JP3644560B2 - Capacitor, capacitor coupling mechanism and coupling method thereof - Google Patents

Capacitor, capacitor coupling mechanism and coupling method thereof Download PDF

Info

Publication number
JP3644560B2
JP3644560B2 JP23451996A JP23451996A JP3644560B2 JP 3644560 B2 JP3644560 B2 JP 3644560B2 JP 23451996 A JP23451996 A JP 23451996A JP 23451996 A JP23451996 A JP 23451996A JP 3644560 B2 JP3644560 B2 JP 3644560B2
Authority
JP
Japan
Prior art keywords
capacitor
screw
terminal
electrode
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23451996A
Other languages
Japanese (ja)
Other versions
JPH1079322A (en
Inventor
浩司 川辺
敦 稲葉
智 樋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP23451996A priority Critical patent/JP3644560B2/en
Publication of JPH1079322A publication Critical patent/JPH1079322A/en
Application granted granted Critical
Publication of JP3644560B2 publication Critical patent/JP3644560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【0001】
【発明の属する技術分野】
本発明はコンデンサ、コンデンサの連結機構及びその連結方法に関する。
【0002】
【従来の技術】
電気二重層コンデンサとしては、特開平5−315190号公報「チップ型電気二重層コンデンサ」が知られている。
上記公報の技術は、小型で等価直列抵抗が小さく、プリント基盤への自動搭載が可能で実装安定性が良いチップ型電気二重層コンデンサを提供するものであり、電気二重層コンデンサ素子9と、この素子9間を接続する導電性セパレータ10と、この導電性セパレータ10を上下に一体化した素子積層体9aと、この素子積層体9aをモールド成形して被覆する絶縁樹脂1とが開示されている。
【0003】
【発明が解決しようとする課題】
上記の技術では、素子積層体9aをモールド成形するので、例えば、1つの素子が不良となった場合に電気二重層コンデンサ全体を交換しなければならないという不都合がある。
そこで、本発明の目的は、電気的接続を容易にし、且つ交換の楽なコンデンサ、ンデンサの連結機構及びその連結方法を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するために本発明の請求項1は、正極と負極との一方に右めねじ、他方に左めねじを開けた。
正極と負極とに異なるめねじが形成されるため、正極と負極とを識別することができ、連結するときに誤組付けすることがない。
【0005】
請求項2は、一方のコンデンサの電極端子に右めねじ、他方のコンデンサの電極端子に左めねじを形成し、一端に右おねじ、他端に左おねじを切った連結ねじを右・左めねじにねじ込み、この連結ねじを回転させることによりコンデンサ同士を連結する。
【0006】
コンデンサ同士の電気的、且つ機械的連結が容易となり、また、コンデンサの交換が楽になる。更に、電極を連結ねじで強固に締結するので、電極と連結ねじとの接触抵抗を小さくすることができる。
【0007】
請求項3は、連結する二つのコンデンサのそれぞれの電極端子にめねじを形成し、螺合可能な二つのねじ部材からなる連結部材のそれぞれにおねじを形成し、これらおねじをめねじにそれぞれねじ込み、二つのねじ部材同士を螺合させることによりコンデンサ同士を連結する。
【0008】
連結部材を二つのねじ部材にしたことで、それぞれのねじ部材を予め電極端子に取付けることができ、且つ連結作業は二つのねじ部材同士を螺合するだけで行うことができるので、コンデンサ同士の電気的、且つ機械的連結が容易となり、また、コンデンサの交換が楽になる。更に、電極を連結部材で強固に締結するので、電極と連結部材との接触抵抗を小さくすることができる。
【0009】
請求項4は、電極端子に右めねじを形成した一方のコンデンサと、電極端子に左めねじを形成した他方のコンデンサと、一端に右おねじ、他端に左おねじを切った連結ねじとを準備する工程と、一方のコンデンサの電極端子に他方のコンデンサの電極端子を連結ねじを介して向い合せて当接させる工程と、連結ねじを回転させ右・左おねじを右・左めねじにねじ込んでコンデンサ同士を連結する工程とからなる。
【0010】
コンデンサ同士の電気的、且つ機械的連結が容易となり、また、コンデンサの交換が楽になる。更に、電極を連結ねじで強固に締結するので、電極と連結ねじとの接触抵抗を小さくすることができる。
【0011】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係るコンデンサの連結機構を示す分解斜視図であり、コンデンサとしては、電気自動車に使用する電気二重層コンデンサを組込んだコンデンサ・モジュールを示す。
【0012】
コンデンサ・モジュール10は、直方体の上面に正極端子Aと、負極端子Bと、接続端子Eと、接続端子H,J(図3参照)を有するケーブル付きコネクタMとを備える。それぞれの端子については、後で詳述する。
【0013】
図に下側に示すコンデンサ・モジュール10の正極端子Aと図の上側に示す上下逆にしたコンデンサ・モジュール10Nの負極端子Bとの接続は、連結ボルト11にナット12,12及び回路基板20,20Nを介して行う。なお、コンデンサ・モジュール10N及び回路基板20Nは、それぞれコンデンサ・モジュール10及び回路基板20と同一のものであるが、説明の都合上、符号を変えた。
【0014】
ボルト13,13は、コンデンサ・モジュール10,10Nの接続端子E,Eと回路基板20,20Nとのそれぞれの電気的導通を図るものである。
コンデンサ・モジュール10の負極端子Bと図示せぬコンデンサ・モジュールの正極端子との連結を、連結ボルト11Pにナット12P、回路基板20を介して行う。
コンデンサ・モジュール10Nの正極端子Aと別の図示せぬコンデンサ・モジュールの負極端子との接続は、連結ボルト11Qにナット12Q、回路基板20Nを介して行う。
【0015】
図2は本発明に係る電極端子の連結機構を示す断面図であり、下側のコンデンサ・モジュール10の正極端子Aは右めねじ10aを有し、上側のコンデンサ・モジュール10Nの負極端子Bは左めねじ10bを有する。
連結ねじ11は、中央に設けた六角部11aと、この六角部11aの両側に形成した右おねじ11b及び左おねじ11cとを有する。
【0016】
下側のコンデンサ・モジュール10の正極端子Aと上側のコンデンサ・モジュール10Nの負極端子Bとの連結は、次の順で行う。
まず、コンデンサ・モジュール10,10Nと、連結ボルト11とを準備する。
連結ボルト11には、予め右おねじ11b及び左おねじ11cの奥側にナット12,12をねじ込んでおく。
【0017】
次に、コンデンサ・モジュール10の正極端子Aに回路基板20を載せ、正極端子Aの右めねじ10aに回路基板20の取付け用の孔21を合せる。
この状態で、連結ねじ11の右おねじ11bを孔21に挿入し、右めねじ10aの開口部に当てる。
【0018】
この後、連結ねじ11の左おねじ11cに回路基板20Nの取付け用の孔23を嵌め、連結ねじ11の左おねじ11cの先端にコンデンサ・モジュール10Nの負極端子Bの左めねじ10b開口部を当てる。
そして、連結ねじ11の六角部11aにスパナを当て、連結ねじ11を回転させて、正極端子Aの右めねじ10aに連結ねじ11の右おねじ11bを、負極端子Bの左めねじ10bに連結ねじ11の左おねじ11cをねじ込む。
そして、ナット12,12を締め込んで回路基板20,20Nを固定する。
【0019】
コンデンサ・モジュール10の負極端子Bについても同様に行う。なお、連結ねじ11の回転を、コンデンサ・モジュール10の正・負極端子A,B側で同時に同じ角度ずつ行えば、両方の連結ねじ11のねじ込み量が同じになり、両方の連結ねじ11を無理なく回転させることができ、且つ、コンデンサ・モジュール10Nが傾くことはない。
