JP3644120B2 - Embedded object position detection device - Google Patents

Embedded object position detection device Download PDF

Info

Publication number
JP3644120B2
JP3644120B2 JP7069596A JP7069596A JP3644120B2 JP 3644120 B2 JP3644120 B2 JP 3644120B2 JP 7069596 A JP7069596 A JP 7069596A JP 7069596 A JP7069596 A JP 7069596A JP 3644120 B2 JP3644120 B2 JP 3644120B2
Authority
JP
Japan
Prior art keywords
sensitivity
magnetic
detected
embedded object
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7069596A
Other languages
Japanese (ja)
Other versions
JPH09257406A (en
Inventor
敏治 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7069596A priority Critical patent/JP3644120B2/en
Publication of JPH09257406A publication Critical patent/JPH09257406A/en
Application granted granted Critical
Publication of JP3644120B2 publication Critical patent/JP3644120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は壁裏などに位置する埋設物、特に家屋の建築時に壁材で隠されてしまったコンセントボックスやスイッチボックスといった埋設物を壁表面から非破壊的に検出する埋設物の位置検出装置に関するものである。
【0002】
【従来の技術】
家屋の建築時には、予めコンセントボックスやスイッチボックスといった埋設物を壁に埋め込んだ後、内装用の壁材を貼るために、埋設物はいったん壁材の背後に隠されてしまう。このために埋設物の利用にあたっては上記埋設物の位置を検出して壁材に孔を明けて埋設物を露出させなくてはならないのであるが、この埋設物の位置検出に磁気を利用したものが提供されている。つまり埋設物に予め永久磁石を装着しておき、この永久磁石の磁気を壁材の表面から検出することで埋設物の位置を検出するのである。
【0003】
【発明が解決しようとする課題】
ここにおいて、磁気の検出感度は高くしておく方が埋設物(永久磁石)が離れたところにあっても埋設物を検出することができるが、この場合、埋設物の近くに位置検出装置を位置させた時、感度オーバーで正確な位置検出が困難となる。逆に感度を下げておくと、埋設物が離れている時にどこに埋設物があるかを検出することができなくなる。
【0004】
このために従来においても感度調整を使用者がボリュームを操作することで調整することができるようにしていたが、操作が煩雑であるとともに繰り返して調整しなくてはならず、精度の高い位置検出に手間がかかるものとなっていた。
本発明はこのような点に鑑み為されたものであり、その目的とするところは精度の高い位置検出を迅速に行うことができる埋設物の位置検出装置を提供するにある。
【0005】
【課題を解決するための手段】
しかして本発明は、壁材等の隠蔽物で覆われた埋設物の位置を埋設物に設けた永久磁石の磁気を検出する磁気センサーの出力から求める埋設物の位置検出装置であって、磁気センサーで検出される磁気レベルが高い時に感度を低く且つ検出される磁気レベルが低い時に感度を高くする感度自動切換用の感度切換手段を備えていることに特徴を有している。検出される磁気レベルに応じて感度が自動的に切り換えられるようにしたものである。
【0006】
この場合の感度切換手段は、磁気センサー出力に基づく位置判定の閾値範囲を変更するものであっても、磁気センサー出力の増幅回路の増幅率を変更するものであってもよい。
【0007】
【発明の実施の形態】
この埋設物位置検出装置は、図2に示すように、埋設物3に予め装着しておいた永久磁石4の磁気を壁材5の表面から検出することで埋設物3の位置を検出するものであり、左右一対の磁気センサー1a,1bと上下一対の磁気センサー1c,1dとを備えるとともに検出装置の表面には表示手段、図示のものでは上下左右4個とこれら4個の中心点に配された1個の総計5個の発光表示素子2a,2b,2c,2d,2eを設けてある。なお、左右一対の磁気センサー1a,1bを結ぶ線と上下一対の磁気センサー1c,1dを結ぶ線とが交わる中心点からの磁気センサー1a,1bまでの距離を等しくしてあり、上記中心点から磁気センサー1c,1dまでの距離も等しくしてある。
【0008】
壁材5の背後にある永久磁石4の磁気分布MFは図3に示すようになるが、対の磁気センサー1a,1bまたは磁気センサー1c,1dが検出する磁力値Ma,Mbが等しければ、対の磁気センサー1a,1bまたは1c,1dの中間点の背後に永久磁石4が存在することがわかる。また上記磁力値Ma,Mbが異なっておれば、高い磁力値を検出した磁気センサー側に検出装置を動かすことで、対の磁気センサー1a,1bまたは1c,1dの中間点を永久磁石4の直上に位置させることができる。
【0009】
このために上記中心点が永久磁石4の直上にあって対の磁気センサー1a,1bが検出する磁力値Ma,Mbが等しく、しかも対の磁気センサー1c,1dが検出する磁力値Ma,Mbが等しければ、中央の発光表示素子2eを点灯させ、上記中心点が永久磁石4の直上にない時には上記検出磁力値Ma,Mbの差に応じて4つの発光表示素子2a,2b,2c,2dのうちの1つもしくは2つを点灯させてどちらの方向に検出装置を動かせばその中心点を永久磁石4の直上に位置させることができるかを表示するようになっている。永久磁石4に対して上下にずれている時には発光表示素子2c,2dのうちの一方を、左右にずれている時には発光表示素子2a,2bのうちの一方を点灯させ、上下及び左右にずれている時には、発光表示素子2a,2bのうちの一方と発光表示素子2c,2dのうちの一方とを同時に点灯させることで、移動方向を斜め方向とすればよいことを表示する。
【0010】
図4にブロック回路図を示す。各磁気センサー1a,1b,1c,1dには夫々初段増幅器6a,6b,6c,6dが接続され、初段増幅器6a,6b,6c,6dの各出力は夫々自動オフセット調整回路7a,7b,7c,7dに接続されている。そして対の磁気センサー1a,1bについての自動オフセット調整回路7a,7bの出力が差動増幅器8aを介してマイクロコンピュータからなる制御回路9に入力されているとともに、対の磁気センサー1c,1dについての自動オフセット調整回路7c,7dの出力が差動増幅器8bを介して制御回路9に入力されている。上記の検出磁力値Ma,Mbの差に応じた永久磁石4の位置表示は、対の磁気センサー1a,1bの出力の差動増幅器8aによる比較出力と、対の磁気センサー1c,1dの出力の差動増幅器8bによる比較出力とによって行っているものであり、これら比較出力がゼロもしくは所定の範囲内に収まっておれば中心点の直下に永久磁石4があると判断して発光表示素子2eを点灯させ、プラスあるいはマイナスであれば上下もしくは左右にずれていると判断して前記アルゴリズムで移動方向を発光表示素子2a,2b,2c,2dを点灯させることで表示する。
【0011】
また制御回路9は初段増幅器6a,6b,6c,6dの出力を直接取り込むことによって、その絶対値から永久磁石4までの距離を判別しており、差動増幅器8a,8bから夫々入力値が等しい旨の出力が出ている場合でも上記絶対値が小さい場合には永久磁石4までの距離が遠くて位置判定不能であると判断して、この場合は発光表示素子2a,2b,2c,2d,2eは点灯させない。
【0012】
自動オフセット調整回路7a,7b,7c,7dは、各磁気センサー1a,1b,1c,1dの特性差及び初段増幅器6a,6b,6c,6dのばらつきを吸収して永久磁石4の位置検出精度を高めるためのもので、検出装置の電源スイッチ11を投入した際、制御回路9から出力した電圧で各磁気センサー1a,1b,1c,1dの初段増幅器6a,6b,6c,6dの出力にバイアスを加えてこの電圧を制御回路9で読み取り、読み取り値と設定電圧との比較結果に応じて制御回路9から出力するバイアス用電圧を調整することでオフセットの自動調整を行う。
【0013】
また制御回路9は、初段増幅器6a,6b,6c,6dの出力を直接取り込んでその絶対値から自動感度切換も行うものとなっている。すなわち図1に示すように初期は高感度側にセットされて、永久磁石4が離れたところにあっても位置検出装置をどの方向に動かせばよいのかを知ることができるようになっているが、予め設定しているレベルを越える磁気が検出されて感度オーバーとなれば、低感度側に自動的に切り換えるものとなっており、また低感度側に切り換えた状態で3秒間磁気の検出出力が無ければ高感度側に戻すようになっている。
【0014】
従って、埋設物3の位置検出にあたり、埋設物3(永久磁石4)が離れている時には高感度側となっているものの、埋設物3に近づけば低感度側に自動的に切り換えられて高い精度での位置検出を行うことができるものであり、また埋設物3から離れれば次の埋設物3の検出のために自動的に高感度側に切り換えられるものである。
【0015】
ここにおける感度切換は、前記差動増幅器8a,8bの比較出力がゼロを中心とする所定の電圧範囲に収まっているかどうかで永久磁石4が直下にあるかどうかを判定するにあたっての電圧範囲(閾値)を切り換えることで行うことができるほか、図6に示すように、初段増幅器6a,6b,6c,6dの増幅率を切り換えることで行うことができる。
【0016】
感度切換は図1に示したような2段階に限るものではなく、多段階に切り換えてもよいのはもちろんである。また、初期セットが高感度側となるようにしたものを示したが、低感度側に初期セットし、検出される磁気レベルが所定レベルを満たさなければ高感度側に切り換えるようにしてもよい。タイマーを設けて所定時間が経過しても検出される磁気レベルが所定レベルを満たさない時に高感度側に切り換えるというようにしてもよいものである。更には壁材に沿って位置検出装置を移動させる際の移動距離をたとえば壁材に転接するボールの回転などを利用して測定し、この移動距離が所定距離以上となっても磁気レベルが所定レベルを満たさない時に高感度側に切り換えるというようにしてもよい。
