurization tank, so that the depressurization effect can be further enhanced.
[0018]
In the energy reducing work of the present invention, an air bypass passage may be provided that communicates the upper part of the energy reducing tank and the inside of the inflow pipe connected to the inlet of the energy reducing tank. You may provide the air bypass channel | path which connects the upper part in a power tank and the pipe | tube inside of the outflow pipe connected to the outflow port of a depressurization tank. Furthermore, both the inflow side air bypass passage and the outflow side air bypass passage may be provided.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
FIG. 1 is a longitudinal cross-sectional view of an embodiment of a depressurizer according to the present invention. FIG. 2 is a horizontal sectional view of the embodiment. FIG. 3 is a sectional view taken along line XX in FIG.
[0021]
The energy reducing work in this example is a pressure reducing work laid on a sewage pipe (tilted pipe) piped on an inclined ground, and includes a pressure reducing tank 1 and a weir 2 disposed therein.
[0022]
The suppression tank 1 is made of concrete, and is provided with an inlet 1a and an outlet 1b. Note that the energy reducing tank 1 is not limited to concrete.
[0023]
The weir 2 is disposed in front of the outlet 1b with a predetermined interval. An inclined surface 2 a is formed at the bottom of the weir 2. The inclined surface 2a is formed for the purpose of efficiently guiding the direction of the water flow flowing into the depressing tank 1 from the inlet 1a upward (vertical direction).
[0024]
The dam 2 is provided with a through hole 2b, and the upstream side and the downstream side of the dam 2 communicate with each other through the through hole 2b. In addition, the size of the through hole 2b is set to a size that allows dirt and the like contained in sewage to pass through, for example, about φ50 mm to φ100 mm. Further, the shape of the through hole may be an ellipse, a quadrangle, etc. in addition to a circle.
[0025]
An inflow pipe (sewage pipe) 3 and an outflow pipe 4 are connected to the inflow port 1a and the outflow port 1b of the depressurization tank 1, respectively. The inflow pipe 3 is formed with a horizontal pipe line 30 that extends horizontally toward the inlet 1 a of the power reducing tank 1.
[0026]
The tube bottom 3 a of the inflow tube 3 is set to a height that substantially matches the bottom surface of the depressurization tank 1. The tube bottom 4 a of the outflow tube 4 is also set to a height that substantially matches the bottom surface of the depressurization tank 1.
[0027]
Next, the operation of this embodiment will be described.
[0028]
First, the direction of the sewage flowing through the inflow pipe 3 is changed in the horizontal conduit 30 before the inlet 1a of the depressurization tank 1, and flows into the depressurization tank 1 as a horizontal flow. The water flow that flows into the depressurization tank 1 becomes an upward vortex by the weir 2 in the depressurization tank 1, rises upward along the weir 2, overflows the weir 2, and flows into the outflow pipe 4. In the overflow state, a water surface shape as shown in FIG. 1 is formed, and the jump height H becomes very high.
[0029]
As described above, in this embodiment, the kinetic energy of the water flow is diverged (decreased) in the height direction of the depressing tank 1 by forcibly raising the water flow flowing into the depressing tank 1 by the weir 2. Therefore, even if the distance between the inlet 1a of the depressing tank 1 and the weir 2 is short, a sufficient depressing effect can be obtained. Therefore, although the height of the derating tank 1 is slightly increased, the scale of the entire derating process can be reduced.
[0030]
Furthermore, in this embodiment, as shown in FIG. 1, in a state where the inflow water to the depressurization tank 1 overflows the weir 2, that is, in a state where a large amount of sewage flows into the depressurization tank 1, Since the jet water from the inflow pipe 3 flows into the water stored in the depressurization tank 1, even if a large amount of air is taken toward the depressurization tank 1 by the jet flowing through the inflow pipe 3, The entrained air is prevented from entering the depressing tank 1 due to the presence of stored water in the depressing tank 1, and most of it is returned to the inflow pipe 3. A part of the entrained air enters the stored water in the depressurizing tank 1 and breaks off bubbles from the water surface. However, since the amount is very small, there is no need to provide an exhaust facility.
[0031]
Further, in this embodiment, when the amount of sewage flowing into the depressurization tank 1 from the inflow pipe 3 is small (the amount of water not exceeding the weir), the sewage flowing into the depressurization tank 1 passes through the weir 2. Since it passes through the hole 2 b and flows into the outflow pipe, sewage does not stay in the depressurization tank 1.
[0032]
In the above embodiment, as shown in FIG. 4, the surface of the weir 2 on the inlet 1b side may be processed into a gently inclined shape.
[0033]
Moreover, in the above embodiment, although the through-hole is formed in the weir, instead of this, as shown in FIGS. 5-7, the slit 21 cut | disconnected from the upper end of the weir 20 to the bottom part of the depressurization tank 1 is provided. It may be provided. The width of the slit 21 is determined in consideration of the size of filth contained in the sewage.
[0034]
In the above embodiment, as shown in FIGS. 8 and 9, a triangular block 5 may be provided at the center of the weir 2. If such a triangular block 5 is provided, it is possible to prevent the occurrence of water jump inside the outflow pipe 4, and to more effectively reduce the energy of the water flow that has flowed into the reduction tank 1. it can. The cross-sectional shape of the block may be a trapezoid or the like in addition to a triangle.
[0035]
Further, as shown in FIGS. 10 and 11, if the wall surface (surface on the inlet 1a side) of the weir 22 is a substantially spherical curved surface, the diffusion effect of the water flow is increased, and the deenergization in the depressurization tank is performed. The effect can be further enhanced.
[0036]
In the above embodiment, as shown in FIG. 12, the air bypass pipe 6 that communicates the upper part in the depressurization tank 1 and the inside of the inflow pipe 3 connected to the depressurization tank 1 is provided, and the depressurization is performed. The air (entrained air) that has entered the stored water in the tank 1 and has bubbled from the water surface may be returned to the inflow pipe 3. In addition, as shown in FIG. 13, an air bypass pipe 7 that communicates the upper part in the depressing tank 1 and the inside of the outflow pipe 4 connected to the depressurizing tank 1 is provided. Air (entrained air) that has entered the stored water and bubbled from the water surface may be released to the outflow pipe 4. Both the air bypass pipe 6 and the air bypass pipe 7 as shown in FIGS. 12 and 13 may be provided in the depressurization tank 1. The air bypass passage may be a vent formed in concrete.
[0037]
Here, in the above embodiment, although the horizontal pipe line 30 extended horizontally toward the inflow port 1a of the depressurization tank 1 is formed, this invention is not limited to this, For example, it shows in FIG. In this way, the inclined pipe (inflow pipe) 31 may be connected to the inlet 1a of the depressurization tank 1 as it is.
[0038]
Moreover, in the above embodiment, although the position of the inflow port 1a provided in the suppression tank 1 is made into the position facing the weir 2 (outflow port 1b), it is not restricted to this, For example, in the top view of FIG. As shown, the inlet 1a may be provided on the side of the depressurization tank 1.
[0039]
The depressurization work of the present invention is not limited to sewer pipes, but can be applied to various pipes and pipes that discharge high-speed water flow.
[0040]
【The invention's effect】
As described above, according to the de-energization work of the present invention, a weir is provided in the de-energization tank, and the water flow that has flowed into the de-energization tank is forced to rise by the weir, thereby Since it is configured to reduce the kinetic energy of the water flow in the height direction, the distance from the inflow portion of the power reducing tank to the weir can be shortened, and the scale of the entire power reducing work can be reduced. . Moreover, since the through-hole or slit which connects the inflow port side and the outflow port side is provided in the weir in the depressurization tank, sewage or the like hardly stays in the depressurization tank.
[0041]
Moreover, since the inlet of the depressurization tank is arranged below the upper end of the weir , when the inflow water to the depressurization tank overflows the weir, pipes such as sewer pipes (inflow pipe) ) Will flow into the water stored in the depressurization tank, and even if a large amount of air is taken from the pipe by the jet flowing through the pipe, However, the amount of water entering the depressurization tank is small, and problems such as exhaust equipment and bad odor can be solved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an embodiment of a depressurization work of the present invention.
FIG. 2 is a horizontal cross-sectional view of the embodiment of FIG.
3 is a cross-sectional view taken along line XX in FIG.
FIG. 4 is a vertical cross-sectional view showing an example of a weir provided in the power reducing tank.
FIG. 5 is a vertical cross-sectional view of another embodiment of the energy reducing work of the present invention.
6 is a horizontal cross-sectional view of the embodiment of FIG.
7 is a YY sectional view of FIG. 6;
FIG. 8 is a vertical cross-sectional view of another embodiment of the energy reducing work of the present invention.
FIG. 9 is a horizontal cross-sectional view of the embodiment of FIG.
FIG. 10 is a longitudinal sectional view showing another example of a weir provided in the power reducing tank.
11 is a cross-sectional view taken along the line ZZ in FIG.
FIG. 12 is a longitudinal sectional view of another embodiment of the energy reducing work of the present invention.
FIG. 13 is a longitudinal sectional view of still another embodiment of the energy reducing work of the present invention.
FIG. 14 is a longitudinal cross-sectional view of still another embodiment of the energy reducing work of the present invention.
FIG. 15 is a horizontal sectional view of still another embodiment of the de-energizing work of the present invention.
FIG. 16 is a diagram schematically showing an example of a jump water type depressing work.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reducer tank 1a Inlet 1b Outlet 2,20 Weir 2a Inclined surface 2b Through-hole 21 Slit 3 Inflow pipe 30 Horizontal pipe 3a Pipe bottom 4 Outflow pipe 4a Pipe bottom 5 Triangle block 6, 7 Air bypass pipe

Claims (4)

傾斜地に配管された下水管などの管渠から放流される高速水流を減勢するのに用いられる減勢工であって、
流入口及び流出口を有する減勢槽と、その減勢槽の流出口の前方に所定の間隔をあけて配置された堰を備え、その堰には、流入口側と流出口側とを連通する貫通穴またはスリットが形成されているとともに、前記減勢槽の流入口及び流出口の双方が前記堰の上端よりも下方に配置されていることを特徴とする減勢工。
A de-energizing work used to de-energize high-speed water flow discharged from pipes such as sewage pipes piped on slopes,
A derating tank having an inlet and an outlet, and a weir arranged at a predetermined interval in front of the outlet of the depressurizing tank, the inlet and the outlet side communicating with the weir a through hole or slit is formed to, energy dissipator both the inlet and outlet of the energy dissipation tank, characterized that you have been placed below the upper end of the weir.
堰の流入口側の面が湾曲していることを特徴とする請求項1記載の減勢工。  2. The de-energizing work according to claim 1, wherein a surface of the weir inlet side is curved. 減勢槽の流入口の上流側に、流入口に向けて水平に延びる水平流路が形成されていることを特徴とする請求項1または2記載の減勢工。  3. The energy reducing work according to claim 1, wherein a horizontal flow path extending horizontally toward the inlet is formed on the upstream side of the inlet of the power reducing tank. 4. 減勢槽内の上部と減勢槽の流入口に接続される流入管の管内部とを連通する空気バイパス用通路、または、減勢槽内の上部と減勢槽の流出口に接続される流出管の管内部とを連通する空気バイパス用通路のいずれか一方または双方が設けられていることを特徴とする請求項1〜3のいずれかに記載の減勢工。  Connected to the air bypass passage that connects the upper part of the depressing tank and the inside of the inflow pipe connected to the inlet of the depressurizing tank, or the upper part of the depressurizing tank and the outlet of the depressing tank One or both of the air bypass passages communicating with the inside of the pipe of the outflow pipe are provided.
JP2000398039A 2000-12-27 2000-12-27 Destructor Expired - Lifetime JP3648157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398039A JP3648157B2 (en) 2000-12-27 2000-12-27 Destructor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398039A JP3648157B2 (en) 2000-12-27 2000-12-27 Destructor

Publications (2)

Publication Number Publication Date
JP2002201706A JP2002201706A (en) 2002-07-19
JP3648157B2 true JP3648157B2 (en) 2005-05-18

Family

ID=18863083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398039A Expired - Lifetime JP3648157B2 (en) 2000-12-27 2000-12-27 Destructor

Country Status (1)

Country Link
JP (1) JP3648157B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5270316B2 (en) * 2008-11-28 2013-08-21 タキロン株式会社 Rainwater drainage piping structure
CN114592566A (en) * 2022-02-23 2022-06-07 武汉科技大学 Rectangular energy dissipation well for reducing water flow energy

Also Published As

Publication number Publication date
JP2002201706A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
US8459900B2 (en) Vortex flow type water surface control device for draining device
US4352593A (en) Dam spillway
JP3538894B2 (en) Siphon flush toilet
JP2014005594A (en) Flush toilet bowl
JP3648157B2 (en) Destructor
JP3648156B2 (en) Destructor
JP3676291B2 (en) Destructor
JP2016003548A (en) Drainage structure and catchment basin
JP3854126B2 (en) Destructor
JP3854127B2 (en) Destructor
JP4358369B2 (en) Structure of water discharge pit
JP2015028255A (en) Waterway structure
JP5110412B1 (en) Flush toilet
JP3814803B2 (en) Eddy current water surface controller for drainage equipment
JP3296449B2 (en) Siphon flush toilet
JP4347789B2 (en) Rainwater spout chamber
JP2002348946A (en) Energy absorbing unit
CN214221482U (en) Sewage sewage pump with buffer function
JP6619842B2 (en) Waste separation system
JP6345754B2 (en) Waste separation system
CN214115258U (en) Improve split type preprocessing device of DTRO membrane equipment operating stability
JP2001317500A (en) Siphon type pump
KR880002486Y1 (en) Syphons
JPH111955A (en) Outflow control device for sewerage
CN117605144A (en) Rainwater force-dissipating drainage pool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3648157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term