【0020】
コンデンサ・モジュール10の正極端子Aとコンデンサ・モジュール10Nの負極端子Bとの連結は、次の方法で行っても良い。
予めナット12,12を連結ボルト11の右おねじ11b及び左おねじ11cの奥側にねじ込んでおく。
【0021】
次に、連結ねじ11とコンデンサ・モジュール10の正極端子Aとの間に回路基板20を介し、連結ねじ11をスパナで回転させて、連結ねじ11の右おねじ11bを正極端子Aの右めねじ10aに少しねじ込んで、連結ねじ11を自立させる。
【0022】
この後、連結ねじ11の左おねじ11cに回路基板20Nの孔21をはめ込み、連結ねじ11の左おねじ11cの先端にコンデンサ・モジュール10Nの負極端子Bの左めねじ10b開口部を当接させる。
【0023】
その後、連結ねじ11をスパナで回転させて、正極端子Aの右めねじ10aに連結ねじ11の右おねじ11bを、負極端子Bの左めねじ10bに連結ねじ11の左おねじ11cをねじ込む。
そして、ナット12,12を締め込んで回路基板20,20Nを固定する。
コンデンサ・モジュール10の負極端子Bについても同様に行う。
【0024】
この連結方法によると、連結ねじ11を自立させることで、連結ねじ11の左おねじ11c先端にコンデンサ・モジュール10Nの負極端子Bの左めねじ10bの開口部を当接させやすくなり、連結作業を容易に行うことができる。
【0025】
以上のように、一方のコンデンサ・モジュール10の正極端子Aに右めねじ10a、他方のコンデンサ・モジュール10Nの負極端子Bに左めねじ10bを形成し、一端に右おねじ11b、他端に左おねじ11cを切った連結ねじ11を右・左めねじ10a,10bにねじ込み、この連結ねじ11を回転させることにより2つのコンデンサ・モジュール10,10Nを電気的に、且つ機械的に容易に連結することができ、また、コンデンサ・モジュール10,10Nの交換を楽に行うことができる。
【0026】
更に、正・負極端子A,Bを連結ねじ11で強固に締結することができ、正・負極端子A,Bと連結ねじ11との接触抵抗を小さくすることができる。
この実施の形態では、正極端子Aに右めねじ10a、負極端子Bに左めねじ10bを形成したが、この逆に正極端子Aに左めねじ、負極端子Bに右めねじを形成してもよい。
【0027】
図3は本発明に係る回路基板の平面図であり、回路基板20は、基板20aと、連結ねじ11(図1参照)が挿通する孔21と、図2に示したナット12を介して正極端子A(図1参照)に接続する円形の接続端子A1と、ボルト13(図1参照)が挿通する孔22と、この孔22の回りに形成してボルト13によってコンデンサ・モジュール10の接続端子Eに導通する接続端子E1と、連結ねじ11P(図1参照)が挿通する孔23と、図1に示したナット12Pを介して負極端子B(図1参照)に接続する円形の接続端子B1と、スイッチ素子24と、接続端子H1,J1を有するコネクタ25と、検出ターミナル26とからなる。
【0028】
検出ターミナル26は、接続端子G2,K2,H2,J2,L2を有する。
上記の接続端子A1,B1,E1、スイッチ素子24、コネクタ25、検出ターミナル26については図4にて詳述する。
【0029】
図4は本発明に係るコンデンサ・モジュールの電気回路の説明図であり、コンデンサ・モジュール10は、モジュール本体15と、回路基板20とからなる。モジュール本体15は、電気二重層コンデンサ16と、この電気二重層コンデンサ16の温度を検出する熱電対17と、上記に述べた正極端子Aと、負極端子Bと、接続端子E,H,Jとからなる。
接続端子Eと負極端子Bとは、電気二重層コンデンサ16に接続する。
接続端子H,Jは、熱電対17に接続する。
【0030】
電気二重層コンデンサ16は、大容量(例えば、数ファラッド)のコンデンサで構成し、図示せぬ外部充電器で充電して所定の電気量(電荷量)を蓄積し、複数個の充電されたコンデンサを接続して電気自動車等のモータを駆動するために必要な電力に対応した電気量を蓄えるものである。
熱電対17は、電気二重層コンデンサ16の温度を測定し、電気二重層コンデンサ16に充電する際に発生する熱による温度上昇を監視するものである。
【0031】
回路基板20は、スイッチ素子24と、バイパス導体27と、接続端子A1,E1,H1,J1,B1,G2,K2,H2,J2,L2とを備える。
接続端子A1,E1,H1,J1,B1は、それぞれモジュール本体15の正極端子A、接続端子E,H,J、負極端子Bに接続する。
また、接続端子A1,E1,B1は、それぞれスイッチ素子24の端子S、接点C、接点Dに接続する。
【0032】
更に、接続端子B1は接続端子L2に、接続端子E1は接続端子K2に接続する。即ち、接続端子B1,E1は電気二重層コンデンサ12の両極板に導通し、この接続端子B1,E1によって電気二重層コンデンサ12の電圧を検出することができる。
【0033】
接続端子H1,J1は、それぞれ接続端子H2,J2に接続し、接続端子H2,J2から、熱電対17の起電力を出力することができ、この起電力に対応した温度を求めることができる。
接続端子G2は、スイッチ素子24へ制御信号を入力するための端子である。
【0034】
スイッチ素子24は、制御用の端子を有する1回路2接点形式の電子スイッチで構成し、図示せぬ制御手段からの制御信号に基づいてノーマル状態(実線表示)では電気二重層コンデンサ16側の接点Cを接続端子A1に接続して、コンデンサ・モジュール10をコンデンサとして利用し、ブレーク状態(破線表示)ではバイパス導体27側の端子Dを接続端子A1に接続してコンデンサ・モジュール10をショートバーとして使用するものである。
【0035】
図5(a),(b)は本発明に係るコンデンサ・モジュールを連結したコンデンサ・アレーを示す説明図であり、(a)は連結状態を示す斜視図、(b)は(a)の連結状態を示す模式図を示す。
(a)において、コンデンサ・アレー1は、複数のコンデンサ・モジュールM1〜M11と、コンデンサ・モジュールM1の正極端子Aに取付けた接続ケーブルC1と、コンデンサ・モジュールM11の負極端子Bに取付けた接続ケーブルC2とを備える。ここに示したコンデンサ・モジュールM1〜M11は、前記コンデンサ・モジュール10と同じものである。
【0036】
これらのコンデンサ・モジュールM1〜M11の連結は、以下の順で行う。
まず、コンデンサ・モジュールM1〜M11のうち、コンデンサ・モジュールM1,M5,M9を長手方向に正・負極端子A,Bの向きを同じにして並べ、この列の側方にコンデンサ・モジュールM3,M7,M11を同じく長手方向に正・負極端子A,Bの向きを同じにしてコンデンサ・モジュールM1の長さの半分だけずらして並べる。なお、コンデンサ・モジュールM1〜M11の上面の縦と横の長さの比は1:2とし、正・負極端子A,Bを、上面を2等分してできる2つの正方形のそれぞれの中央に位置させる。
【0037】
次に、コンデンサ・モジュールM1,M3の上方にコンデンサ・モジュールM2を配置し、コンデンサ・モジュールM1の負極端子Bとコンデンサ・モジュールM2の正極端子A、コンデンサ・モジュールM3の正極端子Aとコンデンサ・モジュールM2の負極端子Bとを図2に示した方法で連結する。
【0038】
同様にして、コンデンサ・モジュールM3,M5にコンデンサ・モジュールM4を連結し、コンデンサ・モジュールM5,M7にコンデンサ・モジュールM6を連結し、コンデンサ・モジュールM7,M9にコンデンサ・モジュールM8を連結し、コンデンサ・モジュールM9,M11にコンデンサ・モジュールM10を連結する。
【0039】
(b)において、(a)の連結方法により、コンデンサ・モジュールM1〜M11は電気的に直列接続となる。
これによって、コンデンサ・アレー1の(a)に示した接続ケーブルC1,C2から大きな電圧を取出すことができる。
【0040】
図6(a),(b)は本発明に係るコンデンサ・モジュールを連結した別の配列のコンデンサ・アレーを示す説明図であり、(a)は連結状態を示す斜視図、(b)は(a)の連結状態を示す模式図を示す。
(a)において、コンデンサ・アレー1Aは、複数のコンデンサ・モジュールM1〜M12と、コンデンサ・モジュールM1,M7の正極端子A,Aに取付けた接続ケーブルC1と、コンデンサ・モジュールM6,M12の負極端子B,Bに取付けた接続ケーブルC2とを備える。
【0041】
これらのコンデンサ・モジュールM1〜M12の連結は、以下の順で行う。
まず、コンデンサ・モジュールM1〜M12のうち、コンデンサ・モジュールM1,M3,M5を長手方向に正・負極端子A,Bの向きを同じにして並べ、この列の側方にコンデンサ・モジュールM8,M10,M12を同じく長手方向に正・負極端子A,Bの向きを同じにして並べる。なお、コンデンサ・モジュールM1〜M12の上面の縦と横の長さの比は1:2とし、正・負極端子A,Bを、上面を2等分してできる2つの正方形のそれぞれの中央に位置させる。
【0042】
次に、コンデンサ・モジュールM1,M8の上方にコンデンサ・モジュールM7を配置し、コンデンサ・モジュールM1の正極端子Aとコンデンサ・モジュールM7の正極端子A、コンデンサ・モジュールM8の正極端子Aとコンデンサ・モジュールM7の負極端子Bを図2に示した方法で連結する。
【0043】
この後、コンデンサ・モジュールM1,M3の上方にコンデンサ・モジュールM2を配置し、コンデンサ・モジュールM1の負極端子Bとコンデンサ・モジュールM2の正極端子A、コンデンサ・モジュールM3の正極端子Aとコンデンサ・モジュールM2の負極端子Bを図2で示した方法で連結する。
同様にして、コンデンサ・モジュールM8,M10の上方にコンデンサ・モジュールM9を配置し、コンデンサ・モジュールM8,M10にコンデンサ・モジュールM9を連結する。
【0044】
更に、コンデンサ・モジュールM3,M5の上方にコンデンサ・モジュールM4を配置し、コンデンサ・モジュールM3,M5にコンデンサ・モジュールM4を連結し、コンデンサ・モジュールM10,M12の上方にコンデンサ・モジュール11を配置し、コンデンサ・モジュールM10,M12にコンデンサ・モジュールM11を連結し、コンデンサ・モジュールM5,M12の上方にコンデンサ・モジュールM16を配置し、コンデンサ・モジュールM5,M12にコンデンサ・モジュールM16を連結する。
【0045】
(b)において、(a)の連結方法により、コンデンサ・モジュールM1〜M12は、電気的に6つの直列接続を2組並列接続する。
これによって、コンデンサ・アレー1の(a)に示した接続ケーブルC1,C2から大きな電圧及び電流を取出すことができる。
また、一方のコンデンサ・モジュールに他方のコンデンサ・モジュールを逆さまにして連結し、各電極端子A,Bをコンデンサ・アレー1の内側に配置することにより、各電極端子A,Bが外部に露出せず、安全性を向上させることができる。
【0046】
図7は本発明に係る電極端子の別の連結機構を示す断面図であり、下側のコンデンサ・モジュール10の正極端子Aは左めねじ10cを有し、上側のコンデンサ・モジュール10Nの負極端子Bは右めねじ10dを有する。
連結部材30は、左おねじ31aを有する第1のねじ部材31と、右おねじ32aを有する第2のねじ部材32とからなる。
【0047】
第1のねじ部材31は、左おねじ31aと、この左おねじ31aに続く小径部31bと、この小径部31bに続く大径部31cと、上記小径部31bから大径部31cに至る円環面31dと、この円環面31dに係止する係止部31eを有し、且つ小径部31bに回転可能な右めねじ31fとからなる。
第2のねじ部材32は、右おねじ32aと、この右おねじ32aに続く小径部32bと、この小径部32bに続く大径右おねじ32cとからなる。
【0048】
図8(a)〜(c)は本発明に係る電極端子の別の連結機構の連結要領図であり、(a)は一方のコンデンサ・モジュールの電極端子の状態、(b)は他方のコンデンサ・モジュールの電極端子の状態、(c)は2つの電極端子の連結中の状態を示す。
まず、(a)において、一方のコンデンサ・モジュール10の正極端子Aの左めねじ10cに回路基板20を介して第1のねじ部材31の左おねじ31aをねじ込むことにより、正極端子Aに第1のねじ部材31を取付ける。この時、左おねじ31aのねじ込みは、第1のねじ部材31の端面に形成した六角穴31gに六角レンチを差込み回転させて行う。
【0049】
次に、(b)において、他方のコンデンサ・モジュール10Nの負極端子Bの右めねじ10dに回路基板20Nを介して第2のねじ部材32の右おねじ32aをねじ込むことにより、負極端子Bに第2のねじ部材32を取付ける。この時、右おねじ32aのねじ込みは、第2のねじ部材32の端面に形成した六角穴32dに六角レンチを差込み回転させて行う。
【0050】
この後、(c)において、上方のコンデンサ・モジュール10Nの負極端子Bの部分をコンデンサ・モジュール10の正極端子Aの上方に持っていき、第1のねじ部材31の軸芯と第2のねじ部材32の軸芯とが合うようにして第1のねじ部材31に第2のねじ部材32を当接させる。
【0051】
そして、第1のねじ部材31の右めねじ31fを上方に移動させ、第2のねじ部材32の大径おねじ32cに螺合する。
コンデンサ・モジュール10の負極端子Bについても同様に行う。
これで、電極端子の連結作業は完了である。
【0052】
このように、連結部材30を用いることによって、連結部材30を二つのねじ部材31,32にしたことで、それぞれのねじ部材31,32を予め正・負極端子A,Bに取付けることができ、且つ連結作業は二つのねじ部材31,32を螺合するだけで行うことができるので、コンデンサ・モジュール10,10N同士の電気的、且つ機械的連結が容易となり、また、コンデンサ・モジュール10,10Nの交換が楽になる。更に、正・負電極端子A,Bを連結部材30で強固に締結するので、正・負極端子A,Bと連結部材30との接触抵抗を小さくすることができる。
【0053】
また、図7に示したように、コンデンサ・モジュール10の正極端子Aに左めねじ10c、コンデンサ・モジュール10Nの負極端子Bに右めねじ10d、第1のねじ部材31に右めねじ31fを形成したことで、図8(c)に示した右めねじ31fを大径おねじ32cに螺合するときに、第1のねじ部材31及び第2のねじ部材32が両方とも締め込まれる方向に回転力が作用し、都合がよい。
【0054】
この実施の形態では、コンデンサ・モジュール10の正極端子Aに左めねじ10c、コンデンサ・モジュール10Nの負極端子Bに右めねじ10dを形成したが、この限りではなく、例えば、図7に示したコンデンサ・モジュール10の正極端子Aにも負極端子Bと同様に右めねじを形成し、この右めねじにねじ込む第1のねじ部材31に右おねじを形成してもよい。
【0055】
このような構成で第2のねじ部材32の大径右おねじ32cに第1のねじ部材31の右めねじ31fを螺合する場合に、第1のねじ部材31の小径部31bに六角部を形成し、この六角部にスパナを当てれば、電極端子Aにねじ込んだ第1のねじ部材31が回転せず、弛む心配がない。
【0056】
このように、正・負極端子A,Bの両方に右めねじ(又は左めねじ)を形成すれば、加工コストを抑えることができる。
ここで、第1のねじ部材31と第2のねじ部材32との当接面に位置合わせ機構を設ければ、連結する正・負極端子A,Bの芯だしを容易に行うことができる。
【0057】
尚、本発明の熱電対17は、これに限るものではなく、白金線等の測温抵抗体でもよい。
また、本発明の正・負極端子A,Bにめねじを形成したが、おねじを形成し、このおねじに螺合するめねじを連結ねじ11や連結部材30に形成してもよい。
【0058】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1のコンデンサは、正極と負極との一方に右めねじ、他方に左めねじを開けたので、正極と負極とに異なるめねじが形成されるため、正極と負極とを識別することができ、連結するときに誤組付けすることがない。
【0059】
請求項2のコンデンサの連結機構は、一方のコンデンサの電極端子に右めねじ、他方のコンデンサの電極端子に左めねじを形成し、一端に右おねじ、他端に左おねじを切った連結ねじを右・左めねじにねじ込み、この連結ねじを回転させることによりコンデンサ同士を連結するので、コンデンサ同士の電気的、且つ機械的連結が容易となり、また、コンデンサの交換が楽になる。更に、電極を連結ねじで強固に締結するので、電極と連結ねじとの接触抵抗を小さくすることができる。
【0060】
請求項3のコンデンサの連結機構は、連結する二つのコンデンサのそれぞれの電極端子にめねじを形成し、螺合可能な二つのねじ部材からなる連結部材のそれぞれにおねじを形成し、これらおねじをめねじにそれぞれねじ込み、二つのねじ部材同士を螺合させることによりコンデンサ同士を連結するので、連結部材を二つのねじ部材にしたことで、それぞれのねじ部材を予め電極端子に取付けることができ、且つ連結作業は二つのねじ部材同士を螺合するだけで行うことができるので、コンデンサ同士の電気的、且つ機械的連結が容易となり、また、コンデンサの交換が楽になる。更に、電極を連結部材で強固に締結するので、電極と連結部材との接触抵抗を小さくすることができる。
【0061】
請求項4のコンデンサの連結方法は、電極端子に右めねじを形成した一方のコンデンサと、電極端子に左めねじを形成した他方のコンデンサと、一端に右おねじ、他端に左おねじを切った連結ねじとを準備する工程と、一方のコンデンサの電極端子に他方のコンデンサの電極端子を連結ねじを介して向い合せて当接させる工程と、連結ねじを回転させ右・左おねじを右・左めねじにねじ込んでコンデンサ同士を連結する工程とからなるので、コンデンサ同士の電気的、且つ機械的連結が容易となり、また、コンデンサの交換が楽になる。更に、電極を連結ねじで強固に締結するので、電極と連結ねじとの接触抵抗を小さくすることができる。
【図面の簡単な説明】
【図1】本発明に係るコンデンサの連結機構を示す分解斜視図
【図2】本発明に係る電極端子の連結機構を示す断面図
【図3】本発明に係る回路基板の平面図
【図4】本発明に係るコンデンサ・モジュールの電気回路の説明図
【図5】本発明に係るコンデンサ・モジュールを連結したコンデンサ・アレーを示す説明図
【図6】本発明に係るコンデンサ・モジュールを連結した別の配列のコンデンサ・アレーを示す説明図
【図7】本発明に係る電極端子の別の連結機構を示す断面図
【図8】本発明に係る電極端子の別の連結機構の連結要領図
【符号の説明】
1,1A…コンデンサ・アレー、10,10N…コンデンサ・モジュール、10a,10d…右めねじ、10b,10c…左めねじ、11,11P,11Q…連結ねじ、30…連結部材、31,32…ねじ部材(第1のねじ部材、第2のねじ部材)、11b,32a…右おねじ、11c,31a…左おねじ、A,B…電極端子(正極、負極)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacitor, a capacitor coupling mechanism, and a coupling method thereof.
[0002]
[Prior art]
As an electric double layer capacitor, Japanese Patent Laid-Open No. 5-315190, “Chip-type Electric Double Layer Capacitor” is known.
The technology of the above publication provides a chip-type electric double layer capacitor that is small in size, has a small equivalent series resistance, can be automatically mounted on a printed circuit board, and has good mounting stability. A conductive separator 10 for connecting the elements 9, an element laminate 9 a in which the conductive separators 10 are vertically integrated, and an insulating resin 1 for covering the element laminate 9 a by molding are disclosed. .
[0003]
[Problems to be solved by the invention]
In the above technique, since the element laminate 9a is molded, for example, when one element becomes defective, the entire electric double layer capacitor has to be replaced.
SUMMARY OF THE INVENTION An object of the present invention is to provide a capacitor, a coupling mechanism for a capacitor, and a coupling method for facilitating electrical connection and easy replacement.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, according to claim 1 of the present invention, a right female screw is opened on one of the positive electrode and the negative electrode, and a left female screw is opened on the other.
Since different internal threads are formed on the positive electrode and the negative electrode, the positive electrode and the negative electrode can be distinguished from each other and are not erroneously assembled when connected.
[0005]
According to the second aspect of the present invention, a right female screw is formed on the electrode terminal of one capacitor, a left female screw is formed on the electrode terminal of the other capacitor, and a connecting screw having a right male screw at one end and a left male screw at the other end is connected to the right The capacitors are connected to each other by screwing into the left female screw and rotating the connecting screw.
[0006]
The electrical and mechanical connection between the capacitors becomes easy, and the replacement of the capacitors becomes easy. Furthermore, since the electrode is firmly fastened with the connecting screw, the contact resistance between the electrode and the connecting screw can be reduced.
[0007]
According to a third aspect of the present invention, a female screw is formed on each electrode terminal of two capacitors to be connected, a screw is formed on each of the connecting members composed of two screw members that can be screwed together, and these male screws are used as female screws. Capacitors are connected by screwing in and screwing together two screw members.
[0008]
Since the connecting member is made of two screw members, each screw member can be attached to the electrode terminal in advance, and the connecting operation can be performed only by screwing the two screw members together. Electrical and mechanical connection is facilitated, and capacitor replacement is facilitated. Furthermore, since the electrode is firmly fastened by the connecting member, the contact resistance between the electrode and the connecting member can be reduced.
