【0001】
【発明の属する技術分野】
本発明は、長繊維で補強されたポリウレタン発泡体の製造方法に関し、より詳しくは、成形体内部の剛性の低下を抑え、金型から出た直後の成形体が変形したり亀裂が入ったりするのを防ぐことができるポリウレタン発泡体の製造方法に関する。
【0002】
【従来の技術】
従来、長繊維によって補強されたポリウレタン発泡体は、特公昭52−2421号公報に記載のように、ポリメリックのジフェニルメタンジイソシアネートとポリオールを発泡剤と触媒の存在下に混合し、得られた液状樹脂組成物を長繊維束に含浸させ、樹脂含浸長繊維束を金型に導いて金型内で所要形状に成形硬化させると共に発泡させることによって製造されている。その際、ポリメリックのジフェニルメタンジイソシアネートとしては、同イソシアネート全体に占める多官能体の比率が約50重量%のものを用いている。
【0003】
【発明が解決しようとする課題】
しかし、上述の従来法では、従来の厚さ100mmの製品の肉厚をその1.5倍の150mmに厚くすると、ウレタン樹脂の反応熱が成形体内部により多く蓄積され、そのため金型から製品を取り出す際に、製品が内部まで充分冷却されず、厚さ100mmの従来製品に比べて高温部分が増加する。その結果、成形体内部の剛性が低下するばかりでなく、発泡圧力が増大するために成形体が金型から出た直後に樹脂の発泡圧力により変形したり成形体に亀裂が入ったりする。
【0004】
本発明の目的は、上記の点に鑑み、成形体内部の剛性の低下を抑え、金型から出た直後の成形体が変形したり亀裂が入ったりするのを防ぐことができるポリウレタン発泡体の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明によるポリウレタン発泡体の製造方法は、ポリメリックのジフェニルメタンジイソシアネートとポリオールと水とからなる液状樹脂組成物を、連続的に進行する長繊維束に含浸させた後、樹脂含浸長繊維束を金型内に導いて発泡硬化させるに当たり、ポリメリックのジフェニルメタンジイソシアネートとして、同イソシアネート全体のうち多官能体が55〜75重量%を占めるものを用いることを特徴とするものである。
【0006】
ウレタン成形に一般的に用いられるポリメリックのジフェニルメタンジイソシアネート(以下、「ポリメリックMDI」と略記する)の官能基数は、1分子中のイソシアネート基の数により表記する。本明細書において、「多官能体」とは、官能基数3以上のものを意味することとする。
【0007】
ポリメリックMDI全体のうちの多官能体の比率が高いほど、1分子の架橋点数は多く、樹脂の剛性が大きい。しかし、この比率が高いほど、平均分子量が大きいので、樹脂の粘度が高くなる。
【0008】
ポリメリックMDI中の多官能体の比率が55重量%未満であると、樹脂の剛性増加効果が十分に発揮されず、金型から出た直後の成形体が変形するのを防ぐことができず、変形が甚だしいと成形体が割れる場合がある。上記比率が75重量%を越えると、樹脂の粘度が高過ぎて、樹脂を長繊維に含浸させることが困難になることがある。液状樹脂組成物の長繊維束への含浸が充分に行われないと、両者が充分混合されずに、物性の弱い部分、すなわち、液状樹脂組成物だけが固まって存在する部分で割れを生じる場合がある。ポリメリックMDI中の多官能体の比率は、好ましくは58〜70重量%である。
【0009】
本発明で用いられるポリオールは、ウレタン発泡成形に一般的に用いられるものであればよく、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリマーポリオールである。ポリオールの粘度は300〜20000cps/20℃の範囲であることが好ましい。ポリオールの粘度が300cps/20℃未満であると液状樹脂組成物を長繊維束に含浸させている途中または含浸後に長繊維束に液状体を保持することができない。逆に、20000cps/20℃を越える粘度の場合、粘度が高過ぎて液状樹脂組成物を長繊維束に充分含浸することができない。また、ポリオールの平均官能基数は、好ましくは、2を越えて8未満である。この数が2以下であると、ポリオールがイソシアネートと3次元に結合しにくく、樹脂の剛性が低下する。また、この数が8以上であると、ポリオールの粘度が高過ぎて含浸を行いにくくなる。
【0010】
ポリオールとイソシアネートの混合比率は、好ましくは、ポリオール100重量部に対しイソシアネート100〜180重量部である。イソシアネートの比率が100重量部未満であるとイソシアネートが少なすぎ、180重量部を越えるとポリオールが少なすぎ、いずれの場合も反応系に多量の未反応物が残り、得られた成形体の物性低下を招く。
【0011】
ポリオールは反応系において少量の水の存在下に炭酸ガスを発生し、発泡体を形成する。
【0012】
原料には、一般的なウレタン発泡成形において用いられる触媒や整泡剤が必要に応じて含まれており、さらに、難燃剤、可塑剤、着色剤、架橋剤、安定剤、ガラス繊維、無機系フィラー、粒状または粉体のウレタン成形体などの充填剤が含まれてもいてよい。
【0013】
長繊維の好ましい径の範囲は2〜100μmである。長繊維の径が2μm未満であると液状樹脂組成物を長繊維束に含浸する際に長繊維が切れてしまい、100μmを越えると長繊維の表面積が減少して、液状樹脂組成物との密着力が減少して成形体の剛性が低下する。また、長繊維と液状樹脂組成物の混合比率は、好ましくは、液状樹脂組成物100重量部に対して長繊維20〜80重量部である。長繊維が20重量部未満であると、長繊維の比率が少ないために長繊維で剛性を向上した部分とそうでない部分とで剛性に分布ができてしまい、結局成形体の剛性が低下する。また、長繊維が80重量部を越えると、液状樹脂組成物を長繊維束全体に均一に含浸することができず、そのためやはり剛性の分布が生じてしまう。
【0014】
用いられる長繊維は連続した長い繊維状物であればよく、多数の短繊維を絡ませて糸状としたものや、モノフィラメントであってもよい。長繊維は、好ましくはガラス繊維であり、天然繊維または合成繊維であってもよい。合成繊維としては、ポリアミド、ポリエステル、ポリオレフィン等からなるものを用いることができる。また長繊維は半合成繊維のレイヨンであってもよい。
【0015】
<作用>
本発明方法によれば、ポリメリックMDI中の多官能体の比率を高めることにより、MDI1分子中の架橋点数を増加させて樹脂の剛性を向上させることができる。それにより、金型から出た直後の成形体は、その温度が高い状態でも、剛性が増大し、変形が抑制されたものとなる。
【0016】
【発明の実施の形態】
つぎに、本発明をより具体的に説明するために、その実施例を示す。
【0017】
実施例1
原料として、平均3官能のポリエーテルポリオール(住友バイエルウレタン社製、粘度5900cps/20℃)と、ポリメリックMDI(住友バイエルウレタン社製「イソシアネートG461」)と、水と、ジブチルチンジウラレートと、シリコン(東レダウ社製「SRX−295」)と、長繊維(繊維径12μmのロービングガラス繊維)とを用意した。ポリメリックMDI全体のうちの多官能体の比率、および、ポリメリックMDIの粘度(20℃)をそれぞれ表1に示す。
【0018】
図1に示すポリウレタンの発泡成形装置において、ポリエーテルポリオール100重量部と、ポリメリックMDI140重量部と、水1重量部と、ジブチルチンジウラレート0.5重量部と、シリコン1重量部とを混合し、得られた液状樹脂組成物をノズル(1) から、連続的に進行する長繊維束に噴射し、ついで長繊維束を一対の押え部材(2) で押付けることによって液状樹脂組成物を長繊維束に均等に含浸させた。含浸時間は1分間であった。含浸直後の樹脂含浸長繊維束の温度は25℃とした。ついで、この樹脂含浸長繊維束を成形金型(3) に導き、高さ150mm、幅200mmの矩形通路に通す間に同通路の前半部で80℃で10分間加熱を行い、その後後半部で15℃で10分間冷却を行なった。成形金型(3) の矩形通路は4つのエンドレスベルト(4) で構成されたものである。こうして所要形状に成形硬化させると共に発泡させた成形体を成形金型(3) から引出し機(5) へ導いて、製品として取り出した。
【0019】
比較例1
ポリメリックMDIとして、住友バイエルウレタン社製「44V20」を用いた点を除いて、実施例1と同様にして成形体を得た。
【0020】
比較例2
ポリメリックMDIとして、多官能体比率が77重量%で、かつNCO%が実施例1のそれとほぼ同じ30%である比較試験用ポリメリックMDIを用いた点を除いて、実施例1と同様にして成形体を得た。
【0021】
性能評価
実施例および比較例で得られた成形体について、割れの有無、および変形の程度をそれぞれ調べた。変形の程度は、成形金型より引き出した直後の成形体の幅方向中心部における高さを測定し、この測定値と金型の対応する高さとの差で評価した。これらの結果を表1に示す。
【0022】
【表1】
【0023】
表1から明らかなように、実施例の成形体をいずれの項目においても良好な結果を示した。
【0024】
【発明の効果】
本発明によれば、ポリメリックMDIの多官能体の比率が高いMDIを原料として使用することにより、MDI1分子中の架橋点数を増加させて樹脂の剛性を向上させることができる。それにより厚肉製品の成形を行うことができる。また、金型から出た直後の成形体の変形や亀裂を抑えることができるので、薄肉製品の成形速度を向上させることができる。
【図面の簡単な説明】
【図1】実施例で用いたポリウレタンの発泡成形装置である。
【符号の説明】
1:ノズル
2:押え部材
3:成形金型
4:エンドレスベルト
5:引出し機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polyurethane foam reinforced with long fibers, and more specifically, suppresses a decrease in rigidity inside the molded body, and the molded body immediately after coming out of the mold is deformed or cracked. The present invention relates to a method for producing a polyurethane foam capable of preventing the above.
[0002]
[Prior art]
Conventionally, a polyurethane foam reinforced with long fibers is obtained by mixing polymeric diphenylmethane diisocyanate and a polyol in the presence of a blowing agent and a catalyst as described in JP-B-52-2421. A long fiber bundle is impregnated with a product, the resin-impregnated long fiber bundle is guided to a mold, molded and cured into a required shape in the mold, and foamed. In this case, as the polymer diphenylmethane diisocyanate, a polyfunctional compound having a ratio of about 50% by weight to the whole isocyanate is used.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional method, when the thickness of the conventional product having a thickness of 100 mm is increased to 150 mm, which is 1.5 times that of the product, the reaction heat of the urethane resin is accumulated in the molded body. At the time of taking out, the product is not sufficiently cooled to the inside, and the high temperature portion is increased as compared with the conventional product having a thickness of 100 mm. As a result, not only the rigidity inside the molded body is reduced, but also the foaming pressure is increased, so that the molded body is deformed by the foaming pressure of the resin immediately after coming out of the mold or the molded body is cracked.
[0004]
In view of the above points, an object of the present invention is to reduce the rigidity inside the molded body, and to prevent the molded body immediately after coming out of the mold from being deformed or cracked. It is to provide a manufacturing method.
[0005]
[Means for Solving the Problems]
The method for producing a polyurethane foam according to the present invention involves impregnating a continuous resin fiber long fiber bundle with a liquid resin composition comprising polymeric diphenylmethane diisocyanate, polyol and water, and then molding the resin impregnated long fiber bundle into a mold. When foaming and curing the polymer, it is characterized by using, as polymeric diphenylmethane diisocyanate, a polyfunctional compound occupying 55 to 75% by weight of the whole isocyanate.
[0006]
The number of functional groups of polymeric diphenylmethane diisocyanate (hereinafter abbreviated as “polymeric MDI”) generally used for urethane molding is represented by the number of isocyanate groups in one molecule. In this specification, “polyfunctional” means a compound having 3 or more functional groups.
[0007]
The higher the ratio of polyfunctional substances in the entire polymeric MDI, the greater the number of cross-linking points per molecule and the greater the rigidity of the resin. However, the higher the ratio, the higher the average molecular weight and the higher the viscosity of the resin.
[0008]
When the ratio of the polyfunctional substance in the polymeric MDI is less than 55% by weight, the effect of increasing the rigidity of the resin is not sufficiently exerted, and it is not possible to prevent the molded body immediately after coming out of the mold from being deformed. If the deformation is severe, the molded body may break. When the ratio exceeds 75% by weight, the viscosity of the resin is too high, and it may be difficult to impregnate the resin with the long fiber. If the long fiber bundle is not sufficiently impregnated with the liquid resin composition, the two will not be mixed sufficiently, and cracks will occur in areas where the physical properties are weak, that is, where only the liquid resin composition is solidified There is. The ratio of the polyfunctional substance in the polymeric MDI is preferably 58 to 70% by weight.
[0009]
The polyol used in the present invention is not particularly limited as long as it is generally used for urethane foam molding, and examples thereof include polyether polyol, polyester polyol, and polymer polyol. The viscosity of the polyol is preferably in the range of 300 to 20000 cps / 20 ° C. If the polyol has a viscosity of less than 300 cps / 20 ° C., the liquid fiber cannot be held in the long fiber bundle during or after the liquid resin composition is impregnated in the long fiber bundle. Conversely, when the viscosity exceeds 20000 cps / 20 ° C., the viscosity is too high to sufficiently impregnate the long fiber bundle with the liquid resin composition. The average number of functional groups of the polyol is preferably more than 2 and less than 8. When this number is 2 or less, the polyol is difficult to bond three-dimensionally with the isocyanate, and the rigidity of the resin is lowered. On the other hand, when the number is 8 or more, the viscosity of the polyol is too high and impregnation is difficult.
[0010]
The mixing ratio of the polyol and the isocyanate is preferably 100 to 180 parts by weight of the isocyanate with respect to 100 parts by weight of the polyol. If the ratio of isocyanate is less than 100 parts by weight, the amount of isocyanate is too small, and if it exceeds 180 parts by weight, the amount of polyol is too small. Invite.
[0011]
The polyol generates carbon dioxide gas in the presence of a small amount of water in the reaction system to form a foam.
[0012]
The raw materials contain catalysts and foam stabilizers used in general urethane foam molding as needed. In addition, flame retardants, plasticizers, colorants, crosslinking agents, stabilizers, glass fibers, inorganic Fillers such as filler, granular or powder urethane moldings may be included.
[0013]
A preferable diameter range of the long fibers is 2 to 100 μm. When the diameter of the long fibers is less than 2 μm, the long fibers are cut when the long fiber bundle is impregnated with the liquid resin composition, and when the diameter exceeds 100 μm, the surface area of the long fibers is reduced and the liquid resin composition is in close contact with the liquid resin composition. The force is reduced and the rigidity of the molded body is lowered. The mixing ratio of the long fibers and the liquid resin composition is preferably 20 to 80 parts by weight of the long fibers with respect to 100 parts by weight of the liquid resin composition. If the length of the long fiber is less than 20 parts by weight, the ratio of the long fiber is small, so that the rigidity is distributed between the portion where the rigidity is improved by the long fiber and the portion where the rigidity is not so, and the rigidity of the molded body is eventually lowered. On the other hand, if the long fiber exceeds 80 parts by weight, the liquid resin composition cannot be uniformly impregnated into the entire long fiber bundle, and therefore a stiffness distribution is also generated.
[0014]
The long fiber to be used may be a continuous long fibrous material, and may be a filament made of many short fibers entangled or a monofilament. The long fibers are preferably glass fibers and may be natural fibers or synthetic fibers. As synthetic fiber, what consists of polyamide, polyester, polyolefin, etc. can be used. Further, the long fiber may be a semi-synthetic fiber rayon.
[0015]
<Action>
According to the method of the present invention, the rigidity of the resin can be improved by increasing the number of crosslinking points in one molecule of MDI by increasing the ratio of the polyfunctional substance in the polymeric MDI. Thereby, the molded body immediately after coming out of the mold has increased rigidity and suppressed deformation even when the temperature is high.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, in order to explain the present invention more specifically, examples thereof will be shown.
[0017]
Example 1
As raw materials, an average trifunctional polyether polyol (manufactured by Sumitomo Bayer Urethane Co., Ltd., viscosity 5900 cps / 20 ° C.), polymeric MDI (“Isocyanate G461” manufactured by Sumitomo Bayer Urethane Co., Ltd.), water, dibutyltin diurarate, silicon (“SRX-295” manufactured by Toray Dow Co., Ltd.) and long fibers (roving glass fibers having a fiber diameter of 12 μm) were prepared. Table 1 shows the ratio of the polyfunctional body in the entire polymeric MDI and the viscosity (20 ° C.) of the polymeric MDI.
[0018]
In the polyurethane foam molding apparatus shown in FIG. 1, 100 parts by weight of polyether polyol, 140 parts by weight of polymeric MDI, 1 part by weight of water, 0.5 part by weight of dibutyltin diurarate, and 1 part by weight of silicon are mixed. Then, the obtained liquid resin composition is sprayed from the nozzle (1) onto the continuous long fiber bundle, and then the long fiber bundle is pressed by the pair of holding members (2) to thereby extend the liquid resin composition. The fiber bundle was impregnated evenly. The impregnation time was 1 minute. The temperature of the resin-impregnated long fiber bundle immediately after impregnation was 25 ° C. Next, this resin-impregnated long fiber bundle is guided to a molding die (3) and heated at 80 ° C. for 10 minutes in the first half of the passage while passing through a rectangular passage having a height of 150 mm and a width of 200 mm. Cooling was performed at 15 ° C. for 10 minutes. The rectangular passage of the molding die (3) is composed of four endless belts (4). The molded body thus molded and cured to the required shape and foamed was guided from the molding die (3) to the drawing machine (5) and taken out as a product.
[0019]
Comparative Example 1
A molded body was obtained in the same manner as in Example 1 except that “44V20” manufactured by Sumitomo Bayer Urethane Co., Ltd. was used as the polymeric MDI.
[0020]
Comparative Example 2
Molded in the same manner as in Example 1 except that a polymeric MDI for comparison test having a polyfunctional ratio of 77% by weight and NCO% of 30% which is almost the same as that of Example 1 was used as the polymeric MDI. Got the body.
[0021]
The molded products obtained in the performance evaluation examples and comparative examples were examined for the presence of cracks and the degree of deformation. The degree of deformation was evaluated by measuring the height at the center in the width direction of the molded body immediately after being drawn from the molding die, and evaluating the difference between the measured value and the corresponding height of the die. These results are shown in Table 1.
[0022]
[Table 1]
[0023]
As is apparent from Table 1, the molded articles of the examples showed good results in any items.
[0024]
【The invention's effect】
According to the present invention, by using MDI having a high ratio of polymeric MDI polyfunctional compounds as a raw material, the number of crosslinking points in one molecule of MDI can be increased and the rigidity of the resin can be improved. Thereby, a thick product can be molded. Moreover, since the deformation | transformation and crack of a molded object immediately after taking out from a metal mold | die can be suppressed, the shaping | molding speed | rate of a thin product can be improved.
[Brief description of the drawings]
FIG. 1 is a polyurethane foam molding apparatus used in Examples.
[Explanation of symbols]
1: Nozzle 2: Pressing member 3: Molding die 4: Endless belt 5: Drawer