【0017】
図5は検出装置の外観例を示しており、発光表示素子2a,2b,2c,2d,2eが表面に配設されるとともに背面が平面として形成されているハウジング10は、発光表示素子2eが点灯する位置において、その外形線のうちの上縁と左右の側縁とが壁材の背後の埋設物(スイッチボックス)3の外形と一致するようになっており、ハウジング10の外形をなぞって壁材に線を記入し、この線をもとに壁材に孔をあけて埋設物3の正面部を露出させる。
【0018】
以上のように本発明においては、磁気センサーで検出される磁気レベルが高い時に感度を低く且つ検出される磁気レベルが低い時に感度を高くする感度自動切換用の感度切換手段を備えており、検出される磁気レベルに応じて感度が自動的に切り換えられるために、高感度とすることによる利点と、低感度とすることによる位置検出精度の向上とを共に得ることができ、しかも感度は磁気センサーで検出される磁気レベルに応じて自動的に切り換えられるものであって使用者の操作を必要としないために、高精度な位置検出を迅速に行えるものである。また壁材の透磁率や永久磁石の近辺の磁性材の存在などによっても検出される磁気レベルが変わってしまうが、この点にも応ずることができるものとなる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例のフローチャートである。
【図2】同上の概略構成を示す破断斜視図である。
【図3】同上の位置検出のアルゴリズムを示すもので、(a)(b)(c)は夫々動作説明図である。
【図4】同上のブロック回路図である。
【図5】 (a)は同上の正面図、(b)は同上の側面図である。
【図6】他例のブロック回路図である。
【符号の説明】
1a,1b,1c,1d 磁気センサー
3 被埋設物
4 永久磁石
9 制御回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a buried object position detecting device that non-destructively detects a buried object such as an outlet box or a switch box concealed by a wall material at the time of building a house from the wall surface. Is.
[0002]
[Prior art]
At the time of building a house, an embedded object such as an outlet box or a switch box is embedded in the wall in advance, and then the embedded object is once hidden behind the wall material in order to attach an interior wall material. For this reason, when using the embedded object, it is necessary to detect the position of the embedded object and make a hole in the wall material to expose the embedded object. Is provided. That is, a permanent magnet is mounted on the buried object in advance, and the position of the buried object is detected by detecting the magnetism of the permanent magnet from the surface of the wall material.
[0003]
[Problems to be solved by the invention]
Here, it is possible to detect the embedded object even if the embedded object (permanent magnet) is far away if the magnetic detection sensitivity is set high. In this case, a position detection device is installed near the embedded object. When positioned, it is difficult to accurately detect the position due to oversensitivity. Conversely, if the sensitivity is lowered, it becomes impossible to detect where the buried object is located when the buried object is away.
[0004]
For this reason, in the past, sensitivity adjustment was made possible by the user operating the volume, but the operation was cumbersome and had to be adjusted repeatedly. It was time-consuming.
The present invention has been made in view of these points, and an object of the present invention is to provide a position detection device for an embedded object capable of quickly performing highly accurate position detection.
[0005]
[Means for Solving the Problems]
Accordingly, the present invention provides a position detection device for a buried object obtained from an output of a magnetic sensor for detecting the magnetism of a permanent magnet provided on the buried object, the position of the buried object covered with a concealed object such as a wall material. It is characterized in that it has sensitivity switching means for automatic sensitivity switching that lowers the sensitivity when the magnetic level detected by the sensor is high and increases the sensitivity when the detected magnetic level is low . The sensitivity is automatically switched according to the detected magnetic level.
[0006]
The sensitivity switching means in this case may change the threshold range for position determination based on the magnetic sensor output, or may change the amplification factor of the magnetic sensor output amplification circuit.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 2, this buried object position detecting device detects the position of the buried object 3 by detecting the magnetism of the permanent magnet 4 previously attached to the buried object 3 from the surface of the wall material 5. A pair of left and right magnetic sensors 1a and 1b and a pair of upper and lower magnetic sensors 1c and 1d are provided, and display means is provided on the surface of the detection device. A total of five light emitting display elements 2a, 2b, 2c, 2d, and 2e are provided. The distance from the central point where the line connecting the pair of left and right magnetic sensors 1a and 1b and the line connecting the pair of upper and lower magnetic sensors 1c and 1d intersect is equal to the magnetic sensor 1a and 1b. The distances to the magnetic sensors 1c and 1d are also equal.
[0008]
The magnetic distribution MF of the permanent magnet 4 behind the wall material 5 is as shown in FIG. 3, but if the magnetic force values Ma and Mb detected by the pair of magnetic sensors 1a and 1b or the magnetic sensors 1c and 1d are equal, It can be seen that the permanent magnet 4 exists behind the intermediate point of the magnetic sensors 1a, 1b or 1c, 1d. Further, if the magnetic force values Ma and Mb are different from each other, the detection device is moved to the side of the magnetic sensor that has detected a high magnetic force value, so that the intermediate point of the pair of magnetic sensors 1a, 1b or 1c, 1d is directly above the permanent magnet 4. Can be located.
[0009]
Therefore, the center point is directly above the permanent magnet 4, the magnetic values Ma and Mb detected by the pair of magnetic sensors 1a and 1b are equal, and the magnetic values Ma and Mb detected by the pair of magnetic sensors 1c and 1d are equal. If they are equal, the central light emitting display element 2e is turned on. When the center point is not directly above the permanent magnet 4, the four light emitting display elements 2a, 2b, 2c, 2d are selected according to the difference between the detected magnetic force values Ma, Mb. One or two of them are turned on to display in which direction the detection device can be moved to position the center point directly above the permanent magnet 4. One of the light emitting display elements 2c and 2d is turned on when the permanent magnet 4 is shifted up and down, and one of the light emitting display elements 2a and 2b is turned on when it is shifted left and right, and shifted up and down and left and right. When one of the light-emitting display elements 2a and 2b and one of the light-emitting display elements 2c and 2d are turned on at the same time, it is displayed that the moving direction should be an oblique direction.
[0010]
FIG. 4 shows a block circuit diagram. The first stage amplifiers 6a, 6b, 6c, 6d are connected to the magnetic sensors 1a, 1b, 1c, 1d, respectively, and the outputs of the first stage amplifiers 6a, 6b, 6c, 6d are respectively automatic offset adjustment circuits 7a, 7b, 7c, 7d. The outputs of the automatic offset adjustment circuits 7a and 7b for the pair of magnetic sensors 1a and 1b are input to the control circuit 9 composed of a microcomputer via the differential amplifier 8a, and the outputs of the pair of magnetic sensors 1c and 1d are as well. The outputs of the automatic offset adjustment circuits 7c and 7d are input to the control circuit 9 via the differential amplifier 8b. The position display of the permanent magnet 4 in accordance with the difference between the detected magnetic force values Ma and Mb indicates the comparison output of the output of the pair of magnetic sensors 1a and 1b by the differential amplifier 8a and the output of the pair of magnetic sensors 1c and 1d. The comparison output by the differential amplifier 8b is performed. If these comparison outputs are zero or within a predetermined range, it is determined that the permanent magnet 4 is located immediately below the center point, and the light emitting display element 2e is set. If it is positive or negative, it is judged that it is shifted up and down or left and right, and the moving direction is displayed by lighting the light emitting display elements 2a, 2b, 2c and 2d by the algorithm.
[0011]
Further, the control circuit 9 directly determines the distance from the absolute value to the permanent magnet 4 by directly taking in the outputs of the first stage amplifiers 6a, 6b, 6c and 6d, and the input values from the differential amplifiers 8a and 8b are equal. Even if an output indicating the above is output, if the absolute value is small, it is determined that the distance to the permanent magnet 4 is too long to determine the position. In this case, the light emitting display elements 2a, 2b, 2c, 2d, 2e is not lit.
[0012]
The automatic offset adjustment circuits 7a, 7b, 7c, and 7d absorb the characteristic differences of the magnetic sensors 1a, 1b, 1c, and 1d and the variations in the first stage amplifiers 6a, 6b, 6c and 6d to increase the position detection accuracy of the permanent magnet 4. When the power switch 11 of the detection device is turned on, the voltage output from the control circuit 9 is used to bias the outputs of the first-stage amplifiers 6a, 6b, 6c, 6d of the magnetic sensors 1a, 1b, 1c, 1d. In addition, this voltage is read by the control circuit 9, and the offset voltage is automatically adjusted by adjusting the bias voltage output from the control circuit 9 in accordance with the comparison result between the read value and the set voltage.
[0013]
The control circuit 9 directly takes in the outputs of the first stage amplifiers 6a, 6b, 6c and 6d and performs automatic sensitivity switching from the absolute values. That is, as shown in FIG. 1, it is initially set on the high sensitivity side so that it is possible to know in which direction the position detection device should be moved even if the permanent magnet 4 is away. When the magnetism exceeding the preset level is detected and the sensitivity is over, it is automatically switched to the low sensitivity side, and the magnetism detection output is output for 3 seconds in the state of switching to the low sensitivity side. If not, it will return to the high sensitivity side.
[0014]
Accordingly, when detecting the position of the embedded object 3, it is on the high sensitivity side when the embedded object 3 (permanent magnet 4) is separated, but when it approaches the embedded object 3, it is automatically switched to the low sensitivity side and has high accuracy. In addition, the position can be detected at the position of the embedded object 3, and when it is away from the embedded object 3, it can be automatically switched to the high sensitivity side for detection of the next embedded object 3.
[0015]
The sensitivity switching here is a voltage range (threshold value) for determining whether or not the permanent magnet 4 is directly below depending on whether or not the comparison outputs of the differential amplifiers 8a and 8b are within a predetermined voltage range centered on zero. ), And by switching the amplification factors of the first stage amplifiers 6a, 6b, 6c, and 6d as shown in FIG.
[0016]
The sensitivity switching is not limited to the two stages as shown in FIG. 1, but may be switched to multiple stages. Further, although the initial set is set to be on the high sensitivity side, the initial set may be set to the low sensitivity side, and may be switched to the high sensitivity side if the detected magnetic level does not satisfy a predetermined level. A timer may be provided to switch to the high sensitivity side when the detected magnetic level does not satisfy the predetermined level even after a predetermined time has elapsed. Further, the movement distance when moving the position detection device along the wall material is measured by using, for example, the rotation of a ball that is brought into contact with the wall material, and the magnetic level is predetermined even when the movement distance exceeds a predetermined distance. When the level is not satisfied, it may be switched to the high sensitivity side.
[0017]
FIG. 5 shows an example of the appearance of the detection device. The housing 10 in which the light emitting display elements 2a, 2b, 2c, 2d, and 2e are arranged on the surface and the back surface is formed as a flat surface has the light emitting display element 2e. At the lighting position, the upper edge and the left and right side edges of the outer shape line coincide with the outer shape of the embedded object (switch box) 3 behind the wall material, and the outer shape of the housing 10 is traced. A line is written on the wall material, and a hole is made in the wall material based on this line to expose the front portion of the embedded object 3.
[0018]
As described above, the present invention includes sensitivity switching means for automatically switching the sensitivity that lowers the sensitivity when the magnetic level detected by the magnetic sensor is high and increases the sensitivity when the detected magnetic level is low. Since the sensitivity is automatically switched according to the magnetic level applied, it is possible to obtain both the advantages of high sensitivity and the improvement of position detection accuracy by low sensitivity, and the sensitivity is a magnetic sensor. Since it is automatically switched in accordance with the magnetic level detected in step S5 and does not require any user operation, high-accuracy position detection can be performed quickly. The detected magnetic level also changes depending on the permeability of the wall material and the presence of a magnetic material in the vicinity of the permanent magnet, but this point can also be met.
[Brief description of the drawings]
FIG. 1 is a flowchart of an example of an embodiment of the present invention.
FIG. 2 is a cutaway perspective view showing a schematic configuration of the above.
FIGS. 3A and 3B show the position detection algorithm described above, and FIGS. 3A and 3B are explanatory diagrams of operations. FIGS.
FIG. 4 is a block circuit diagram of the above.
5A is a front view of the same, and FIG. 5B is a side view of the same.
FIG. 6 is a block circuit diagram of another example.
[Explanation of symbols]
1a, 1b, 1c, 1d Magnetic sensor 3 Object 4 Permanent magnet 9 Control circuit

Claims (3)

壁材等の隠蔽物で覆われた埋設物の位置を埋設物に設けた永久磁石の磁気を検出する磁気センサーの出力から求める埋設物の位置検出装置であって、磁気センサーで検出される磁気レベルが高い時に感度を低く且つ検出される磁気レベルが低い時に感度を高くする感度自動切換用の感度切換手段を備えていることを特徴とする埋設物の位置検出装置。A position detecting device buried object obtained from the output of the magnetic sensor for detecting magnetism of the permanent magnets having a position of the covered buried object in concealing of wall materials such as buried objects, magnetism detected by the magnetic sensor A position detecting device for embedded objects, comprising sensitivity switching means for automatic sensitivity switching for decreasing sensitivity when the level is high and increasing sensitivity when the detected magnetic level is low . 感度切換手段は、磁気センサー出力に基づく位置判定の閾値範囲を変更するものであることを特徴とする請求項1記載の埋設物の位置検出装置。  The position detection device for an embedded object according to claim 1, wherein the sensitivity switching means changes a threshold range for position determination based on the magnetic sensor output. 感度切換手段は、磁気センサー出力の増幅回路の増幅率を変更するものであることを特徴とする請求項1記載の埋設物の位置検出装置。  2. The position detecting device for an embedded object according to claim 1, wherein the sensitivity switching means changes an amplification factor of the amplification circuit for outputting the magnetic sensor.
JP7069596A 1996-03-26 1996-03-26 Embedded object position detection device Expired - Lifetime JP3644120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7069596A JP3644120B2 (en) 1996-03-26 1996-03-26 Embedded object position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7069596A JP3644120B2 (en) 1996-03-26 1996-03-26 Embedded object position detection device

Publications (2)

Publication Number Publication Date
JPH09257406A JPH09257406A (en) 1997-10-03
JP3644120B2 true JP3644120B2 (en) 2005-04-27

Family

ID=13439034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7069596A Expired - Lifetime JP3644120B2 (en) 1996-03-26 1996-03-26 Embedded object position detection device

Country Status (1)

Country Link
JP (1) JP3644120B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499015B2 (en) * 2005-10-06 2010-07-07 未来工業株式会社 Magnet detector
JP5429207B2 (en) * 2010-09-08 2014-02-26 株式会社デンソー Capacitive physical quantity detector

Also Published As

Publication number Publication date
JPH09257406A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
US5031329A (en) Digital level with plumb
US6844713B2 (en) Compact stud finder
AU6218201A (en) Detecting errors in the determination of magnetic location or orientation
JPH11160010A (en) Sensor system
EP1329735A4 (en) Thin-film magnetic field sensor
ES2158998T3 (en) DIGITAL MEASUREMENT SYSTEM.
CA2513831A1 (en) Magnetic position sensor with integrated hall effect switch
ATE358908T1 (en) AUTOMATIC GAIN CONTROL WITH TWO POWER DETECTORS
JP3644120B2 (en) Embedded object position detection device
JPH1039040A (en) Device for detecting position of buried article
JP3582214B2 (en) Buried object position detection device
DE50000056D1 (en) Position detection of an edge with distributed sensors by determining the turning point
JP3866442B2 (en) Magnet detector
JPH09257405A (en) Position detection apparatus for buried object
JP3582208B2 (en) Buried object position detection device
US7026809B2 (en) Magnetic sensor for detecting position and/or speed of a mobile target
US20060164074A1 (en) Magnetic sensor for determining the location of controlled magnetic leakages
JP3019546B2 (en) Magnetic detector
JPH05175483A (en) Positional sensor
US6937007B1 (en) Magnet field symmetry for hall sensor
JP2868753B1 (en) A light detection system that detects the displacement of a sliding frame along a slender plate
WO2018133152A1 (en) Hidden feature positioning device and positioning method
WO2018133153A1 (en) Device for positioning hidden feature, and positioning method
US6891181B2 (en) Opto-electronic transmissive edge location sensor
JPH059610Y2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

EXPY Cancellation because of completion of term