[0009]
Claim 4 is one capacitor having a right female thread formed on an electrode terminal, the other capacitor having a left female thread formed on an electrode terminal, a connecting screw having a right male thread at one end and a left male thread at the other end. And a step of bringing the electrode terminal of the other capacitor into contact with the electrode terminal of one capacitor via a connecting screw, and rotating the connecting screw to rotate the right and left male screws to the right and left. And a step of connecting capacitors by screwing them into a screw.
[0010]
The electrical and mechanical connection between the capacitors becomes easy, and the replacement of the capacitors becomes easy. Furthermore, since the electrode is firmly fastened with the connecting screw, the contact resistance between the electrode and the connecting screw can be reduced.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is an exploded perspective view showing a capacitor coupling mechanism according to the present invention. As a capacitor, a capacitor module incorporating an electric double layer capacitor used in an electric vehicle is shown.
[0012]
The capacitor module 10 includes a positive electrode terminal A, a negative electrode terminal B, a connection terminal E, and a connector M with a cable having connection terminals H and J (see FIG. 3) on an upper surface of a rectangular parallelepiped. Each terminal will be described in detail later.
[0013]
The connection between the positive terminal A of the capacitor module 10 shown in the lower side of the figure and the negative terminal B of the inverted capacitor module 10N shown in the upper side of the figure is made by connecting the nuts 12 and 12 and the circuit board 20, Through 20N. The capacitor module 10N and the circuit board 20N are the same as the capacitor module 10 and the circuit board 20, respectively, but the reference numerals are changed for convenience of explanation.
[0014]
The bolts 13 and 13 are intended to establish electrical continuity between the connection terminals E and E of the capacitor modules 10 and 10N and the circuit boards 20 and 20N, respectively.
The negative electrode terminal B of the capacitor module 10 and the positive electrode terminal of the capacitor module (not shown) are connected to each other through a nut 12P and a circuit board 20 on a connecting bolt 11P.
The positive terminal A of the capacitor module 10N and the negative terminal of another capacitor module (not shown) are connected to the connecting bolt 11Q via the nut 12Q and the circuit board 20N.
[0015]
FIG. 2 is a cross-sectional view showing the electrode terminal coupling mechanism according to the present invention. The positive terminal A of the lower capacitor module 10 has a right female screw 10a, and the negative terminal B of the upper capacitor module 10N is It has a left female screw 10b.
The connecting screw 11 has a hexagonal portion 11a provided at the center, and a right male screw 11b and a left male screw 11c formed on both sides of the hexagonal portion 11a.
[0016]
The connection between the positive terminal A of the lower capacitor module 10 and the negative terminal B of the upper capacitor module 10N is performed in the following order.
First, the capacitor modules 10 and 10N and the connecting bolt 11 are prepared.
Nuts 12 and 12 are screwed into the connecting bolt 11 in advance on the back side of the right male screw 11b and the left male screw 11c.
[0017]
Next, the circuit board 20 is placed on the positive terminal A of the capacitor module 10, and the mounting hole 21 of the circuit board 20 is fitted to the right female screw 10 a of the positive terminal A.
In this state, the right male screw 11b of the connecting screw 11 is inserted into the hole 21 and applied to the opening of the right female screw 10a.
[0018]
Thereafter, the mounting hole 23 for mounting the circuit board 20N is fitted into the left male screw 11c of the connecting screw 11, and the left female screw 10b opening of the negative terminal B of the capacitor module 10N is attached to the tip of the left male screw 11c of the connecting screw 11. Hit.
Then, a wrench is applied to the hexagonal portion 11a of the connection screw 11 and the connection screw 11 is rotated, so that the right external thread 11b of the connection screw 11 is applied to the right internal thread 10a of the positive terminal A and the left internal thread 10b of the negative terminal B. The left male screw 11c of the connecting screw 11 is screwed.
Then, the nuts 12 and 12 are tightened to fix the circuit boards 20 and 20N.
[0019]
The same applies to the negative terminal B of the capacitor module 10. If the connecting screw 11 is rotated at the same angle at the same time on the positive and negative terminals A and B of the capacitor module 10, the screwing amount of both connecting screws 11 becomes the same, and both connecting screws 11 are forced. And the capacitor module 10N does not tilt.
[0020]
The positive terminal A of the capacitor module 10 and the negative terminal B of the capacitor module 10N may be connected by the following method.
The nuts 12 and 12 are previously screwed into the back side of the right male screw 11b and the left male screw 11c of the connecting bolt 11.
[0021]
Next, the connection screw 11 is rotated with a spanner via the circuit board 20 between the connection screw 11 and the positive electrode terminal A of the capacitor module 10, and the right male screw 11b of the connection screw 11 is turned to the right of the positive electrode terminal A. The connecting screw 11 is self-supported by slightly screwing into the screw 10a.
[0022]
Thereafter, the hole 21 of the circuit board 20N is fitted into the left male screw 11c of the connecting screw 11, and the opening of the left female screw 10b of the negative terminal B of the capacitor module 10N is brought into contact with the tip of the left male screw 11c of the connecting screw 11. Let
[0023]
Thereafter, the connecting screw 11 is rotated with a spanner, and the right male screw 11b of the connecting screw 11 is screwed into the right female screw 10a of the positive terminal A, and the left male screw 11c of the connecting screw 11 is screwed into the left female screw 10b of the negative terminal B. .
Then, the nuts 12 and 12 are tightened to fix the circuit boards 20 and 20N.
The same applies to the negative terminal B of the capacitor module 10.
[0024]
According to this connection method, by making the connection screw 11 self-supporting, the opening of the left female screw 10b of the negative terminal B of the capacitor module 10N can be easily brought into contact with the tip of the left male screw 11c of the connection screw 11. Can be easily performed.
[0025]
As described above, the right female screw 10a is formed on the positive terminal A of one capacitor module 10, the left female screw 10b is formed on the negative terminal B of the other capacitor module 10N, the right male thread 11b is formed on one end, and the other end is formed. The connecting screw 11 with the left male thread 11c cut is screwed into the right and left female screws 10a and 10b, and by rotating the connecting screw 11, the two capacitor modules 10 and 10N can be easily electrically and mechanically. The capacitor modules 10 and 10N can be easily exchanged.
[0026]
Further, the positive and negative terminals A and B can be firmly fastened with the connecting screw 11, and the contact resistance between the positive and negative terminals A and B and the connecting screw 11 can be reduced.
In this embodiment, the right female screw 10a is formed on the positive terminal A, and the left female screw 10b is formed on the negative terminal B. On the contrary, a left female screw is formed on the positive terminal A and a right female screw is formed on the negative terminal B. Also good.
[0027]
3 is a plan view of the circuit board according to the present invention. The circuit board 20 has a positive electrode through the board 20a, a hole 21 through which the connecting screw 11 (see FIG. 1) is inserted, and the nut 12 shown in FIG. A circular connection terminal A1 connected to the terminal A (see FIG. 1), a hole 22 through which the bolt 13 (see FIG. 1) is inserted, and a connection terminal of the capacitor module 10 formed around the hole 22 by the bolt 13 A connection terminal E1 conducting to E, a hole 23 through which the connecting screw 11P (see FIG. 1) is inserted, and a circular connection terminal B1 connected to the negative terminal B (see FIG. 1) via the nut 12P shown in FIG. And a switch element 24, a connector 25 having connection terminals H1 and J1, and a detection terminal 26.
[0028]
The detection terminal 26 has connection terminals G2, K2, H2, J2, and L2.
The connection terminals A1, B1, E1, the switch element 24, the connector 25, and the detection terminal 26 will be described in detail with reference to FIG.
[0029]
FIG. 4 is an explanatory diagram of an electric circuit of the capacitor module according to the present invention. The capacitor module 10 includes a module body 15 and a circuit board 20. The module body 15 includes an electric double layer capacitor 16, a thermocouple 17 that detects the temperature of the electric double layer capacitor 16, the positive terminal A, the negative terminal B, and the connection terminals E, H, and J described above. Consists of.
The connection terminal E and the negative terminal B are connected to the electric double layer capacitor 16.
The connection terminals H and J are connected to the thermocouple 17.
[0030]
The electric double layer capacitor 16 is composed of a capacitor having a large capacity (for example, several farads), and is charged by an external charger (not shown) to store a predetermined amount of electricity (charge amount). Is connected to store the amount of electricity corresponding to the power required to drive a motor such as an electric vehicle.
The thermocouple 17 measures the temperature of the electric double layer capacitor 16 and monitors the temperature rise due to heat generated when the electric double layer capacitor 16 is charged.
[0031]
The circuit board 20 includes a switch element 24, a bypass conductor 27, and connection terminals A1, E1, H1, J1, B1, G2, K2, H2, J2, and L2.
The connection terminals A1, E1, H1, J1, and B1 are connected to the positive terminal A, the connection terminals E, H, J, and the negative terminal B of the module body 15, respectively.
The connection terminals A1, E1, and B1 are connected to the terminal S, the contact C, and the contact D of the switch element 24, respectively.
[0032]
Further, the connection terminal B1 is connected to the connection terminal L2, and the connection terminal E1 is connected to the connection terminal K2. That is, the connection terminals B1 and E1 are electrically connected to the bipolar plates of the electric double layer capacitor 12, and the voltage of the electric double layer capacitor 12 can be detected by the connection terminals B1 and E1.
[0033]
The connection terminals H1 and J1 are connected to the connection terminals H2 and J2, respectively. The electromotive force of the thermocouple 17 can be output from the connection terminals H2 and J2, and the temperature corresponding to the electromotive force can be obtained.
The connection terminal G <b> 2 is a terminal for inputting a control signal to the switch element 24.
[0034]
The switch element 24 is composed of a one-circuit two-contact type electronic switch having a control terminal, and is a contact on the electric double layer capacitor 16 side in a normal state (indicated by a solid line) based on a control signal from a control means (not shown). C is connected to the connection terminal A1, and the capacitor module 10 is used as a capacitor. In a break state (indicated by a broken line), the terminal D on the bypass conductor 27 side is connected to the connection terminal A1 and the capacitor module 10 is used as a short bar. It is what you use.
[0035]
5 (a) and 5 (b) are explanatory views showing a capacitor array in which capacitor modules according to the present invention are connected, (a) is a perspective view showing a connected state, and (b) is a connection of (a). The schematic diagram which shows a state is shown.
In (a), the capacitor array 1 includes a plurality of capacitor modules M1 to M11, a connection cable C1 attached to the positive terminal A of the capacitor module M1, and a connection cable attached to the negative terminal B of the capacitor module M11. C2. The capacitor modules M1 to M11 shown here are the same as the capacitor module 10.
[0036]
These capacitor modules M1 to M11 are connected in the following order.
First, among the capacitor modules M1 to M11, the capacitor modules M1, M5, and M9 are arranged in the longitudinal direction with the positive and negative terminals A and B oriented in the same direction, and the capacitor modules M3 and M7 are arranged on the side of this column. , M11 are similarly arranged in the longitudinal direction so that the positive and negative terminals A and B are in the same direction and are shifted by half the length of the capacitor module M1. Note that the ratio of the vertical and horizontal lengths of the upper surfaces of the capacitor modules M1 to M11 is 1: 2, and the positive and negative terminals A and B are respectively centered in two squares formed by dividing the upper surface into two equal parts. Position.
[0037]
Next, the capacitor module M2 is disposed above the capacitor modules M1 and M3, the negative terminal B of the capacitor module M1, the positive terminal A of the capacitor module M2, and the positive terminal A of the capacitor module M3 and the capacitor module. The negative terminal B of M2 is connected by the method shown in FIG.
[0038]
Similarly, the capacitor module M4 is connected to the capacitor modules M3 and M5, the capacitor module M6 is connected to the capacitor modules M5 and M7, and the capacitor module M8 is connected to the capacitor modules M7 and M9. The capacitor module M10 is connected to the modules M9 and M11.
[0039]
In (b), the capacitor modules M1 to M11 are electrically connected in series by the connection method of (a).
As a result, a large voltage can be extracted from the connection cables C1 and C2 shown in (a) of the capacitor array 1.
[0040]
6A and 6B are explanatory views showing another arrangement of the capacitor array in which the capacitor modules according to the present invention are connected. FIG. 6A is a perspective view showing a connected state, and FIG. The schematic diagram which shows the connection state of a) is shown.
In (a), the capacitor array 1A includes a plurality of capacitor modules M1 to M12, a connection cable C1 attached to the positive terminals A and A of the capacitor modules M1 and M7, and negative terminals of the capacitor modules M6 and M12. And a connection cable C2 attached to B and B.
[0041]
These capacitor modules M1 to M12 are connected in the following order.
First, among the capacitor modules M1 to M12, the capacitor modules M1, M3, and M5 are arranged in the longitudinal direction so that the positive and negative terminals A and B are oriented in the same direction, and the capacitor modules M8 and M10 are arranged on the side of this column. , M12 are similarly arranged in the longitudinal direction with the same orientation of the positive and negative terminals A, B. In addition, the ratio of the vertical and horizontal lengths of the upper surfaces of the capacitor modules M1 to M12 is 1: 2, and the positive and negative terminals A and B are respectively centered in two squares formed by dividing the upper surface into two equal parts. Position.
[0042]
Next, the capacitor module M7 is arranged above the capacitor modules M1 and M8, the positive electrode terminal A of the capacitor module M1, the positive electrode terminal A of the capacitor module M7, the positive electrode terminal A of the capacitor module M8 and the capacitor module. The negative terminal B of M7 is connected by the method shown in FIG.
[0043]
Thereafter, the capacitor module M2 is disposed above the capacitor modules M1 and M3, the negative electrode terminal B of the capacitor module M1, the positive electrode terminal A of the capacitor module M2, and the positive electrode terminal A of the capacitor module M3 and the capacitor module. The negative terminal B of M2 is connected by the method shown in FIG.
Similarly, the capacitor module M9 is disposed above the capacitor modules M8 and M10, and the capacitor module M9 is connected to the capacitor modules M8 and M10.
[0044]
Further, the capacitor module M4 is arranged above the capacitor modules M3 and M5, the capacitor module M4 is connected to the capacitor modules M3 and M5, and the capacitor module 11 is arranged above the capacitor modules M10 and M12. The capacitor module M11 is connected to the capacitor modules M10 and M12, the capacitor module M16 is disposed above the capacitor modules M5 and M12, and the capacitor module M16 is connected to the capacitor modules M5 and M12.
[0045]
In (b), the capacitor modules M1 to M12 electrically connect two sets of six series connections in parallel by the connection method of (a).
Thereby, a large voltage and current can be taken out from the connection cables C1 and C2 shown in (a) of the capacitor array 1.
Further, by connecting the other capacitor module upside down to one capacitor module and arranging the electrode terminals A and B inside the capacitor array 1, the electrode terminals A and B are exposed to the outside. Therefore, safety can be improved.
[0046]
FIG. 7 is a cross-sectional view showing another connection mechanism for electrode terminals according to the present invention. The positive terminal A of the lower capacitor module 10 has a left female screw 10c and the negative terminal of the upper capacitor module 10N. B has a right female thread 10d.
The connecting member 30 includes a first screw member 31 having a left male screw 31a and a second screw member 32 having a right male screw 32a.
[0047]
The first screw member 31 includes a left male screw 31a, a small diameter portion 31b following the left male screw 31a, a large diameter portion 31c following the small diameter portion 31b, and a circle extending from the small diameter portion 31b to the large diameter portion 31c. It has a ring face 31d and a right female screw 31f that has a locking part 31e that locks to the ring face 31d and is rotatable on the small diameter part 31b.
The second screw member 32 includes a right male screw 32a, a small diameter portion 32b following the right male screw 32a, and a large diameter right male screw 32c following the small diameter portion 32b.
[0048]
8A to 8C are connection procedure diagrams of another connection mechanism for electrode terminals according to the present invention, in which FIG. 8A is a state of electrode terminals of one capacitor module, and FIG. The state of the electrode terminals of the module, (c) shows the state during connection of the two electrode terminals.
First, in (a), the left male screw 31a of the first screw member 31 is screwed into the left female screw 10c of the positive electrode terminal A of one capacitor module 10 via the circuit board 20, whereby the positive terminal A is 1 screw member 31 is attached. At this time, the left male screw 31a is screwed by inserting and rotating a hexagon wrench into a hexagon hole 31g formed in the end face of the first screw member 31.
[0049]
Next, in (b), the right external thread 32a of the second screw member 32 is screwed into the right female thread 10d of the negative terminal B of the other capacitor module 10N via the circuit board 20N, thereby The second screw member 32 is attached. At this time, the right male screw 32a is screwed by inserting and rotating a hexagon wrench into a hexagon hole 32d formed on the end face of the second screw member 32.
[0050]
Thereafter, in (c), the portion of the negative electrode terminal B of the upper capacitor module 10N is brought above the positive electrode terminal A of the capacitor module 10, and the shaft core of the first screw member 31 and the second screw The second screw member 32 is brought into contact with the first screw member 31 so that the axis of the member 32 is aligned.
[0051]
Then, the right female screw 31 f of the first screw member 31 is moved upward and screwed into the large-diameter male screw 32 c of the second screw member 32.
The same applies to the negative terminal B of the capacitor module 10.
This completes the connecting operation of the electrode terminals.
[0052]
Thus, by using the connecting member 30, the connecting member 30 is made into two screw members 31, 32, so that the respective screw members 31, 32 can be attached to the positive and negative terminals A, B in advance, In addition, since the connecting operation can be performed simply by screwing the two screw members 31 and 32, the electrical and mechanical connection between the capacitor modules 10 and 10N becomes easy, and the capacitor modules 10 and 10N are facilitated. The exchange becomes easy. Further, since the positive / negative electrode terminals A and B are firmly fastened by the connecting member 30, the contact resistance between the positive / negative electrode terminals A and B and the connecting member 30 can be reduced.
[0053]
Further, as shown in FIG. 7, the left female screw 10 c is connected to the positive terminal A of the capacitor module 10, the right female screw 10 d is connected to the negative terminal B of the capacitor module 10 N, and the right female screw 31 f is connected to the first screw member 31. Since the right female screw 31f shown in FIG. 8C is screwed to the large-diameter male screw 32c, the first screw member 31 and the second screw member 32 are both tightened. Rotational force acts on and is convenient.
[0054]
In this embodiment, the left female screw 10c is formed on the positive terminal A of the capacitor module 10 and the right female screw 10d is formed on the negative terminal B of the capacitor module 10N. However, the present invention is not limited thereto. Similarly to the negative terminal B, a right female thread may be formed on the positive terminal A of the capacitor module 10, and a right male thread may be formed on the first screw member 31 screwed into the right female thread.
[0055]
In such a configuration, when the right female screw 31f of the first screw member 31 is screwed into the large-diameter right male screw 32c of the second screw member 32, a hexagonal portion is formed on the small-diameter portion 31b of the first screw member 31. If a wrench is applied to the hexagonal portion, the first screw member 31 screwed into the electrode terminal A does not rotate and there is no fear of loosening.
[0056]
Thus, if the right female screw (or the left female screw) is formed on both the positive and negative terminals A and B, the processing cost can be reduced.
Here, if a positioning mechanism is provided on the contact surface between the first screw member 31 and the second screw member 32, the positive and negative terminals A and B to be connected can be easily centered.
[0057]
The thermocouple 17 of the present invention is not limited to this, and may be a resistance temperature detector such as a platinum wire.
Moreover, although the internal thread was formed in the positive / negative electrode terminals A and B of this invention, you may form a external thread in the connection screw 11 and the connection member 30 by forming this external thread.
[0058]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
Since the capacitor of claim 1 has a right female screw on one of the positive electrode and the negative electrode and a left female screw on the other, a different female screw is formed on the positive electrode and the negative electrode, so that the positive electrode and the negative electrode are identified. Can be assembled, and there is no wrong assembly when connecting.
[0059]
In the capacitor coupling mechanism according to claim 2, a right female screw is formed on the electrode terminal of one capacitor, a left female screw is formed on the electrode terminal of the other capacitor, a right male screw is cut at one end, and a left male screw is cut at the other end. Capacitors are connected by screwing the connecting screws into the right and left female screws and rotating the connecting screws. Therefore, electrical and mechanical connections between the capacitors are facilitated, and replacement of the capacitors is facilitated. Furthermore, since the electrode is firmly fastened with the connecting screw, the contact resistance between the electrode and the connecting screw can be reduced.
[0060]
According to a third aspect of the present invention, there is provided a capacitor connecting mechanism in which a female screw is formed on each electrode terminal of two capacitors to be connected, and a screw is formed on each of the connecting members including two screw members that can be screwed together. Since the capacitors are connected by screwing the screws into the female screws and screwing the two screw members together, it is possible to attach each screw member to the electrode terminal in advance by making the connecting members two screw members. In addition, since the connecting operation can be performed only by screwing the two screw members together, the electrical and mechanical connection between the capacitors becomes easy, and the replacement of the capacitors becomes easy. Furthermore, since the electrode is firmly fastened by the connecting member, the contact resistance between the electrode and the connecting member can be reduced.
[0061]
According to a fourth aspect of the present invention, there is provided a capacitor connecting method comprising: one capacitor having a right female screw formed on an electrode terminal; the other capacitor having a left female screw formed on an electrode terminal; a right male screw at one end; A connecting screw cut off, a step of bringing the electrode terminal of the other capacitor into contact with the electrode terminal of one capacitor through the connecting screw, and a right and left male screw by rotating the connecting screw Are connected to the capacitors by screwing them into the right and left female screws, so that the electrical and mechanical connection between the capacitors becomes easy, and the replacement of the capacitors becomes easy. Furthermore, since the electrode is firmly fastened with the connecting screw, the contact resistance between the electrode and the connecting screw can be reduced.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a capacitor coupling mechanism according to the present invention.
FIG. 2 is a cross-sectional view showing an electrode terminal coupling mechanism according to the present invention.
FIG. 3 is a plan view of a circuit board according to the present invention.
FIG. 4 is an explanatory diagram of an electric circuit of a capacitor module according to the present invention.
FIG. 5 is an explanatory diagram showing a capacitor array in which capacitor modules according to the present invention are connected.
FIG. 6 is an explanatory diagram showing another array of capacitor arrays in which capacitor modules according to the present invention are connected.
FIG. 7 is a cross-sectional view showing another connection mechanism for electrode terminals according to the present invention.
FIG. 8 is a connection diagram of another connection mechanism for electrode terminals according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,1A ... Capacitor array, 10, 10N ... Capacitor module, 10a, 10d ... Right female screw, 10b, 10c ... Left female screw, 11, 11P, 11Q ... Connection screw, 30 ... Connection member, 31, 32 ... Screw members (first screw member, second screw member), 11b, 32a ... right male screw, 11c, 31a ... left male screw, A, B ... electrode terminals (positive electrode, negative electrode).

Claims (4)

正極と負極とを備えたコンデンサにおいて、前記正極と負極との一方に右めねじ、他方に左めねじを開けたことを特徴とするコンデンサ。A capacitor comprising a positive electrode and a negative electrode, wherein a right female screw is opened on one of the positive electrode and the negative electrode, and a left female screw is opened on the other. 複数のコンデンサを直列又は並列に接続するコンデンサの連結機構において、一方のコンデンサの電極端子に右めねじ、他方のコンデンサの電極端子に左めねじを形成し、一端に右おねじ、他端に左おねじを切った連結ねじを前記右・左めねじにねじ込み、この連結ねじを回転させることによりコンデンサ同士を連結することを特徴としたコンデンサの連結機構。In a capacitor coupling mechanism that connects multiple capacitors in series or in parallel, a right female screw is formed on the electrode terminal of one capacitor, a left female screw is formed on the electrode terminal of the other capacitor, a right female screw is formed on one end, and A capacitor coupling mechanism characterized in that a capacitor screw is coupled by screwing a coupling screw having a left male thread into the right and left female screws and rotating the coupling screw. 複数のコンデンサを直列又は並列に接続するコンデンサの連結機構において、連結する二つのコンデンサのそれぞれの電極端子にめねじを形成し、螺合可能な二つのねじ部材からなる連結部材のそれぞれにおねじを形成し、これらおねじを前記めねじにそれぞれねじ込み、二つのねじ部材同士を螺合させることによりコンデンサ同士を連結することを特徴としたコンデンサの連結機構。In a capacitor coupling mechanism in which a plurality of capacitors are connected in series or in parallel, a female thread is formed on each electrode terminal of the two capacitors to be coupled, and each of the coupling members including two screw members that can be screwed together is screwed. The capacitor coupling mechanism is characterized in that the capacitors are coupled by screwing these male screws into the female threads and screwing the two screw members together. 複数のコンデンサを直列又は並列に接続するコンデンサの連結方法において、電極端子に右めねじを形成した一方のコンデンサと、電極端子に左めねじを形成した他方のコンデンサと、一端に右おねじ、他端に左おねじを切った連結ねじとを準備する工程と、前記一方のコンデンサの前記電極端子に前記他方のコンデンサの電極端子を前記連結ねじを介して向い合せて当接させる工程と、連結ねじを回転させ前記右・左おねじを前記右・左めねじにねじ込んでコンデンサ同士を連結する工程とからなることを特徴とするコンデンサの連結方法。In a capacitor coupling method in which a plurality of capacitors are connected in series or in parallel, one capacitor having a right female thread formed on the electrode terminal, the other capacitor having a left female thread formed on the electrode terminal, a right male thread on one end, Preparing a connecting screw having a left male thread at the other end, contacting the electrode terminal of the other capacitor with the electrode terminal of the one capacitor through the connecting screw, and A method of connecting capacitors, comprising: rotating a connecting screw and screwing the right and left male screws into the right and left female screws to connect the capacitors together.
JP23451996A 1996-09-04 1996-09-04 Capacitor, capacitor coupling mechanism and coupling method thereof Expired - Fee Related JP3644560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23451996A JP3644560B2 (en) 1996-09-04 1996-09-04 Capacitor, capacitor coupling mechanism and coupling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23451996A JP3644560B2 (en) 1996-09-04 1996-09-04 Capacitor, capacitor coupling mechanism and coupling method thereof

Publications (2)

Publication Number Publication Date
JPH1079322A JPH1079322A (en) 1998-03-24
JP3644560B2 true JP3644560B2 (en) 2005-04-27

Family

ID=16972302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23451996A Expired - Fee Related JP3644560B2 (en) 1996-09-04 1996-09-04 Capacitor, capacitor coupling mechanism and coupling method thereof

Country Status (1)

Country Link
JP (1) JP3644560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10607791B2 (en) * 2015-01-21 2020-03-31 Ls Mtron Ltd. Energy storage device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632353B2 (en) * 2005-03-08 2011-02-16 エルナー株式会社 Storage element connection structure and storage element module
JP2009193985A (en) * 2008-02-12 2009-08-27 Nichicon Corp Screw terminal type electronic part and its fixing structure
JP5458908B2 (en) * 2010-01-27 2014-04-02 トヨタ自動車株式会社 Power storage unit
JP6488832B2 (en) * 2015-04-02 2019-03-27 株式会社豊田自動織機 Power storage device
CN106783224A (en) * 2016-11-16 2017-05-31 江苏楚汉新能源科技有限公司 A kind of multi pole ears ultracapacitor and lug localization method
CN107705983B (en) * 2017-09-30 2019-03-01 铜陵兴怡金属材料有限公司 A kind of capacitor pluggable connection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10607791B2 (en) * 2015-01-21 2020-03-31 Ls Mtron Ltd. Energy storage device

Also Published As

Publication number Publication date
JPH1079322A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
US9653232B2 (en) Electrical rotary switch with closing elements at stationary contact locations inhibiting spark discharge and/or with a locking spring member
US6656632B2 (en) Cell module structure
US6641942B1 (en) Solid-state energy storage module employing integrated interconnect board
US4769557A (en) Modular electric load controller
JP2002008627A (en) Cell module structure
KR20040101555A (en) Capacitor module and capacitor battery comprising the same
JP3644560B2 (en) Capacitor, capacitor coupling mechanism and coupling method thereof
CN1098563A (en) Be used to connect the structure of the electrode of motor component and motor driver parts
JP2013225457A (en) Attachment structure of flexible printed wiring board
AU2021200028A1 (en) Stacking power supply cabinet
JP4425369B2 (en) Battery power supply
US5296314A (en) Contact terminal arrangement in a storage battery
JP5244356B2 (en) Independent partition type power battery set
KR101970754B1 (en) Battery cell assembly
JP5042480B2 (en) Power supply external connection terminal structure
JP2018517264A (en) A battery cell in which the first terminal is disposed inside the second terminal
EP0940309B1 (en) Battery comprising a electrically controlled switch means
JP6769406B2 (en) Connecting member
JP2002374011A (en) Electrical interconnection assembly
KR101613496B1 (en) Uninterruptible power supply module unit
CN104681757A (en) Battery frame structure of assembled battery
CN217361487U (en) Bar fuse type tube socket
JP3850923B2 (en) Capacitor
CN112074079B (en) Motor controller circuit board and motor controller
CN218938326U (en) Shorting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees