JP3647182B2 - Contamination checker and hydraulic pressure detector - Google Patents

Contamination checker and hydraulic pressure detector Download PDF

Info

Publication number
JP3647182B2
JP3647182B2 JP03317097A JP3317097A JP3647182B2 JP 3647182 B2 JP3647182 B2 JP 3647182B2 JP 03317097 A JP03317097 A JP 03317097A JP 3317097 A JP3317097 A JP 3317097A JP 3647182 B2 JP3647182 B2 JP 3647182B2
Authority
JP
Japan
Prior art keywords
hydraulic pressure
hydraulic
contamination
circuit
pressure detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03317097A
Other languages
Japanese (ja)
Other versions
JPH10221189A (en
Inventor
卓 村上
晴夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP03317097A priority Critical patent/JP3647182B2/en
Publication of JPH10221189A publication Critical patent/JPH10221189A/en
Application granted granted Critical
Publication of JP3647182B2 publication Critical patent/JP3647182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンタミチェッカ及びこれに好適使用できる液圧検出器に関する。
【0002】
【従来の技術】
潤滑油や作動油を用いる機械では油中にコンタミが漸増し、これを放置すると、機械が損耗し、損傷する。そこでこれら損耗や損傷を未然に防止するため、コンタミ量を監視するコンタミチェッカが各種知られる。例えば電磁気式、分光式、照射光減衰式等が有る。
【0003】
【発明が解決しようとする課題】
ところが上記従来のコンタミチェッカでは次のような問題点がある。
(a)電磁気式はインラインで使用でき、簡便かつ安価であるが、鉄やニッケル等の強磁性体のコンタミしか検出できない。即ち他の銅等の金属、ジーゼルエンジンでのカーボン、混入燃料の硫黄分、外部から進入した土砂等の無機質や有機質等を検出することができないという問題がある。
(b)一方、分光式や照射光減衰式等は、総てのコンタミを成分ごとに精密検査できる。ところがこれらは分析室用の大掛かりなコンタミチェッカであり、場積を要し、検査に熟練を要し、高価であり、またインラインで使用できないという問題がある。
【0004】
本発明は、上記従来技術の問題点に鑑み、油中のコンタミを材質に係わらずインラインで検出できるコンタミチェッカを提供することを目的とする。
【0005】
【課題を解決するための手段及び効果】
上記目的を達成するために本発明に係わるコンタミチェッカは、例えば図1を参照して説明すれば、第1に、(a) 液圧回路3の液圧情報を検出する第1液圧検出器4aと、(b) 液圧回路3に取着される取着部43と、液圧検知部42と、取着部43から液圧検知部42までの間に設けられて取着部43から導入された液圧回路3からの液圧P2の大小に応じて容積を変化可能とされた液圧導入部45とを有し、さらに、取着部と液体導入部との間に絞りを有し、この絞りがコンタミによる目詰まり部位であり、液圧検知部42により液圧導入部45の液圧情報を検出する第2液圧検出器4bと、(c) 第1、第2液圧検出器4a、4bから夫々の液圧情報を受け、夫々の液圧情報の差を演算し、この差を液圧回路3中のコンタミ情報とする信号を外部へ出力する演算器5とを有することを特徴としている。
【0006】
上記のコンタミチェッカによれば、次のような効果を奏する。同じく図 1を参照して説明する。第2液圧検出器4bは液圧回路3からの液圧Po の大小に応じて容積を変化可能とされた液圧導入部45を有している。このため、第2液圧検出器4bは液圧Poが変化する都度、液圧回路3の液が取着部43を経て液圧導入部45に出入する。従って油中にコンタミが発生していると、液の出入に伴い、コンタミが主に貫通孔43aに堆積する。一方、第1液圧検出器4aは液圧回路3の液圧情報をそのまま検出する。従って第1、第2液圧検出器4a、4bが検出する液圧情報は、時刻的な差や液圧の大小的な差を生ずるようになる。発明は、演算器5がこれら差を演算し、この差を液圧回路3中のコンタミ情報とする信号を外部へ出力する。即ち、上記のコンタミチェッカによれば、在来の第1液圧検出器4aと、液圧P2の大小に応じて容積を変化可能とされた液圧導入部45を有する第2液圧検出器4bと、演算器5とでなる簡便な構成だけで、液中のコンタミ量を材質に係わらず外部へ出力できる。尚、液圧回路3を有する例えば各種車両は、マイコン等の演算器を搭載しているのが普通であるが、このような演算器を多少バージョンアップするだけで上記演算器5を構成できる。
【0014】
また、取着部43と液体導入部45との間に絞り46を有することにより、目詰まりを促進することができる。つまり上記のコンタミチェッカにおいて、液中にコンタミが発生したときは、これを早期に、顕著に、かつ正確に検出できるようになる。
【0017】
【発明の実施の形態及び実施例】
本発明の第1実施例を図1〜図5を参照し説明する。図1はコンタミチェッカの模式回路図である。同図1に示すように、油圧源1から油圧式アクチュエータ2までの油圧回路3には第1油圧検出器4aと、第2油圧検出器4bとが装着されている。第1、第2油圧検出器4a、4bは例えばマイコン等でなる演算器5に電気的に接続され、演算器5はこの演算器5からの入力情報を外部へ報知可能な例えば警報機、CRT等の表示器等、点灯ランプ等の出力器6に電気的に接続されている。
【0018】
第2油圧検出器4bは、図2に示す通り、ブリッジ回路41(尚、図2は側面図であるから、ブリッジ回路41自体は図示されない)を表面にパターニングした油圧検知部なるダイヤフラム42を有し、このダイヤフラム42が油圧回路3からの油圧Po を受けてこの油圧Po の大小に応じて歪むときのブリッジ回路41の出力値を検出値とする歪ゲージ式油圧検出器である。但し、詳しくは次の通り。
【0019】
第2油圧検出器4bは前記ダイヤフラム42なる油圧検知部42と、油圧回路3の管路に設けた雌ねじに螺合されるべく外周に雄ねじを形成されて内部に油圧回路3の管路から前記油圧検知部42へ向けて形成された貫通孔43aを有する取着部43と、弾性部材44を収蔵して油圧検知部42と取着部43との間に設けられた油圧導入部45とから構成される。弾性部材44はその内部に油が浸入しないものが選択使用される。
【0020】
一方、第1油圧検出器4aは、上記第2油圧検出器4bの構成から弾性部材44を除いた油圧検出器である。つまり第1油圧検出器4aは在来の油圧検出器でとなっている。
【0021】
上記構成の第1、第2油圧検出器4a、4bの作用上の相違点を図3を参照し説明する。油圧回路3の油圧Po は油圧式アクチュエータ2の負荷変動に応じて常時変化している。このため第2油圧検出器4bの弾性部材44の体積は前記油圧Po の変化を受けて常時変化している。この結果、油圧回路3の油圧Po が変化する都度、油圧導入部45の容積(詳しくは、油圧導入部45自体の容積と、弾性部材44の体積との差)が常時変化する。従って油圧回路3の油圧Po が変化する都度、油圧回路3の油が取着部43の貫通孔43aを経て油圧導入部45に出入するようになる。そして油中にコンタミが発生していると、前記油の出入に伴い、前記コンタミが主に貫通孔43aに堆積するようになる。つまり油中にコンタミが発生すると、貫通孔43aが漸次目詰まりするようになる。一方、第1油圧検出器4aは、油圧回路3の油圧Po が変化しても油圧導入部45内の容積が変化しない。このため貫通孔43aに油の流れが無く、従って油中にコンタミが発生していても、貫通孔43aにコンタミが目詰まりするようなことがない。つまり第1油圧検出器4aでの油圧導入部45内の油圧P1 は静的にも動的にも常時、油圧回路3の油圧Po に一致していると見做せる。第1油圧検出器4aは、この油圧P1 (=Po )を検出している。一方、第2油圧検出器4bは上記の通りコンタミが貫通孔43aに目詰まりするため、油圧回路3の油圧Po が変化する都度、貫通孔43aを流れる単位時間当たりの油量が目詰まり量に応じて変化するようになる。つまり第2油圧検出器4bでは、油圧回路3の油圧Po が変化すると(特に急激に変化すると)、油圧導入部45内の油圧P2 が油圧回路3の液圧Po と同圧(P2 =Po )となるまでに、目詰まり量に応じた時間遅れΔtが生ずる。第2油圧検出器4bは、このような油圧P2 (≦Po )を検出している。貫通孔43aが完全に目詰まりすれば、第2油圧検出器4bで検出される油圧P2 は極めて低い値又は検出不能となる(P2 <Po )。
【0022】
尚、上記構成の第1、第2油圧検出器4bでは、さらに次のような作用上の相違点を生ずる場合も有る。図4を参照して説明する。油圧回路3は高圧による油器損傷を防止するため、油圧回路3全体の最高油圧(リリーフ圧Po.max )を規制するためのリリーフ弁(図1での油圧源1に含まれるため図示せず)を備えている。従って油圧式アクチュエータ2が過負荷となると、油圧回路3の油圧Po がリリーフ圧Po.max となる。このときリリーフ弁にもよるが、通常のものは、同図4に示すように、油圧回路3にリリーフ圧Po.max を越える立上がりピーク圧Popが生ずる(Pop>Po.max )。このピーク圧Popは、第1油圧検出器4aではそのまま検出されるが(P1 =P1p=Pop)、第2油圧検出器4bでは弾性部材44の体積変化によって幾分かが吸収されて低くなって検出される(P2 =P2p<Pop、P2p<P1p、従ってP1 >P2 )。
【0023】
尚、ピーク圧Popを生じない高精度のリリーフ弁も有り、またピーク圧Popを完全に吸収する弾性部材44も各種準備できるが、説明を容易にするため第1実施例及び詳細を後述する他の実施例では、ピーク圧Popを発生するリリーフ弁を備える油圧回路3とし、かつピーク圧P2p(<P1p)を完全に吸収しない弾性部材44を備える第2油圧検出器4bであるものする。
【0024】
そこで演算器5は次に述べる処理(これを詳細を後述する他の処理と区分するため第1処理とする)を行う。演算器5は、予め基準油圧Ps と基準時間Δts とを記憶している。そこで演算器5は、図5に示すように、第1油圧検出器4aで検出した油圧P1 が前記基準油圧Ps になったとき(P1 =Ps )から油圧回路3の油圧Po が昇降して第2油圧検出器4bで検出した油圧P2 が前記基準油圧Ps になるとき(P2 =Ps )までの時間Δt1 を演算する。上記第1、第2油圧検出器4a、4bの作用上の相違点の説明から明らかなように、この時間Δt1 が大きい程、取着部43の貫通孔43aに堆積したコンタミ量(即ち、油圧回路3内のコンタミ量)は多くなる。そこでこの時間Δt1 を基準時間Δts と比較し、「Δt1 >Δts 」であるとき、「油圧回路3中のコンタミ量が危険量となっている」との意味付け信号を出力器6に入力する。
【0025】
尚、一回限りの演算や出力器6への入力であるならば、例えば立上がり又は立下がり初めの油圧Po が基準油圧Ps にほぼ等しいときは、仮に「Δt1 >Δts 」に相当する目詰まりが生じていても時間Δt1 が短いために目詰まりを検出できない。但し、本第1実施例での演算器5は図1に示した通り油圧回路3にインラインで備えられ、上記第1処理を連続処理するため、「Δt1 >Δts 」に相当する目詰まりが生じてさえおれば、演算の複数回目において、必ず「Δt1 >Δts 」の事象は現れる。具体的には油圧式アクチュエータ2の負荷変動による油圧回路3の油圧Po の変化は極めて頻発するから、「Δt1 >Δts 」に相当する目詰まりが生じてさえおれば、数秒〜数分で目詰まりを探知できる。
【0026】
尚、上記比較において、演算器5が「Δt1 >Δts 」に相当した時間Δt1 よって目詰まり量自体(即ち、油圧回路3のコンタミ量自体)を演算して出力器6に入力することもできる。この場合、演算器5に予め時間Δt1 とコンタミ量との相関テーブルや相関関数(コンタミ量=f(Δt1 ))等を記憶させておき、演算器5はこれらテーブルや相関関数に前記時間Δt1 を当て嵌め又は代入することによって油圧回路3中のコンタミ量自体を示す信号を出力器6に入力し、出力器6は具体的なコンタミ量を出力することができる。尚、この第1処理において、演算器5が「Δt1 >Δts 」に相当した時間Δt1 のみ複数n記憶し、これらの平均値Δt1aを求め(Δt1a=(ΣΔt1 )/n)、この平均値Δt1aを用いれば、より正確な目詰まり量を出力器6に入力可能となる。
【0027】
尚、演算器5は例えば次の第2処理、第3処理のように処理を行っても良い。図6、図7を参照し説明する。
【0028】
第2処理は次の通り。演算器5は、予め基準油圧差ΔPs1を記憶している。そこで演算器5は、図6に示すように、同時刻to における第1油圧検出器4aで検出した油圧P1 と、第2油圧検出器4bで検出した油圧P2 との油圧差ΔP(=|P1 −P2 |)を演算する。上記第1、第2油圧検出器4a、4bの作用上の相違点の説明から明らかなように、この油圧差ΔPが大きい程、取着部43の貫通孔43aに堆積したコンタミ量(即ち、油圧回路3内のコンタミ量)は多くなる。そこでこの油圧差ΔPを前記基準油圧差ΔPs1と比較し、「ΔP>ΔPs1」であるとき、「油圧回路3中のコンタミ量が危険量となっている」との意味付け信号を出力器6に入力する。
【0029】
尚、一回限りの演算ならば、「ΔP>ΔPs1」に相当する目詰まりが生じていても、時刻to によっては目詰まりを検出できないこともある。ところが、本第1実施例の演算器5は図1に示した通り油圧回路3にインラインで備えられ上記第2処理を連続処理するため、同時刻to に「ΔP>ΔPs1」に相当する目詰まりが生じてさえおれば、演算の複数回数目において、必ず「ΔP>ΔPs1」の事象が現れる。具体的には油圧式アクチュエータ2の負荷変動による油圧回路3の油圧Po の変化は極めて頻発するから、同時刻to に「ΔP>ΔPs1」に相当する目詰まりが生じてさえおれば、数秒〜数分で目詰まりを探知できる。
【0030】
尚、上記比較において、演算器5が「ΔP>ΔPs1」に相当した油圧差ΔPよって目詰まり量自体(即ち、油圧回路3のコンタミ量自体)を演算して出力器6に入力することもできる。この場合、演算器5に予め油圧差ΔPとコンタミ量との相関テーブルや相関関数(コンタミ量=f(ΔP))等を記憶させておき、演算器5は、これらテーブルや相関関数に前記油圧差ΔPを当て嵌め又は代入することによって油圧回路3中のコンタミ量自体を示す信号を出力器6に入力し、出力器6は具体的なコンタミ量を出力できる。尚、この第2処理において、演算器5が「ΔP>ΔPs1」に相当した油圧差ΔPのみ複数n記憶し、これらの平均値ΔPa を求め(ΔPa =(ΣΔP)/n)、この平均値ΔPa を用いれば、より正確な目詰まり量を出力器6に入力可能となる。
【0031】
第3処理は次の通り。演算器5は予め基準油圧差ΔPs2を記憶している。そこで演算器5は、図7に示すように、時刻に係わらず、ともかく第1、第2油圧検出器4a、4bから最大油圧P1 、P2 (即ち、ピーク圧P1 (=P1p)、ピーク圧P2 (=P2p))を受けてこれらの油圧差ΔP(=|P1 −P2 |)を演算する。上記第1、第2油圧検出器4a、4bの作用上の相違点の説明から明らかなように、この油圧差ΔPが大きい程、取着部43の貫通孔43aに堆積したコンタミ量(即ち、油圧回路3内のコンタミ量)は多くなる。そこでこの油圧差ΔPを前記基準油圧差ΔPs1と比較し、「ΔP>ΔPs2」であるとき、「油圧回路3中のコンタミ量が危険量となっている」との意味付け信号を出力器6に入力する。
【0032】
本第3処理では、一回の演算でも、基本的には「ΔP>ΔPs2」に相当する目詰まりを検出できる。但し、本第1実施例の演算器5は前記の通り油圧回路3にインラインで備えられ、本第3処理を連続処理するため、「ΔP>ΔPs2」に相当する油圧差ΔPのみ複数n記憶し、これらを平均ΔPa (=(ΣΔP)/n)し、この平均値ΔPa を用いれば、より正確な目詰まり量を出力器6に入力できる。
【0033】
以下、他の実施例(a)〜(g)を項目列記する。
【0034】
(a)演算器5は上記第1〜第3処理例を夫々単独で行う必要はなく、これらの幾つか又は総てを例えば順次演算した後、夫々の平均値や中央値を算出し、その演算結果を出力器6に入力してもよい。このようにすると、検出精度がさらに向上する。また演算器5に対し、切換え信号をマニュアル的に入力し、夫々の演算結果なる各信号を出力器6へ個別入力し、出力器6から外部へこれらを適宜形式で個別出力させる等してもよい。
【0035】
(b)上記第1実施例では、第1、第2油圧検出器4a、4bは夫々1個ずつ備えたが、複数備えてもよい。このようにすると、検出精度が向上する。特に第2油圧検出器4aは複数備えることが望ましい。また第2油圧検出器4bを油圧回路3の各所に夫々設置し、これにより設置箇所ごとのコンタミ量を把握できるようになる。また第1、第2油圧検出器4a、4bは上記第1実施例のように、同一形式とする必要もない。
【0036】
(c)第2油圧検出器4bは、図8に示すように、取着部43と油圧導入部45との間に絞り46を有することが望ましい。このようにすると、コンタミによる目詰まりを促進でき、早期にコンタミ量を検出できる。絞り46の形状は、一旦、目詰まりしたコンタミが容易に目詰まり部位から離脱しないように、例えば油圧導入部45側に向けて開口面積が漸増するようなテーパ形状に整形するのがよく、また絞り46の内壁に凹凸等の引っかけ部位を設ける等するのが望ましい。尚、互いに内径が異なる絞り46を有する第2油圧検出器4bを油圧回路3に複数設けることにより、演算器5はコンタミのサイズ毎の検出も行えるようになり、検出をより広範囲かつ高精度に行えるようになる。
【0037】
(d)第2油圧検出器4bは、上記第1実施例の図2では、弾性部材44を油圧導入部45に浮遊させたものとしたが、例えば図9に示すように、油圧導入部45の内周に挿嵌したリング状の弾性部材44でもよい(例えば、ゴム製Oリング)。また第2油圧検出器4bを例えば図10に示すようなアキュームレータと同構成としてもよい。即ち、同図10に示すように、油圧導入部45を伸縮可能な弾性部材44によって取着部43側と油圧検知部42側との2室に仕切ると共に、油圧検知部42側の室を空気等のガスで封入し密閉する。このようにすると、油圧回路3の油圧Po が変化したとき、弾性部材44が前記油圧変化に応じて密閉側である油圧検知部42側の室に油圧Po を伝えて油圧検知部42は油圧P2 を検出する。一方、貫通孔43aには油の流れが生じてコンタミ量に則した目詰まりが生ずるからである。
【0038】
(e)第2油圧検出器4bは、上記第1実施例の図2では、油圧導入部45内に弾性部材44を遊嵌したが、図11に示すように、油圧導入部45の側面に貫通孔を設け、この孔内に外周を封止したダンパプレート47を嵌装してもよい。このようにすると、油圧回路3の油圧Po が変化する都度、ダンパプレート47が内外方向に振動して油圧回路3の油が油圧導入部45に出入りする。即ち、ダンパプレート47は上記弾性部材44と同じ効果をもたらす。
【0039】
(f)第2油圧検出器4bは、上記各実施例では弾性部材44を収蔵したが、弾性部材44を収蔵することなく、油圧検知部なるダイヤフラム42の剛性を第1油圧検出器4aのダイヤフラム42の剛性よりも大幅に弱くし、油圧Po を受けたとき大きく歪むものとしてもよい。
【0040】
(g)第2油圧検出器4bは、上記各実施例では歪ゲージ式液圧検出器としたが、検出油圧情報を電気的に演算器5に入力可能とされたブルドン管式油圧検出器でもよい。これはブルドン管が油圧回路3の油圧Po の大小に応じて撓み、この撓み量を油圧に変換する油圧検出器だからである。つまりブルドン管式油圧検出器は、油圧回路3の油圧Po が変化する都度、ブルドン管に油圧回路3の油が出入りする。つまりブルドン管が上記弾性部材44と同じ容積変化の作用をもたらすからである。尚、ブルドン管式油圧検出器では、ブルドン管の油圧回路3への取付け部等に前記絞り64を設け、コンタミによる目詰まりを促進させることが望ましい。
【図面の簡単な説明】
【図1】実施例なるコンタミチェッカの模式回路図である。
【図2】第2油圧検出器の一部断面の側面図である。
【図3】第1、第2油圧検出器による検出油圧の差を示すグラフである。
【図4】第1、第2油圧検出器による検出ピーク油圧の差を示すグラフである。
【図5】第1制御例を説明するグラフである。
【図6】第2制御例を説明するグラフである。
【図7】第3制御例を説明するグラフである。
【図8】他の第2油圧検出器の一部断面の側面図である。
【図9】他の第2油圧検出器の一部断面の側面図である。
【図10】他の第2油圧検出器の一部断面の側面図である。
【図11】他の第2油圧検出器の一部断面の側面図である。
【符号の説明】
3 液圧回路
4a 第1液圧検出器
4b 第2液圧検出器
42 液圧検知部
43 取着部
45 液圧導入部
46 絞り
5 演算器
P1 、P2 液圧
P1p、P2p ピーク液圧
ΔP 液圧差
Ps 基準液圧
to 時刻
Δt1 時間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a contamination checker and a hydraulic pressure detector that can be suitably used for the contamination checker.
[0002]
[Prior art]
In a machine using lubricating oil or hydraulic oil, contamination gradually increases in the oil, and if left unattended, the machine will be worn out and damaged. In order to prevent such wear and damage, various types of contamination checkers for monitoring the amount of contamination are known. For example, there are an electromagnetic type, a spectroscopic type, an irradiation light attenuation type, and the like.
[0003]
[Problems to be solved by the invention]
However, the conventional contamination checker has the following problems.
(A) Although the electromagnetic type can be used in-line and is simple and inexpensive, it can detect only contamination of a ferromagnetic material such as iron or nickel. That is, there is a problem that it is impossible to detect other metals such as copper, carbon in a diesel engine, sulfur content of mixed fuel, and inorganic or organic matter such as earth and sand entering from the outside.
(B) On the other hand, in the spectroscopic method, the irradiation light attenuation method, etc., all contamination can be inspected for each component. However, these are large-scale contamination checkers for the analysis room, which require a lot of space, require skill for inspection, are expensive, and cannot be used in-line.
[0004]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a contamination checker that can detect contamination in oil in-line regardless of the material .
[0005]
[Means and effects for solving the problems]
In order to achieve the above object , the contamination checker according to the present invention will be described with reference to FIG. 1, for example. First, (a) a first hydraulic pressure detector for detecting hydraulic pressure information of the hydraulic circuit 3 4 a, (b) an attachment portion 43 attached to the hydraulic circuit 3, a hydraulic pressure detection portion 42, and provided between the attachment portion 43 and the hydraulic pressure detection portion 42. A hydraulic pressure introduction part 45 whose volume can be changed in accordance with the magnitude of the hydraulic pressure P2 from the introduced hydraulic pressure circuit 3, and a throttle between the attachment part and the liquid introduction part. The throttle is a clogging site due to contamination, and the hydraulic pressure detection unit 42 detects the hydraulic pressure information of the hydraulic pressure introducing unit 45, and (c) the first and second hydraulic pressures. Each of the hydraulic pressure information is received from the detectors 4a and 4b, a difference between the respective hydraulic pressure information is calculated, and a signal using this difference as contamination information in the hydraulic pressure circuit 3 is provided as an external signal. And an arithmetic unit 5 for outputting to the computer.
[0006]
According to said contamination checker, there exist the following effects. This will be described with reference to FIG. The second fluid pressure detector 4b has a fluid pressure introducing portion 45 whose volume can be changed according to the fluid pressure Po from the fluid pressure circuit 3. For this reason, every time the hydraulic pressure Po changes in the second hydraulic pressure detector 4b, the liquid in the hydraulic circuit 3 enters and exits the hydraulic pressure introducing section 45 through the attachment section 43. Therefore, if contamination is generated in the oil, the contamination mainly accumulates in the through hole 43a as the liquid enters and exits. On the other hand, the first hydraulic pressure detector 4a detects the hydraulic pressure information of the hydraulic circuit 3 as it is. Accordingly, the hydraulic pressure information detected by the first and second hydraulic pressure detectors 4a and 4b causes a time difference and a difference in hydraulic pressure. In the present invention, the arithmetic unit 5 calculates these differences, and outputs a signal that uses this difference as contamination information in the hydraulic circuit 3 to the outside. That is, according to the contamination checker described above , the conventional first hydraulic pressure detector 4a and the second hydraulic pressure detector having the hydraulic pressure introducing portion 45 whose volume can be changed according to the magnitude of the hydraulic pressure P2. With only a simple configuration composed of 4b and the computing unit 5, the amount of contamination in the liquid can be output to the outside regardless of the material. For example, various vehicles having the hydraulic circuit 3 are usually equipped with a computing unit such as a microcomputer. However, the computing unit 5 can be configured only by slightly upgrading such a computing unit.
[0014]
Further, the clogging can be promoted by providing the throttle 46 between the attachment portion 43 and the liquid introduction portion 45. That is, in the above contamination checker, when contamination occurs in the liquid, this can be detected early, remarkably and accurately.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic circuit diagram of a contamination checker. As shown in FIG. 1, a first hydraulic pressure detector 4a and a second hydraulic pressure detector 4b are mounted on the hydraulic circuit 3 from the hydraulic pressure source 1 to the hydraulic actuator 2. The first and second hydraulic pressure detectors 4a and 4b are electrically connected to a computing unit 5 made of, for example, a microcomputer, and the computing unit 5 can notify input information from the computing unit 5 to the outside. Etc., and an output device 6 such as a lighting lamp.
[0018]
As shown in FIG. 2, the second hydraulic pressure detector 4b has a diaphragm 42 as a hydraulic pressure detection unit having a bridge circuit 41 (which is not shown in the figure because FIG. 2 is a side view). The diaphragm 42 is a strain gauge type hydraulic pressure detector that detects the output value of the bridge circuit 41 when the diaphragm 42 receives the hydraulic pressure Po from the hydraulic circuit 3 and distorts according to the magnitude of the hydraulic pressure Po. However, details are as follows.
[0019]
The second hydraulic pressure detector 4b includes a hydraulic pressure detecting portion 42, which is the diaphragm 42, and a male screw formed on the outer periphery so as to be screwed into a female screw provided in a pipe line of the hydraulic circuit 3, and from the pipe line of the hydraulic circuit 3 to the inside. From the attachment part 43 having a through hole 43a formed toward the oil pressure detection part 42, and the oil pressure introduction part 45 that stores the elastic member 44 and is provided between the oil pressure detection part 42 and the attachment part 43. Composed. The elastic member 44 is selected and used so that oil does not enter the inside thereof.
[0020]
On the other hand, the first hydraulic pressure detector 4a is a hydraulic pressure detector obtained by removing the elastic member 44 from the configuration of the second hydraulic pressure detector 4b. That is, the first oil pressure detector 4a is a conventional oil pressure detector.
[0021]
Differences in operation of the first and second hydraulic pressure detectors 4a and 4b having the above-described configuration will be described with reference to FIG. The hydraulic pressure Po of the hydraulic circuit 3 constantly changes according to the load fluctuation of the hydraulic actuator 2. For this reason, the volume of the elastic member 44 of the second oil pressure detector 4b is constantly changing in response to the change of the oil pressure Po. As a result, every time the hydraulic pressure Po of the hydraulic circuit 3 changes, the volume of the hydraulic pressure introduction part 45 (specifically, the difference between the volume of the hydraulic pressure introduction part 45 itself and the volume of the elastic member 44) always changes. Accordingly, every time the hydraulic pressure Po of the hydraulic circuit 3 changes, the oil of the hydraulic circuit 3 enters and exits the hydraulic pressure introducing portion 45 through the through hole 43a of the attachment portion 43. When contamination occurs in the oil, the contamination mainly accumulates in the through holes 43a as the oil enters and exits. That is, when contamination occurs in the oil, the through holes 43a are gradually clogged. On the other hand, the first oil pressure detector 4a does not change the volume in the oil pressure introduction part 45 even if the oil pressure Po of the oil pressure circuit 3 changes. For this reason, there is no flow of oil in the through-hole 43a. Therefore, even if contamination is generated in the oil, the contamination is not clogged in the through-hole 43a. That is, it can be considered that the hydraulic pressure P1 in the hydraulic pressure introduction part 45 in the first hydraulic pressure detector 4a always matches the hydraulic pressure Po of the hydraulic circuit 3 both statically and dynamically. The first oil pressure detector 4a detects this oil pressure P1 (= Po). On the other hand, since the contamination of the second hydraulic pressure detector 4b is clogged in the through hole 43a as described above, the amount of oil per unit time flowing through the through hole 43a becomes the clogged amount whenever the hydraulic pressure Po of the hydraulic circuit 3 changes. It will change accordingly. That is, in the second oil pressure detector 4b, when the oil pressure Po of the oil pressure circuit 3 changes (especially when it changes suddenly), the oil pressure P2 in the oil pressure introduction part 45 is the same as the fluid pressure Po of the oil pressure circuit 3 (P2 = Po). Until a time delay Δt corresponding to the amount of clogging occurs. The second hydraulic pressure detector 4b detects such a hydraulic pressure P2 (≤Po). If the through hole 43a is completely clogged, the hydraulic pressure P2 detected by the second hydraulic pressure detector 4b becomes a very low value or cannot be detected (P2 <Po).
[0022]
In the first and second hydraulic pressure detectors 4b configured as described above, the following operational differences may occur. This will be described with reference to FIG. The hydraulic circuit 3 is not shown because it is included in the hydraulic pressure source 1 in FIG. 1 to restrict the maximum hydraulic pressure (relief pressure Po.max) of the entire hydraulic circuit 3 in order to prevent damage to the oil device due to high pressure. ). Therefore, when the hydraulic actuator 2 is overloaded, the hydraulic pressure Po of the hydraulic circuit 3 becomes the relief pressure Po.max. At this time, although depending on the relief valve, as shown in FIG. 4, a normal peak pressure Pop that exceeds the relief pressure Po.max is generated in the hydraulic circuit 3 (Pop> Po.max). The peak pressure Pop is detected as it is by the first oil pressure detector 4a (P1 = P1p = Pop), but the second oil pressure detector 4b absorbs some of the volume of the elastic member 44 and becomes low. Detected (P2 = P2p <Pop, P2p <P1p, and thus P1> P2).
[0023]
There are high-accuracy relief valves that do not generate the peak pressure Pop, and various elastic members 44 that completely absorb the peak pressure Pop can be prepared. For ease of explanation, the first embodiment and details will be described later. In this embodiment, it is assumed that the hydraulic pressure circuit 3 includes a relief valve that generates the peak pressure Pop, and the second hydraulic pressure detector 4b includes an elastic member 44 that does not completely absorb the peak pressure P2p (<P1p).
[0024]
Therefore, the computing unit 5 performs the following process (this is a first process in order to distinguish this from other processes whose details will be described later). The calculator 5 stores a reference hydraulic pressure Ps and a reference time Δts in advance. Accordingly, as shown in FIG. 5, the computing unit 5 raises and lowers the hydraulic pressure Po of the hydraulic circuit 3 when the hydraulic pressure P1 detected by the first hydraulic pressure detector 4a becomes the reference hydraulic pressure Ps (P1 = Ps). (2) The time Δt1 until the hydraulic pressure P2 detected by the hydraulic pressure detector 4b reaches the reference hydraulic pressure Ps (P2 = Ps) is calculated. As is apparent from the description of the operational differences between the first and second hydraulic pressure detectors 4a and 4b, the larger the time Δt1, the greater the amount of contamination accumulated in the through hole 43a of the attachment portion 43 (ie, the hydraulic pressure). The amount of contamination in the circuit 3 increases. Therefore, the time Δt1 is compared with the reference time Δts, and when “Δt1> Δts”, a meaning signal “the amount of contamination in the hydraulic circuit 3 is a dangerous amount” is input to the output unit 6.
[0025]
If the calculation is a one-time operation or an input to the output device 6, for example, when the oil pressure Po at the beginning or the start of the fall is substantially equal to the reference oil pressure Ps, there is a clogging corresponding to "Δt1>Δts". Even if it occurs, clogging cannot be detected because the time Δt1 is short. However, the computing unit 5 in the first embodiment is provided in-line in the hydraulic circuit 3 as shown in FIG. 1, and clogging corresponding to “Δt1> Δts” occurs because the first process is continuously performed. If this is the case, the event “Δt1> Δts” always appears in the plurality of operations. Specifically, since the change in the hydraulic pressure Po of the hydraulic circuit 3 due to the load fluctuation of the hydraulic actuator 2 occurs very frequently, the clogging occurs within a few seconds to a few minutes as long as the clogging corresponding to “Δt1> Δts” occurs. Can be detected.
[0026]
In the above comparison, the computing unit 5 can compute the clogging amount itself (that is, the contamination amount itself of the hydraulic circuit 3) based on the time Δt1 corresponding to “Δt1> Δts” and input it to the output unit 6. In this case, a correlation table or correlation function (contamination amount = f (Δt1)) between the time Δt1 and the amount of contamination is stored in the arithmetic unit 5 in advance, and the arithmetic unit 5 stores the time Δt1 in these tables and correlation functions. By fitting or substituting, a signal indicating the contamination amount itself in the hydraulic circuit 3 is input to the output device 6, and the output device 6 can output a specific contamination amount. In this first processing, the arithmetic unit 5 stores a plurality of n only for a time Δt1 corresponding to “Δt1> Δts”, obtains an average value Δt1a (Δt1a = (ΣΔt1) / n), and calculates the average value Δt1a. If used, a more accurate clogging amount can be input to the output device 6.
[0027]
Note that the computing unit 5 may perform processing such as the following second processing and third processing. This will be described with reference to FIGS.
[0028]
The second process is as follows. The calculator 5 stores a reference hydraulic pressure difference ΔPs1 in advance. Therefore, as shown in FIG. 6, the computing unit 5 determines the hydraulic pressure difference ΔP (= | P1) between the hydraulic pressure P1 detected by the first hydraulic pressure detector 4a and the hydraulic pressure P2 detected by the second hydraulic pressure detector 4b at the same time to. -P2 |) is calculated. As is apparent from the description of the operational differences between the first and second hydraulic pressure detectors 4a and 4b, the greater the hydraulic pressure difference ΔP, the greater the amount of contamination accumulated in the through hole 43a of the attachment portion 43 (ie, The amount of contamination in the hydraulic circuit 3 increases. Therefore, the hydraulic pressure difference ΔP is compared with the reference hydraulic pressure difference ΔPs1, and when “ΔP> ΔPs1”, a meaning signal “Contamination amount in the hydraulic circuit 3 is a dangerous amount” is output to the output device 6. input.
[0029]
In the case of a one-time calculation, even if a clogging corresponding to “ΔP> ΔPs1” occurs, the clogging may not be detected depending on the time to. However, since the calculator 5 of the first embodiment is provided in-line with the hydraulic circuit 3 as shown in FIG. 1 and continuously processes the second process, clogging corresponding to “ΔP> ΔPs1” at the same time to. As long as this occurs, an event of “ΔP> ΔPs1” always appears at a plurality of times of calculation. Specifically, since the change of the hydraulic pressure Po of the hydraulic circuit 3 due to the load fluctuation of the hydraulic actuator 2 occurs very frequently, as long as clogging corresponding to “ΔP> ΔPs1” occurs at the same time to, several seconds to several Clogging can be detected in minutes.
[0030]
In the above comparison, the calculator 5 can calculate the clogging amount itself (that is, the contamination amount of the hydraulic circuit 3 itself) based on the hydraulic pressure difference ΔP corresponding to “ΔP> ΔPs1” and input it to the output device 6. . In this case, the calculator 5 stores in advance a correlation table, a correlation function (contamination amount = f (ΔP)) of the hydraulic pressure difference ΔP and the amount of contamination, and the calculator 5 stores the hydraulic pressure in the table and the correlation function. By fitting or substituting the difference ΔP, a signal indicating the contamination amount itself in the hydraulic circuit 3 is input to the output device 6, and the output device 6 can output a specific contamination amount. In this second process, the computing unit 5 stores a plurality of hydraulic pressure differences ΔP corresponding to “ΔP> ΔPs1”, obtains an average value ΔPa (ΔPa = (ΣΔP) / n), and calculates the average value ΔPa. If is used, a more accurate clogging amount can be input to the output device 6.
[0031]
The third process is as follows. The calculator 5 stores a reference hydraulic pressure difference ΔPs2 in advance. Therefore, as shown in FIG. 7, regardless of the time, the arithmetic unit 5 is connected to the maximum hydraulic pressures P1, P2 (that is, peak pressure P1 (= P1p), peak pressure P2) from the first and second hydraulic pressure detectors 4a, 4b. (= P2p)), the hydraulic pressure difference ΔP (= | P1−P2 |) is calculated. As is apparent from the description of the operational differences between the first and second hydraulic pressure detectors 4a and 4b, the greater the hydraulic pressure difference ΔP, the greater the amount of contamination accumulated in the through hole 43a of the attachment portion 43 (ie, The amount of contamination in the hydraulic circuit 3 increases. Therefore, the hydraulic pressure difference ΔP is compared with the reference hydraulic pressure difference ΔPs1, and when “ΔP> ΔPs2”, a meaning signal “Contamination amount in the hydraulic circuit 3 is a dangerous amount” is output to the output device 6. input.
[0032]
In the third process, clogging basically corresponding to “ΔP> ΔPs2” can be detected even by a single calculation. However, the computing unit 5 of the first embodiment is provided in-line in the hydraulic circuit 3 as described above, and in order to continuously perform the third process, only a plurality n of hydraulic differences ΔP corresponding to “ΔP> ΔPs2” are stored. These are averaged ΔPa (= (ΣΔP) / n), and if this average value ΔPa is used, a more accurate clogging amount can be input to the output device 6.
[0033]
Hereinafter, other examples (a) to (g) will be listed.
[0034]
(A) The computing unit 5 does not need to perform each of the first to third processing examples individually, and after calculating some or all of them sequentially, for example, calculates an average value and a median value, The calculation result may be input to the output device 6. This further improves the detection accuracy. Alternatively, the switching signal may be manually input to the arithmetic unit 5, and each signal resulting from each calculation may be individually input to the output unit 6, and may be individually output from the output unit 6 to the outside in an appropriate format. Good.
[0035]
(B) In the first embodiment, each of the first and second hydraulic pressure detectors 4a and 4b is provided one by one, but a plurality may be provided. In this way, detection accuracy is improved. In particular, it is desirable to provide a plurality of second hydraulic pressure detectors 4a. In addition, the second hydraulic pressure detector 4b is installed at each location of the hydraulic circuit 3, so that the amount of contamination at each installed location can be grasped. Further, the first and second oil pressure detectors 4a and 4b do not need to be the same type as in the first embodiment.
[0036]
(C) As shown in FIG. 8, the second hydraulic pressure detector 4 b desirably has a throttle 46 between the attachment portion 43 and the hydraulic pressure introduction portion 45. In this way, clogging due to contamination can be promoted, and the amount of contamination can be detected at an early stage. The shape of the diaphragm 46 is preferably shaped into a taper shape such that the opening area gradually increases toward the hydraulic pressure introduction portion 45 side, for example, so that once clogged contamination does not easily leave the clogged portion. It is desirable to provide a hooked portion such as irregularities on the inner wall of the diaphragm 46. In addition, by providing a plurality of second hydraulic pressure detectors 4b having throttles 46 having different inner diameters in the hydraulic circuit 3, the computing unit 5 can perform detection for each size of the contamination, and the detection can be performed in a wider range and with higher accuracy. You can do it.
[0037]
(D) In FIG. 2 of the first embodiment, the second hydraulic pressure detector 4b is configured such that the elastic member 44 is floated on the hydraulic pressure introducing portion 45. For example, as shown in FIG. A ring-shaped elastic member 44 inserted into the inner periphery of the rubber may be used (for example, a rubber O-ring). The second hydraulic pressure detector 4b may have the same configuration as an accumulator as shown in FIG. That is, as shown in FIG. 10, the hydraulic pressure introduction part 45 is divided into two chambers, that is, an attachment part 43 side and a hydraulic pressure detection part 42 side by an elastic member 44 that can be expanded and contracted, and the hydraulic pressure detection part 42 side chamber is air-conditioned. Seal with a gas such as. In this way, when the hydraulic pressure Po of the hydraulic circuit 3 changes, the elastic member 44 transmits the hydraulic pressure Po to the chamber on the side of the hydraulic pressure detection unit 42 on the hermetic side in response to the change in the hydraulic pressure, and the hydraulic pressure detection unit 42 has the hydraulic pressure P2. Is detected. On the other hand, the flow of oil is generated in the through hole 43a, and clogging according to the amount of contamination occurs.
[0038]
(E) In FIG. 2 of the first embodiment, the second hydraulic pressure detector 4b has the elastic member 44 loosely fitted in the hydraulic pressure introducing portion 45. However, as shown in FIG. A through hole may be provided, and a damper plate 47 whose outer periphery is sealed may be fitted into the hole. In this way, each time the hydraulic pressure Po of the hydraulic circuit 3 changes, the damper plate 47 vibrates inward and outward, and the oil in the hydraulic circuit 3 enters and exits the hydraulic pressure introduction part 45. That is, the damper plate 47 provides the same effect as the elastic member 44.
[0039]
(F) Although the second hydraulic pressure detector 4b stores the elastic member 44 in each of the above-described embodiments, the rigidity of the diaphragm 42 serving as a hydraulic pressure detection unit is not stored in the elastic member 44, and the diaphragm of the first hydraulic pressure detector 4a is used. It may be significantly weaker than the rigidity of 42 and distorted greatly when subjected to the hydraulic pressure Po.
[0040]
(G) Although the second hydraulic pressure detector 4b is a strain gauge type hydraulic pressure detector in each of the above-described embodiments, the second hydraulic pressure detector 4b may be a Bourdon tube type hydraulic pressure detector that is capable of electrically inputting detected hydraulic pressure information to the calculator 5. Good. This is because the Bourdon tube bends in accordance with the hydraulic pressure Po of the hydraulic circuit 3 and is a hydraulic pressure detector that converts this deflection amount into hydraulic pressure. That is, in the Bourdon tube type hydraulic pressure detector, the oil of the hydraulic circuit 3 enters and exits the Bourdon tube every time the oil pressure Po of the hydraulic circuit 3 changes. That is, the Bourdon tube has the same volume change effect as the elastic member 44. In the Bourdon tube type hydraulic detector, it is desirable to provide the restrictor 64 at a portion where the Bourdon tube is attached to the hydraulic circuit 3 to promote clogging due to contamination.
[Brief description of the drawings]
FIG. 1 is a schematic circuit diagram of a contamination checker according to an embodiment.
FIG. 2 is a side view of a partial cross section of a second hydraulic pressure detector.
FIG. 3 is a graph showing a difference between detected hydraulic pressures by first and second hydraulic pressure detectors.
FIG. 4 is a graph showing a difference between detected peak oil pressures by the first and second oil pressure detectors.
FIG. 5 is a graph illustrating a first control example.
FIG. 6 is a graph illustrating a second control example.
FIG. 7 is a graph illustrating a third control example.
FIG. 8 is a side view of a partial cross section of another second hydraulic pressure detector.
FIG. 9 is a side view of a partial cross section of another second hydraulic pressure detector.
FIG. 10 is a side view of a partial cross section of another second hydraulic pressure detector.
FIG. 11 is a side view of a partial cross section of another second hydraulic pressure detector.
[Explanation of symbols]
3 Fluid pressure circuit 4a 1st fluid pressure detector 4b 2nd fluid pressure detector 42 Fluid pressure detection unit 43 Mounting portion 45 Fluid pressure introduction portion 46 Throttle 5 Calculator P1, P2 Fluid pressure P1p, P2p Peak fluid pressure ΔP Fluid Pressure difference Ps Reference fluid pressure t0 time Δt1 time

Claims (1)

(a) 液圧回路の液圧情報を検出する第1液圧検出器と、(b) 液圧回路に取着される取着部と、液圧検知部と、取着部から液圧検知部までの間に設けられて取着部から導入された液圧回路からの液圧の大小に応じて容積を変化可能とされた液圧導入部とを有し、さらに、取着部と液体導入部との間に絞りを有し、この絞りがコンタミによる目詰まり部位であり、液圧検知部により液圧導入部の液圧情報を検出する第2液圧検出器と、(c) 第1、第2液圧検出器から夫々の液圧情報を受け、夫々の液圧情報の差を演算し、この差を液圧回路中のコンタミ情報とする信号を外部へ出力する演算器とを有することを特徴とするコンタミチェッカ。(a) a first fluid pressure detector for detecting fluid pressure information of the fluid pressure circuit; (b) an attachment portion attached to the fluid pressure circuit; a fluid pressure detection portion; and a fluid pressure detection from the attachment portion. provided until part and a liquid pressure introducing portion which is a changeable volume according to the magnitude of the hydraulic pressure from the hydraulic circuit, which is introduced from the mounting portion, further, the attachment portion and the liquid A second hydraulic pressure detector having a throttle between the inlet and the throttle, the throttle being a clogging site due to contamination, and detecting hydraulic pressure information of the hydraulic pressure inlet by the hydraulic pressure detector; 1. An arithmetic unit that receives each hydraulic pressure information from the second hydraulic pressure detector, calculates a difference between the respective hydraulic pressure information, and outputs a signal that uses this difference as contamination information in the hydraulic circuit to the outside. Contamination checker characterized by having.
JP03317097A 1997-01-31 1997-01-31 Contamination checker and hydraulic pressure detector Expired - Fee Related JP3647182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03317097A JP3647182B2 (en) 1997-01-31 1997-01-31 Contamination checker and hydraulic pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03317097A JP3647182B2 (en) 1997-01-31 1997-01-31 Contamination checker and hydraulic pressure detector

Publications (2)

Publication Number Publication Date
JPH10221189A JPH10221189A (en) 1998-08-21
JP3647182B2 true JP3647182B2 (en) 2005-05-11

Family

ID=12379072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03317097A Expired - Fee Related JP3647182B2 (en) 1997-01-31 1997-01-31 Contamination checker and hydraulic pressure detector

Country Status (1)

Country Link
JP (1) JP3647182B2 (en)

Also Published As

Publication number Publication date
JPH10221189A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
US20170328750A1 (en) Flow-Rate Measurement Assembly According to the Differential-Pressure Measurement Principle
WO2006136036A1 (en) Diagnostic device for use in process control system
JPH08136386A (en) Apparatus for detecting clog of conduit
US20160290560A1 (en) Monitoring of a condensate drain
KR940015483A (en) Piping Block Detection Device
JP3647182B2 (en) Contamination checker and hydraulic pressure detector
US8601861B1 (en) Systems and methods for detecting the flame state of a combustor of a turbine engine
EP2246620A1 (en) Apparatus for monitoring situation of slag discharge and method of monitoring situation of slag discharge
HUP9900673A2 (en) Method of monitoring air flow in a fire-detection device and fire-detection device for carrying out the method
US20100199776A1 (en) Jointless Pressure Sensor Port
KR100387334B1 (en) leakage monitoring apparatus for valve
US7299683B2 (en) Metal particle sensor system
US7201045B2 (en) Pressure sensor module
EP2320199B1 (en) A method of detecting slugs of one phase in a multiphase flow
US20180164173A1 (en) Differential pressure gauge
JPS6336812B2 (en)
CN115111535A (en) Method, system and device for detecting leakage points of water supply pipe network
JP4829532B2 (en) Pressure transmitter with clogging diagnosis function and clogging diagnosis method for pressure transmitter
CN201004001Y (en) Pressure transformer of liquid dynamic impact load detection and protection structure
CN109083888B (en) Detection device and detection method for filter differential pressure alarm function
JPH0259637A (en) Valve leakage monitoring method
JPH11316000A (en) Attaching structure for water leakage sound sensor
GB2373058B (en) Spiral flow testing
CN212744320U (en) Peripheral pump performance testing device
JP3044928B2 (en) Gas pipe leak detector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees