JP3645724B2 - Non-radiative dielectric line - Google Patents

Non-radiative dielectric line Download PDF

Info

Publication number
JP3645724B2
JP3645724B2 JP37173898A JP37173898A JP3645724B2 JP 3645724 B2 JP3645724 B2 JP 3645724B2 JP 37173898 A JP37173898 A JP 37173898A JP 37173898 A JP37173898 A JP 37173898A JP 3645724 B2 JP3645724 B2 JP 3645724B2
Authority
JP
Japan
Prior art keywords
dielectric
dielectric line
conductor layer
lines
parallel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37173898A
Other languages
Japanese (ja)
Other versions
JP2000196315A (en
Inventor
昭典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP37173898A priority Critical patent/JP3645724B2/en
Publication of JP2000196315A publication Critical patent/JP2000196315A/en
Application granted granted Critical
Publication of JP3645724B2 publication Critical patent/JP3645724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばミリ波集積回路等に組み込まれて、高周波信号のガイドとして用いられる非放射性誘電体線路であって、その中途で高周波信号を分岐、結合させる方向性結合器型のものに関する。
【0002】
【従来の技術】
従来の非放射性誘電体線路S1の基本構成を図5に示す。非放射性(Non Radiative Dielectricで、以下、NRDという)誘電体線路S1は、誘電体線路2の上下に平行平板導体1,3を配置し、平行平板導体1,3の間隔がλ/2(λは空間を伝搬する高周波信号の波長)以下のとき、波長がλより大きい高周波信号は遮断されて平行平板導体1,3間の空間には侵入できない。そして、平行平板導体1,3の間に誘電体線路2を挿入すると、その誘電体線路2に沿って高周波信号が伝搬でき、その高周波信号からの放射波は平行平板導体1,3の遮断効果によって抑制される。
【0003】
また、NRD誘電体線路S1を応用した、従来の方向性結合器型のNRD誘電体線路S2を図6に示す。このNRD誘電体線路S2は、一対の平行平板導体10,11間に2つの誘電体線路12,13が配設されてあり、これらの誘電体線路12,13のうち少なくとも一方を曲線状に形成するものである(特開平6−268446号公報参照)。同図では、両方の誘電体線路12,13を曲線状とし、それらの中央部分で最接近するように構成している。そして、誘電体線路12,13の最近接部の間隔xを所定値に設定することで、一方の誘電体線路12,13に入力された高周波信号が他方に空間的に結合して、両方の出力端から出力させることができる。尚、同図において、上側の平行平板導体11は内部が透視できるように描いた。
【0004】
例えば、図6のNRD誘電体線路S2において、誘電体線路12の入力ポート12aから入力された高周波信号は、最近接部で誘電体線路13と空間的な結合を生じ、分離(分岐)される。そして、高周波信号は出力ポート12b,13bからそれぞれ出力され、入力ポート13aからは出力しない。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来のNRD誘電体線路S2では、最近接部の間隔xが高周波信号の分離特性に大きな影響を与える。例えば、誘電体線路12,13が比誘電率εr =5,幅1mm×高さ2mmの場合、間隔xを0.1mm以下の精度で制御する必要がある。このように、2つの誘電体線路12,13を高精度に一対の平行平板導体10,11間に設置するのはきわめて困難であり、そのため量産性が低下し、位置調整の作業性が悪く製品コストも高くなっていた。
【0006】
また、図8に示すように、誘電体線路12,13の出力ポート12b,13bからそれぞれ出力される信号強度S21,S31がほぼ一致する周波数帯域(図8では約60GHz付近)が非常に狭いという問題があった。
【0007】
従って、本発明は上記事情に鑑みて完成されたものであり、その目的は広帯域にわたってほぼ同じレベルで高周波信号を分離でき、また組み立て時に格別な位置精度が不要なため、量産性に優れ低コストで製造可能なものとすることにある。
【0008】
【課題を解決するための手段】
本発明の非放射性誘電体線路は、高周波信号の波長λに対して間隔がλ/2以下である平行平板導体の間に、上下面を挟持した複数の誘電体線路を設け、これら誘電体線路間に導体層が介装され、前記導体層には誘電体線路の長手方向に延び且つ導体層の上側及び下側の双方に、前記導体層の上下方向において完全に対称な位置又は対称的な位置に一対の切欠を形成し、前記平行平板導体間の間隔をHとした時、前記切欠の誘電体線路長手方向に垂直な方向における幅dがH/12〜H/3を満足することを特徴とする。
【0009】
本発明は、上記構成により、高精度の位置調整が不要な簡易化された構造となるため、組み立て時に格別な位置精度が不要になり、その結果量産性に優れ低コストで製造可能となる。また、広帯域にわたってほぼ同じレベルで高周波信号を分離できるという作用効果を有する。
【0010】
また、本発明の誘電体線路は導体層を介して設置されているため、導体層から隣の誘電体線路へは高周波信号が放射、漏洩することがない、所謂イメージNRDガイドを形成する。従って、複数の誘電体線路は導体層により完全に遮断されており、これは高周波信号が結合しないように空間的に離れて設置することと同等である。即ち、本発明の非放射性誘電体線路は、複数の誘電体線路をきわめてコンパクトに配置でき、非常に小型になるという効果も有する。
【0011】
【発明の実施の形態】
本発明のNRD誘電体線路Sを図1,図2に示す。図1において、20,21は誘電体線路22,23を上下から挟持する平行平板導体、24は誘電体線路22,23の密接した側面部に介装された導体層、25a,25bは誘電体線路22,23の長手方向Aに延び且つ導体層の上側及び下側の双方に形成した切欠(スリット)である。
【0012】
本発明において、誘電体線路22,23はテフロン等の低損失の有機樹脂材料、有機−無機複合材料、コーディエライト,アルミナ,ガラスセラミックス等の低誘電率のセラミックス材料から成るのが好ましく、これらは低損失で加工が容易であり、量産に適している。
【0013】
前記平行平板導体20,21は、高い電気伝導度及び加工性の点で、Cu,Al,Fe,SUS(ステンレス),Ag,Au,Pt等の導体板、あるいはこられの導体層を表面に形成した絶縁板でもよい。導体層24は、Cu,Al,Ag,W,Mo等の導体板、プラスチック板,ガラス板,セラミックス板等の絶縁板の表面にメタライズ,メッキ等の処理を施したもので良く、予め平行平板導体20,21に立設させておいても良い。
【0014】
本発明のNRD誘電体線路Sは、誘電体線路22,23がセラミックス材料から成る場合、以下のようにして製造できる。所定の寸法に成形された誘電体線路22,23の成形体を各々作製し、これらの一方の成形体の側面部に切欠25a,25bが形成されるように金属ペーストを印刷塗布する、又は予め切欠25a,25bが形成された薄い金属箔又は金属板を2つの成形体の間に挟み積層した後、それらを一体的に焼結することによって作製する。
【0015】
また、誘電体線路22,23が有機樹脂材料、有機−無機複合材料の場合は、公知のプレス成形法,射出成形法,印刷塗布法等によって製造できる。
【0016】
本発明の導体層24に設ける切欠25a,25bは、図2に示すように、誘電体線路22,23の長手方向Aに沿って延び且つ導体層24の上側及び下側の双方に形成するもの、好ましくは上下方向において対称的な位置にある略一対のものとすることにより、誘電体線路22,23を伝搬する高周波信号を電磁的に結合させる機能を有する。これら切欠25a,25bを設ける位置は、誘電体線路22,23の長さ方向においてはどこにあっても良く、また上側の切欠25aは導体層24の上端部に、下側の切欠25bは導体層24の下端部に、上下方向において対称的に形成するのが良い。これは、切欠25a,25bを介した誘電体線路22,23間の電磁的結合を強くすると共に、誘電体線路22,23から平行平板導体20,21への漏洩波の発生を抑制することができるからである。
【0017】
そして、切欠25a,25bを、長手方向Aにおいて複数対設けることもできるが、高周波信号を分離させるには一対で十分である。
【0018】
更に、切欠25a,25bの長手方向Aにおける長さは、高周波信号の周波数,誘電体線路22,23の比誘電率,誘電体線路22,23の幅,平行平板導体20,21の間隔等によって決定されるが、例えば周波数=77GHz,比誘電率=4.8,誘電体線路22,23の幅=0.4mm,平行平板導体20,21の間隔=1.8mmの場合、例えば高周波信号を半々に分離する3dB方向性結合器とするには、切欠25a,25bの長手方向Aにおける長さは2.4〜2.44mmが好ましい。前記範囲から外れると、3dB方向性結合器を構成できない。このように、切欠25a,25bの長手方向Aにおける長さを制御することにより、誘電体線路22,23間の結合の強さを調整でき、例えば10dB方向性結合器等を構成することもできる。
【0019】
また、切欠25a,25bの長手方向Aに垂直な方向(上下方向)における幅dは、平行平板導体20,21間の間隔Hに対して、H/12〜H/3とされている。H/12より小さいと誘電体線路22,23間の結合が弱く、H/3よりも大きいと、入力ポート22aへの反射波が大きくなる。例えば、上記3dB方向性結合器の場合、0.18〜0.22mmに設定するのが良い。
【0020】
更に、切欠25a,25bは図2に示すように長手方向Aに垂直な方向において完全に対称な位置に一対設けることが好ましく、その場合漏洩波の発生が最も抑制される。しかし、誘電体線路22,23はイメージNRDガイドを構成しているため、漏洩波を生じにくい特性を有しており、その結果図3に示すように切欠25a,25bが長手方向Aに垂直な方向において少なくとも70%程度重複(オーバーラップ。図3のBが重複部)するような位置に設けても、完全に対称な位置に一対設ける場合(図2)とほぼ同様の効果が得られる。即ち、切欠25a,25bを上下方向において完全対称な位置ではなく、対称的な位置に略一対設けることもできる。
【0021】
このようなNRD誘電体線路Sは、図6のものと同様に機能する。例えば、誘電体線路22の入力ポート22aから入力された高周波信号は、切欠25a,25bを介して誘電体線路23側に電磁的に結合し分離される。そして、出力ポート22b,23bからそれぞれ出力され、入力ポート23aからは出力されない。
【0022】
本発明のNRD誘電体線路Sは、図4に示すように3本の誘電体線路22,23,26を設けたNRD誘電体線路Sa とすることもできる。この場合、例えば入力ポート23aから入力された高周波信号を、出力ポート22b,23b,26bから出力させるように機能させることができる。従って、本発明では3本以上の誘電体線路を設けても構わない。尚、同図において、26は誘電体線路、27は導体層、28a,28bは切欠である。
【0023】
本発明のNRD誘電体線路Sは、自動車のミリ波レーダ等に使用されるものであり、例えば自動車の周囲の障害物及び他の自動車に対しミリ波を誘電体線路22で導波して照射し、反射波を誘電体線路23で受信すると共に誘電体線路22側から分離してきた高周波信号と合成してビート信号を得、このビート信号を分析することにより前記障害物及び他の自動車までの距離、それらの移動速度、移動方向等が得られる。また、本発明のNRD誘電体線路Sは、数10〜数100GHz帯の高周波信号を利用する高周波回路であれば適用できる。
【0024】
かくして、本発明は、広帯域にわたってほぼ同じレベルで高周波信号を分離でき、また組み立て時に格別な位置精度が不要なため、量産性に優れ低コストで製造可能になるという作用効果を有する。
【0025】
尚、本発明は上記の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更は何等差し支えない。
【0026】
【実施例】
本発明の実施例を以下に説明する。
【0027】
(実施例)
図1及び図2のNRD誘電体線路Sを、以下の工程〔1〕〜〔5〕により作製した。
【0028】
〔1〕比誘電率=4.8,誘電損失=2.7×10-4(測定周波数77GHz)のコーディエライトセラミックスから成り、断面が幅0.4mm×高さ1.8mmの長方形の2つの誘電体線路22,23を作製した。
【0029】
〔2〕誘電体線路22,23のうち一方の側面部(貼り合わせ面)に、Cuメッキによって導体層24を形成した。
【0030】
〔3〕レジストを塗布しそれをエッチングすることにより、上下方向の幅0.2mm×長さ2.42mmの切欠25a,25bを、導体層24の上下の端縁(エッジ)に接するように、平行して形成した。
【0031】
〔4〕導体層24を介して2つの誘電体線路22,23を接着剤により貼り合わせ、一体化した。
【0032】
〔5〕一体化した誘電体線路22,23の上下面を、Cuから成り縦100mm×横100mm×厚さ8mmの2枚の平行平板導体20,21間に挟持して、NRD誘電体線路Sを作製した。
【0033】
このNRD誘電体線路Sについて、ネットワークアナライザにより高周波信号の伝送特性を測定した結果を図7に示す。同図において、S11は入力ポート22aにおける反射損失、S21は出力ポート22bでの挿入損失、S31は出力ポート23bでの挿入損失、S41は入力ポート23aでの挿入損失である。同図に示すように、S21とS31がほぼ同じ損失であり且つ半々に分離されるレベル(−3dB)となる周波数範囲が、約72GHz〜約82GHzと広帯域にわたっているのが判る。
【0034】
【発明の効果】
本発明は、平行平板導体の間に、上下面を挟持した複数の誘電体線路を設け、これら誘電体線路間に導体層が介装され、導体層には誘電体線路の長手方向に延び且つ導体層の上側及び下側の双方に切欠を形成したことにより、高精度の位置調整が不要な簡易化された構造となるため、組み立て時に格別な位置精度が不要になり、その結果量産性に優れ低コストで製造可能となる。また、広帯域にわたってほぼ同じレベルで高周波信号を分離できるという効果を有する。
【0035】
また、本発明の誘電体線路はイメージNRDガイドを形成しており、複数の誘電体線路は導体層により完全に遮断されるため、複数の誘電体線路をきわめてコンパクトに配置でき、非常に小型になるという効果も有する。
【図面の簡単な説明】
【図1】本発明のNRD誘電体線路Sの部分透明斜視図である。
【図2】図1のNRD誘電体線路Sにおいて、切欠25a,25b部を拡大した断面図である。
【図3】図1のNRD誘電体線路Sにおいて、切欠25a,25bが部分的にオーバーラップした場合に、切欠25a,25b部を拡大した断面図である。
【図4】本発明の3本の誘電体線路を有するNRD誘電体線路Saの部分透明斜視図である。
【図5】従来のNRD誘電体線路S1の部分切欠斜視図である。
【図6】従来のNRD誘電体線路S2の部分透明斜視図である。
【図7】本発明のNRD誘電体線路Sについて、高周波信号の伝送特性を測定したグラフである。
【図8】従来のNRD誘電体線路S2について、高周波信号の伝送特性を測定したグラフである。
【符号の説明】
1:下側の平行平板導体
2:誘電体線路
3:上側の平行平板導体
10:下側の平行平板導体
11:上側の平行平板導体
12:誘電体線路
12a:入力ポート
12b:出力ポート
13:誘電体線路
13a:入力ポート
13b:出力ポート
20:下側の平行平板導体
21:上側の平行平板導体
22:誘電体線路
22a:入力ポート
22b:出力ポート
23:誘電体線路
23a:入力ポート
23b:出力ポート
24:導体層
25a:切欠
25b:切欠
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-radiative dielectric line incorporated in, for example, a millimeter wave integrated circuit and used as a guide for a high-frequency signal, and relates to a directional coupler type that branches and couples a high-frequency signal in the middle thereof.
[0002]
[Prior art]
A basic configuration of a conventional non-radiative dielectric line S1 is shown in FIG. A non-radiative (hereinafter referred to as NRD) dielectric line S1 has parallel plate conductors 1 and 3 arranged above and below the dielectric line 2, and the interval between the parallel plate conductors 1 and 3 is λ / 2 (λ Is less than the wavelength of the high-frequency signal propagating in the space), the high-frequency signal having a wavelength larger than λ is blocked and cannot enter the space between the parallel plate conductors 1 and 3. When the dielectric line 2 is inserted between the parallel plate conductors 1 and 3, a high-frequency signal can propagate along the dielectric line 2, and the radiated wave from the high-frequency signal is blocked by the parallel plate conductors 1 and 3. Is suppressed by.
[0003]
FIG. 6 shows a conventional directional coupler type NRD dielectric line S2 to which the NRD dielectric line S1 is applied. In the NRD dielectric line S2, two dielectric lines 12 and 13 are disposed between a pair of parallel plate conductors 10 and 11, and at least one of the dielectric lines 12 and 13 is formed in a curved shape. (See JP-A-6-268446). In the figure, both dielectric lines 12 and 13 are curved, and are configured so as to be closest to each other at the center. Then, by setting the distance x between the closest portions of the dielectric lines 12 and 13 to a predetermined value, the high frequency signal input to one of the dielectric lines 12 and 13 is spatially coupled to the other, It can be output from the output end. In the figure, the upper parallel plate conductor 11 is drawn so that the inside can be seen through.
[0004]
For example, in the NRD dielectric line S2 of FIG. 6, the high frequency signal input from the input port 12a of the dielectric line 12 is spatially coupled to the dielectric line 13 at the nearest part and separated (branched). . The high frequency signals are output from the output ports 12b and 13b, respectively, and are not output from the input port 13a.
[0005]
[Problems to be solved by the invention]
However, in the conventional NRD dielectric line S2, the interval x between the closest portions has a great influence on the separation characteristics of the high-frequency signal. For example, when the dielectric lines 12 and 13 have a relative dielectric constant εr = 5, a width of 1 mm and a height of 2 mm, the interval x needs to be controlled with an accuracy of 0.1 mm or less. As described above, it is extremely difficult to install the two dielectric lines 12 and 13 between the pair of parallel plate conductors 10 and 11 with high accuracy, so that the mass productivity is lowered and the workability of the position adjustment is poor. The cost was also high.
[0006]
Further, as shown in FIG. 8, the frequency band (in the vicinity of about 60 GHz in FIG. 8) in which the signal intensities S21 and S31 output from the output ports 12b and 13b of the dielectric lines 12 and 13 substantially match each other is very narrow. There was a problem.
[0007]
Therefore, the present invention has been completed in view of the above circumstances, and its purpose is that it can separate high frequency signals at almost the same level over a wide band, and does not require special positional accuracy during assembly, so it is excellent in mass productivity and low cost. It is to be able to be manufactured with.
[0008]
[Means for Solving the Problems]
The non-radiative dielectric line of the present invention is provided with a plurality of dielectric lines having upper and lower surfaces sandwiched between parallel plate conductors having an interval of λ / 2 or less with respect to the wavelength λ of the high-frequency signal. A conductor layer is interposed between the conductor layers. The conductor layers extend in the longitudinal direction of the dielectric line, and are located on both the upper side and the lower side of the conductor layer in a completely symmetrical position or symmetrical in the vertical direction of the conductor layer. When a pair of notches is formed at a position and the distance between the parallel plate conductors is H, the width d of the notches in the direction perpendicular to the longitudinal direction of the dielectric line satisfies H / 12 to H / 3. Features.
[0009]
According to the above configuration, the present invention has a simplified structure that does not require high-accuracy position adjustment, so that no special position accuracy is required at the time of assembly, and as a result, it is excellent in mass productivity and can be manufactured at low cost. In addition, the high-frequency signal can be separated at substantially the same level over a wide band.
[0010]
In addition, since the dielectric line of the present invention is installed via the conductor layer, a so-called image NRD guide is formed in which a high-frequency signal is not radiated and leaked from the conductor layer to the adjacent dielectric line. Therefore, the plurality of dielectric lines are completely cut off by the conductor layer, which is equivalent to installing them spatially apart so as not to couple high-frequency signals. That is, the non-radiative dielectric line of the present invention has an effect that a plurality of dielectric lines can be arranged in a very compact manner and is very small.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An NRD dielectric line S of the present invention is shown in FIGS. In FIG. 1, 20 and 21 are parallel plate conductors that sandwich the dielectric lines 22 and 23 from above and below, 24 is a conductor layer interposed between the close side surfaces of the dielectric lines 22 and 23, and 25 a and 25 b are dielectrics. These are notches (slits) extending in the longitudinal direction A of the lines 22 and 23 and formed on both the upper and lower sides of the conductor layer.
[0012]
In the present invention, the dielectric lines 22 and 23 are preferably made of a low-loss organic resin material such as Teflon, an organic-inorganic composite material, cordierite, alumina, glass ceramics or other low dielectric constant ceramic material. Is easy to process with low loss and suitable for mass production.
[0013]
The parallel plate conductors 20 and 21 have a conductive plate such as Cu, Al, Fe, SUS (stainless steel), Ag, Au, or Pt, or a conductive layer thereof on the surface in terms of high electrical conductivity and workability. A formed insulating plate may be used. The conductor layer 24 may be formed by subjecting the surface of an insulating plate such as a conductive plate such as Cu, Al, Ag, W, or Mo, a plastic plate, a glass plate, or a ceramic plate to metallization, plating, etc. The conductors 20 and 21 may be erected.
[0014]
The NRD dielectric line S of the present invention can be manufactured as follows when the dielectric lines 22 and 23 are made of a ceramic material. Each of the molded bodies of the dielectric lines 22 and 23 molded to a predetermined size is manufactured, and a metal paste is printed and applied so that the notches 25a and 25b are formed on the side surfaces of one of these molded bodies. The thin metal foil or metal plate in which the notches 25a and 25b are formed is sandwiched and laminated between two molded bodies, and then they are integrally sintered.
[0015]
Moreover, when the dielectric lines 22 and 23 are organic resin materials and organic-inorganic composite materials, they can be manufactured by a known press molding method, injection molding method, print coating method, or the like.
[0016]
As shown in FIG. 2, the notches 25a and 25b provided in the conductor layer 24 of the present invention extend along the longitudinal direction A of the dielectric lines 22 and 23 and are formed on both the upper and lower sides of the conductor layer 24. The high frequency signals propagating through the dielectric lines 22 and 23 are electromagnetically coupled, preferably by using a pair of substantially symmetrical ones in the vertical direction. The positions where the notches 25a and 25b are provided may be anywhere in the length direction of the dielectric lines 22 and 23, the upper notch 25a is at the upper end of the conductor layer 24, and the lower notch 25b is the conductor layer. It is good to form symmetrically in the up-down direction in the lower end part of 24. This strengthens the electromagnetic coupling between the dielectric lines 22 and 23 via the notches 25a and 25b, and suppresses the generation of leakage waves from the dielectric lines 22 and 23 to the parallel plate conductors 20 and 21. Because it can.
[0017]
A plurality of pairs of notches 25a and 25b can be provided in the longitudinal direction A, but a pair is sufficient for separating high-frequency signals.
[0018]
Further, the length of the notches 25a and 25b in the longitudinal direction A depends on the frequency of the high frequency signal, the relative dielectric constant of the dielectric lines 22 and 23, the width of the dielectric lines 22 and 23, the distance between the parallel plate conductors 20 and 21, and the like. For example, when the frequency is 77 GHz, the relative dielectric constant is 4.8, the width of the dielectric lines 22 and 23 is 0.4 mm, and the interval between the parallel plate conductors 20 and 21 is 1.8 mm, for example, a high-frequency signal is output. In order to obtain a 3 dB directional coupler separated in half, the length in the longitudinal direction A of the notches 25a and 25b is preferably 2.4 to 2.44 mm. If it is out of the range, a 3 dB directional coupler cannot be constructed. In this way, by controlling the length of the notches 25a and 25b in the longitudinal direction A, the strength of coupling between the dielectric lines 22 and 23 can be adjusted, and for example, a 10 dB directional coupler can be configured. .
[0019]
Further, the width d of the notches 25a and 25b in the direction (vertical direction) perpendicular to the longitudinal direction A is set to H / 12 to H / 3 with respect to the interval H between the parallel plate conductors 20 and 21 . If it is smaller than H / 12, the coupling between the dielectric lines 22 and 23 is weak, and if it is larger than H / 3, the reflected wave to the input port 22a becomes large. For example, in the case of the 3 dB directional coupler, it is preferable to set it to 0.18 to 0.22 mm.
[0020]
Furthermore, it is preferable to provide a pair of notches 25a and 25b at positions that are completely symmetrical in the direction perpendicular to the longitudinal direction A, as shown in FIG. However, since the dielectric lines 22 and 23 constitute an image NRD guide, the dielectric lines 22 and 23 have a characteristic that a leakage wave is hardly generated. As a result, the notches 25a and 25b are perpendicular to the longitudinal direction A as shown in FIG. Even if it is provided at a position that overlaps at least about 70% in the direction (overlap, where B in FIG. 3 overlaps), substantially the same effect as when a pair is provided at a completely symmetrical position (FIG. 2) can be obtained. That is, the notches 25a and 25b can be provided in a substantially symmetrical position instead of a completely symmetrical position in the vertical direction.
[0021]
Such an NRD dielectric line S functions similarly to that of FIG. For example, a high-frequency signal input from the input port 22a of the dielectric line 22 is electromagnetically coupled to the dielectric line 23 side through the notches 25a and 25b and separated. And it outputs from the output ports 22b and 23b, respectively, and does not output from the input port 23a.
[0022]
The NRD dielectric line S of the present invention may be an NRD dielectric line Sa provided with three dielectric lines 22, 23 and 26 as shown in FIG. In this case, for example, a high frequency signal input from the input port 23a can be functioned to be output from the output ports 22b, 23b, and 26b. Therefore, in the present invention, three or more dielectric lines may be provided. In the figure, 26 is a dielectric line, 27 is a conductor layer, and 28a and 28b are notches.
[0023]
The NRD dielectric line S of the present invention is used for an automobile millimeter wave radar or the like. For example, a millimeter wave is guided by the dielectric line 22 to irradiate obstacles around the automobile and other automobiles. Then, the reflected wave is received by the dielectric line 23 and combined with the high frequency signal separated from the dielectric line 22 side to obtain a beat signal. By analyzing the beat signal, the obstacles and other automobiles are analyzed. Distances, their moving speeds, moving directions, etc. are obtained. The NRD dielectric line S of the present invention can be applied to any high-frequency circuit that uses a high-frequency signal in the range of several tens to several hundreds of GHz.
[0024]
Thus, the present invention can separate high-frequency signals at almost the same level over a wide band and does not require special positional accuracy at the time of assembly. Therefore, the present invention has the effect of being excellent in mass productivity and capable of being manufactured at low cost.
[0025]
In addition, this invention is not limited to said embodiment, A various change does not interfere in the range which does not deviate from the summary of this invention.
[0026]
【Example】
Examples of the present invention will be described below.
[0027]
(Example)
The NRD dielectric line S shown in FIGS. 1 and 2 was produced by the following steps [1] to [5].
[0028]
[1] A rectangular 2 having a dielectric constant of 4.8 and a dielectric loss of 2.7 × 10 −4 (measurement frequency of 77 GHz) and a cross section of 0.4 mm in width and 1.8 mm in height. Two dielectric lines 22 and 23 were produced.
[0029]
[2] A conductor layer 24 was formed on one side surface (bonded surface) of the dielectric lines 22 and 23 by Cu plating.
[0030]
[3] By applying a resist and etching it, the notches 25a and 25b having a width of 0.2 mm in the vertical direction and a length of 2.42 mm are in contact with the upper and lower edges (edges) of the conductor layer 24. Formed in parallel.
[0031]
[4] Two dielectric lines 22 and 23 were bonded together with an adhesive via the conductor layer 24 and integrated.
[0032]
[5] The upper and lower surfaces of the integrated dielectric lines 22 and 23 are sandwiched between two parallel plate conductors 20 and 21 made of Cu, which are 100 mm long × 100 mm wide × 8 mm thick. Was made.
[0033]
With respect to this NRD dielectric line S, the result of measuring the transmission characteristics of the high-frequency signal with a network analyzer is shown in FIG. In the figure, S11 is a reflection loss at the input port 22a, S21 is an insertion loss at the output port 22b, S31 is an insertion loss at the output port 23b, and S41 is an insertion loss at the input port 23a. As shown in the figure, it can be seen that the frequency range in which S21 and S31 have substantially the same loss and are separated in half (-3 dB) covers a wide band of about 72 GHz to about 82 GHz.
[0034]
【The invention's effect】
The present invention provides a plurality of dielectric lines sandwiching upper and lower surfaces between parallel plate conductors, a conductor layer is interposed between these dielectric lines, and the conductor layer extends in the longitudinal direction of the dielectric line and By forming notches on both the upper and lower sides of the conductor layer, it becomes a simplified structure that does not require high-accuracy position adjustment, which eliminates the need for exceptional positional accuracy during assembly, resulting in high productivity. It can be manufactured at an excellent low cost. Moreover, it has the effect that a high frequency signal can be separated at substantially the same level over a wide band.
[0035]
In addition, the dielectric line of the present invention forms an image NRD guide, and the plurality of dielectric lines are completely cut off by the conductor layer, so that the plurality of dielectric lines can be arranged extremely compactly and extremely compact. It also has the effect of becoming.
[Brief description of the drawings]
FIG. 1 is a partially transparent perspective view of an NRD dielectric line S of the present invention.
2 is an enlarged cross-sectional view of notches 25a and 25b in the NRD dielectric line S of FIG.
3 is an enlarged cross-sectional view of the notches 25a and 25b when the notches 25a and 25b partially overlap in the NRD dielectric line S of FIG.
FIG. 4 is a partially transparent perspective view of an NRD dielectric line Sa having three dielectric lines according to the present invention.
FIG. 5 is a partially cutaway perspective view of a conventional NRD dielectric line S1.
FIG. 6 is a partially transparent perspective view of a conventional NRD dielectric line S2.
FIG. 7 is a graph obtained by measuring transmission characteristics of a high frequency signal for the NRD dielectric line S of the present invention.
FIG. 8 is a graph obtained by measuring transmission characteristics of a high frequency signal for a conventional NRD dielectric line S2.
[Explanation of symbols]
1: Lower parallel plate conductor 2: Dielectric line 3: Upper parallel plate conductor 10: Lower parallel plate conductor 11: Upper parallel plate conductor 12: Dielectric line 12a: Input port 12b: Output port 13: Dielectric line 13a: Input port 13b: Output port 20: Lower parallel plate conductor 21: Upper parallel plate conductor 22: Dielectric line 22a: Input port 22b: Output port 23: Dielectric line 23a: Input port 23b: Output port 24: conductor layer 25a: notch 25b: notch

Claims (1)

高周波信号の波長λに対して間隔がλ/2以下である平行平板導体の間に、上下面を挟持した複数の誘電体線路を設け、これら誘電体線路間に導体層が介装され、前記導体層には誘電体線路の長手方向に延び且つ導体層の上側及び下側の双方に、前記導体層の上下方向において完全に対称な位置又は対称的な位置に一対の切欠を形成し、前記平行平板導体間の間隔をHとした時、前記切欠の誘電体線路長手方向に垂直な方向における幅dがH/12〜H/3を満足することを特徴とする非放射性誘電体線路。A plurality of dielectric lines sandwiching upper and lower surfaces are provided between parallel plate conductors whose interval is λ / 2 or less with respect to the wavelength λ of the high frequency signal, and a conductor layer is interposed between the dielectric lines, The conductor layer extends in the longitudinal direction of the dielectric line and forms a pair of notches on both the upper and lower sides of the conductor layer at a position that is completely symmetric or symmetrical in the vertical direction of the conductor layer, A nonradiative dielectric line characterized in that a width d in a direction perpendicular to the longitudinal direction of the dielectric line satisfies H / 12 to H / 3, where H is an interval between parallel plate conductors .
JP37173898A 1998-12-28 1998-12-28 Non-radiative dielectric line Expired - Fee Related JP3645724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37173898A JP3645724B2 (en) 1998-12-28 1998-12-28 Non-radiative dielectric line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37173898A JP3645724B2 (en) 1998-12-28 1998-12-28 Non-radiative dielectric line

Publications (2)

Publication Number Publication Date
JP2000196315A JP2000196315A (en) 2000-07-14
JP3645724B2 true JP3645724B2 (en) 2005-05-11

Family

ID=18499220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37173898A Expired - Fee Related JP3645724B2 (en) 1998-12-28 1998-12-28 Non-radiative dielectric line

Country Status (1)

Country Link
JP (1) JP3645724B2 (en)

Also Published As

Publication number Publication date
JP2000196315A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
US5414394A (en) Microwave frequency device comprising at least a transition between a transmission line integrated on a substrate and a waveguide
KR100282274B1 (en) Transmission circuit using strip line in three dimensions
JP3891918B2 (en) High frequency module
US5982256A (en) Wiring board equipped with a line for transmitting a high frequency signal
EP2979321B1 (en) A transition between a siw and a waveguide interface
US7336142B2 (en) High frequency component
US5446425A (en) Floating potential conductor coupled quarter-wavelength coupled line type directional coupler comprising cut portion formed in ground plane conductor
JP2004153367A (en) High frequency module, and mode converting structure and method
EP0747987B1 (en) Vertical grounded coplanar waveguide H-bend interconnection apparatus
KR20060041676A (en) Variable resonator and variable phase shifter
JP2013513274A (en) Microwave transition device between a microstrip line and a rectangular waveguide.
EP0886335A2 (en) Dielectric waveguide
EP0978896B1 (en) Transmission line and transmission line resonator
EP2043192A1 (en) Dielectric waveguide bend
US20120182093A1 (en) Microwave filter
JP3493265B2 (en) Dielectric waveguide line and wiring board
US4970522A (en) Waveguide apparatus
US7403085B2 (en) RF module
US4760400A (en) Sandwich-wire antenna
JP3645724B2 (en) Non-radiative dielectric line
JP2000040904A (en) Non radioactive dielectric line coupler
JP3732954B2 (en) Directional coupler
US4224584A (en) Directional microwave coupler
JP4526713B2 (en) High frequency circuit
JPH1013113A (en) Connecting method for distributed constant lines and microwave circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees