JP3644026B2 - Seismic construction method, seismic equipment and seismic equipment for wooden structures - Google Patents

Seismic construction method, seismic equipment and seismic equipment for wooden structures Download PDF

Info

Publication number
JP3644026B2
JP3644026B2 JP00575699A JP575699A JP3644026B2 JP 3644026 B2 JP3644026 B2 JP 3644026B2 JP 00575699 A JP00575699 A JP 00575699A JP 575699 A JP575699 A JP 575699A JP 3644026 B2 JP3644026 B2 JP 3644026B2
Authority
JP
Japan
Prior art keywords
spherical surface
seismic
anchor bolt
plate
concrete foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00575699A
Other languages
Japanese (ja)
Other versions
JP2000204791A (en
Inventor
薫 木村
Original Assignee
株式会社タナカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タナカ filed Critical 株式会社タナカ
Priority to JP00575699A priority Critical patent/JP3644026B2/en
Publication of JP2000204791A publication Critical patent/JP2000204791A/en
Application granted granted Critical
Publication of JP3644026B2 publication Critical patent/JP3644026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、地震時における木造建造物の揺れを小さくすると共に(免振)、地震による各部の破損を防止することを目的としたの木造建造物の耐震施工方法及び耐震装置並びに耐震器具に関する。
【0002】
【従来の技術】
現在木造建造物にあっては、各種仕口に金物を多用して補強するのが耐震建造物の一般的施工方法である。
【0003】
また基礎と土台(又は家屋)との間に、凹凸球面による支承手段が提案されている(特開平9−32002号)。
【0004】
【発明により解決しようとする課題】
前記現に行われている仕口等に金物を多用することは、仕口等の補強について多大の効果を上げているが、基礎と、建造物との縁を切り、これにより地震による建物の揺れをより小さくする(いわゆる免振)には役立たない問題点があった。
【0005】
また基礎と土台との間に凹凸球面を介装する提案については、免振効果があるにしても建造物の安定性の点で不十分であり、かつ現状復帰性が不正確になり易い問題点がある。
【0006】
【課題を解決する為の手段】
この発明は、建造物の重量を受ける部分(支承具と当接具)は振動の自由度を大きくし(全方位可変)、かつアンカーボルトによって振動幅に制約(抵抗付与)を付与することにより、前記従来の問題点を解決したのである。
【0007】
即ち施工方法の発明は、上面に凹球面を形成した弾性支承具をコンクリート基礎上へ固定し、該コンクリート基礎上へ、下面に前記凹球面の半径より小さい半径でステンレス板に出した凸球面を有する金属当接具を固定した土台を載せて、前記弾性支承具の凹球面と、前記金属当接具の凸球面とを揺動可能に当接させると共に、前記コンクリート基礎に突設固定したアンカーボルトの上端突出部を土台のボルト孔に緩く挿通し、前記アンカーボルトの上端で土台よりの突出部に、上下鋼板によりゴム板を挟着した弾性座金を嵌装し、ついでアンカーボルトの上端部にナットを螺合して土台を基礎に締め付けることを特徴とした木造建造物の耐震施工方法であり、上面にステンレス板に膨出した凸球面を有する金属当接具をコンクリート基礎上へ固定し、該コンクリート基礎上へ、下面に前記凸球面の半径より大きい半径の凹球面を形成した弾性支承具を固定した土台を載せて、前記弾性支承具の凹球面と、前記金属当接具の凸球面とを揺動可能に当接させると共に、前記コンクリート基礎に突設固定したアンカーボルトの上端突出部を土台のボルト孔に緩く挿通し、前記アンカーボルトの上端で土台よりの突出部に、上下鋼板によりゴム板を挟着した弾性座金を嵌装し、ついでアンカーボルトにナットを螺合して土台を基礎に締め付けることを特徴とした木造建造物の耐震施工方法である。
【0008】
また耐震装置の発明は、コンクリート基礎の上面と、土台の下面との間に、弾性支承具の凹球面の半径を、金属当接具の凸球面の半径より大きくした凹凸球面を有する揺動可能な支承手段を介装すると共に、コンクリート基礎から突出したアンカーボルトの上端部を、土台のボルト孔に緩く挿通し、前記アンカーボルトの上端で土台よりの突出部に上下鋼板によりゴム板を挟着した弾性座金を嵌装し、アンカーボルトにナットを螺合して土台を基礎に締付固定したことを特徴とする木造建造物の耐震装置であり、支承手段は、金属板から膨出させた凸球面を有する金属当接具と、凹球面を有する弾性支承具とを揺動自在に当接したものであり、弾性支承具は、天然ゴム板又は合成ゴム板に、鋼板を埋設したものである。
【0009】
更に耐震器具の発明は、天然ゴム板、合成ゴム板又はポリウレタン板に、鋼板を埋設し、上面に凹球面を設けると共に、該凹球面の底部に水抜手段を設けたことを特徴とする木造建造物の耐震器具である。また天然ゴム板、合成ゴム板又はポリウレタン板の上下面に、金属板を当接し、中央部にボルト孔を設けたことを特徴とする木造建造物の耐震器具であり、ステンレス板を凸球面に膨出させた金属当接具において、前記凸球面の半径を弾性支承具の凹球面の半径より小さくしたことを特徴とする木造建造物の耐震器具である。
【0010】
前記発明において、弾性支承具は、木造建造物において、柱の下部に掛る最大荷重(例えば500kg/cm2 位)にも十分耐え得る弾性と耐久性を有する材質でなければならない。従って天然ゴム板、合成ゴム板、ポリウレタン板その他の合成樹脂も考えられる。要は地震時も通常時も十分の耐圧強度を有し、地震時には、弾性限度内で変形して適宜振動を吸収し、自動復旧する性能を有しなければならない。
【0011】
更に設置場所は床下であって、外気、湿気にさらされ、温度の急激な変化は少くても、夏と冬では数十度の温度差に耐え得ると共に、温度以外の耐候性も具備しなくてはならない。
【0012】
また当接具は、ステンレス製など、不銹で剛性を有する金属板が好ましい。前記支承具は弾性で変形する材質とし、当接具は剛性で変形しない材質とすることにより、必要な強度及び耐久性を有する免振構造体による免振手段を得ることができる。
【0013】
次にアンカーボルトは、建造物が水平方向に過度に移動して、支承具と、当接具が外れないようにする作用を有し、共振現象を未然に防止すると共に、振幅の大きい地震に際しては、支承具と当接具が外れないように規制している。
【0014】
前記発明における耐震器具中、支承具及び当接具は前記の通りであるが、アンカーボルトの座金についても、十分な強度と、弾性限度内での変形が要求される。即ち十分の強度については、天然ゴム板、合成ゴム板又はポリウレタン板その他強靭な弾性合成樹脂板などの上下両面にも鋼板を当接し、要すれば中間部にも鋼板を埋設して、長期間に亘り、弾性と強靭性を保有する必要がある。
【0015】
従って、前記はアンカーボルトの座金として開発したものであるが、その他の建造物のボルト締付けの際の座金として有用であることは勿論である。
【0016】
【発明の実施の形態】
この発明は、コンクリート基礎と、土台との間に凹凸球面で当接する支承具と当接具とを介装し、かつアンカーボルトを土台のボルト孔へ緩く挿通固定することにより、この発明の木造建造物の耐震施工方法及び耐震装置を完成したのである。
【0017】
また支承具又は当接具の一方を金属製の凸球面とし、他方を弾性の凹球面にすると共に、凹球面の半径を凸球面の半径より大きくすることにより、当接部の縁切りの自由度を大きくしたのである。
【0018】
またゴム板に鋼板を埋設して凹半球面上の支承具の剛性を向上させた耐震器具であり、ゴム板の上下両面に鋼板を当接して座板の剛性を向上させたものである。
【0019】
【実施例1】
この発明の実施例を図1、3、4、5、6、7面に基づいて説明する。コンクリート基礎1の上面に支承具2を固定する。該支承具2は合成ゴム製のゴム板3(例えば厚さ60mm)の下部(例えば下方から厚さの1/3の位置)に鋼板4を埋設し、前記ゴム板3の上面に凹球面5を設けて構成されている(図6)。図中6は水抜孔である。
【0020】
前記支承具2は、コンクリート基礎1に埋設したナット7に、ゴム板3のボルト孔8、8から挿入したボルト9を螺合して固定する。
【0021】
次に土台10の下面に(柱22の接続部の下方)に、ステンレス製の当接具11を木ねじ12で固定する。前記当接具11は、方形のステンレス板11aに、凸球面11bを膨出して構成してある(図5)。
【0022】
前記凹球面5の半径(例えば60mm)は、凸球面11bの半径(例えば45mm)より大きくしてあるので、地震の際における支承具2と当接具11の揺動の自由度は比較的大きく、それだけ両者自由に揺動できる。
【0023】
また一端をコンクリート基礎1内に埋設したアンカーボルト13の他端を、土台10のボルト孔14に緩く挿通する。例えば直径12mmのアンカーボルト13を、直径30mm以上のボルト孔14に挿通する。
【0024】
前記アンカーボルト13は、合成ゴム板15の上下面に鋼板16、16a(円形又は多角形)を当接した座金17を介し、土台10へナット18により締付け固定する。図中19は座金17の嵌入穴である。
【0025】
前記実施例において、地震によりコンクリート基礎1が矢示20、21の方向へ往復動した場合に、アンカーボルト13による振動の伝達は小さく、支承具2の移動は当接具11に緩く伝えられるので(支承具が変形する)、地震による振動はゴム板3により減衰することになる。
【0026】
従って建造物の揺れが小さくなり、各仕口等に掛る力も小さくなって、その破損を未然に防止することができる。然して地震が収まれば、アンカーボルト13により支承具2と、当接具11の相対位置も旧位置に復帰する。
【0027】
また支承具2内へ雨水(又は結露水)が入った場合には、水抜孔6から排除されるが、支承具2の設置位置によっては水が入る機会が少なく、結露水などは蒸発も考えられるので、水抜孔6は必須要件ではない。
【0028】
前記座金17は長期間(10年〜30年)同一弾性を保ち、締付け状態を維持するもので、耐震器具以外の建造物の締付座金として利用することができる。
【0029】
前記における座金17は、合成ゴム板15の上下両面に鋼板16、16aを当接するが、接着剤などで接着してもしなくても良いので、合成ゴム板15と、鋼板16、16aとを別々に仕入れ、現場で組立てることもできる。また合成ゴム板15の中間部へ鋼板16bを埋設する場合もある(図7(b))。前記鋼板16の形状は、平面円形又は多角形(例えば八角形)であるが、特定はない。図中23はボルト孔である。
【0030】
前記実施例における支承具2は、過度に変形しない為に、鋼板4を埋設するが、凹球面5の底部から露出しない程度であって、変形量が余り大きくならない程度のゴム厚を残すことが好ましい。また弾性の支承具2はボルト9、9で締付固定するが、前記鋼板4が埋設してあるので、過度の変形はない。
【0031】
前記弾性の支承具2は弾性があって変形し易いが、当接具11は金属板を成形しているので、球面が変形するおそれはない。従って支承具2と、当接具11により免振装置を構成している。
【0032】
前記支承具2と、当接具11とは、建造物とほぼ同一の耐久性を有するものが好ましいが、何等かの特殊事情により、使用に耐えなくなった場合には、部分取換えが可能である。
【0033】
前記のようにすれば、土台とコンクリート基礎との間に相当の空隙が出来るので、通風口の必要がなくなり、床下の通気性を改善し、湿気を未然に防止することができる。但し、建造物の外囲付近において、網などを張設して床下へ小動物が入らないようにした方がよいことは現在の建造物と同様である。
【0034】
【実施例2】
図2に示す実施例は、前記実施例1の当接具11をコンクリート基礎1の上面に固定し、支承具2を土台10の下面に固定したもので(支承具2と当接具11を逆の位置に固定)、材質及び作用効果は実施例1と同一に付、詳細な説明を省略した。
【0035】
【発明の効果】
この発明の施工方法によれば、支承具と当接具を所定の位置へ夫々固定し、コンクリート基礎上へ土台を載せて、アンカーボルトを締付ければ容易に構成できるので、施工作業に特別の技術を要することなく、容易、かつ確実に組立て得る効果がある。
【0036】
またこの発明の耐震装置によれば、弾性支承具の凹球面に該凹球面の半径より小さい半径の膨出成形した凸球面を当接することにより建造物の荷重を揺動可能に支承すると共に、緩く挿通したアンカーボルトにより振幅及び上下動を規制したので、十分の免震効果を期待できると共に、各部の共振現象を未然に防止し得る効果がある。
【0037】
この発明の耐震器具によれば、弾性限度内の変形により十分の耐久性付与し得ると共に、必要な強度を付与し、長く信頼性のある耐震建造物とすることができる効果がある。
【図面の簡単な説明】
【図1】この発明の実施例の一部を断面し、一部を省略した説明図。
【図2】同じく他の実施例の説明図。
【図3】同じく図1に直角な断面図。
【図4】同じく図2に直角な断面図。
【図5】同じく当接具の実施例の斜視図。
【図6】同じく支承具の実施例の斜視図。
【図7】(a)同じく座金の実施例の断面図。
(b)同じく他の実施例の断面図。
(c)同じく平面図。
【図8】(a)同じく合成ゴム板15の上下に当接する鋼板の実施例の平面図。
(b)同じく他の実施例の平面図。
【符号の説明】
1 コンクリート基礎
2 支承具
3 ゴム板
4 鋼板
5 凹球面
6 水抜孔
7、18 ナット
8、14、23 ボルト孔
9 ボルト
10 土台
11 当接具
11a ステンレス板
11b 凸球面
12 木ねじ
13 アンカーボルト
15 合成ゴム板
16、16a 鋼板
17 座金
19 嵌入穴
22 柱
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic construction method, a seismic apparatus, and a seismic apparatus for a wooden structure which are intended to reduce the vibration of the wooden structure during an earthquake (vibration isolation) and prevent damage to each part due to the earthquake.
[0002]
[Prior art]
In the case of wooden structures, it is a general construction method for earthquake-resistant buildings that reinforces various joints by using a lot of hardware.
[0003]
Further, a support means using an uneven spherical surface has been proposed between the foundation and the base (or house) (Japanese Patent Laid-Open No. 9-32002).
[0004]
[Problems to be solved by the invention]
The heavy use of metal fittings in the above-mentioned joints, etc. has greatly improved the reinforcement of the joints, etc., but the edge between the foundation and the building is cut, and this causes the building to shake due to the earthquake. There is a problem that is not useful for making the size smaller (so-called vibration isolation).
[0005]
In addition, the proposal to insert an uneven spherical surface between the foundation and the foundation is not sufficient in terms of the stability of the building even if it has a vibration isolation effect, and the current returnability tends to be inaccurate. There is a point.
[0006]
[Means for solving the problems]
According to the present invention, the part receiving the weight of the building (bearing tool and abutment tool) increases the degree of freedom of vibration (variable in all directions) and restricts the vibration width (giving resistance) by the anchor bolt. The conventional problems have been solved.
[0007]
That invention construction method, the elastic support member forming a concave spherical surface on the upper surface and fixed on a concrete foundation, on the concrete foundation, convex spherical surface out Rise stainless steel plate smaller radius radius of the a lower surface concave spherical surface put a foundation with a fixed metal contact member having a concave spherical surface of the elastic support member, it causes swingably abut the convex spherical surface of the metal contact member, and projecting fixed to the concrete foundation Insert the upper end protruding part of the anchor bolt loosely into the bolt hole of the base, and insert the elastic washer with the rubber plate sandwiched between the upper and lower steel plates at the upper end of the anchor bolt and then the upper end of the anchor bolt parts in a seismic construction method of wooden structure which is characterized in that tightening the basis of base screwed a nut, concrete foundation metal abutment member having a convex spherical surface that bulges in a stainless steel plate on the upper surface Fixed to, on the concrete foundation, the lower surface, put the foundation with a fixed resilient bearing member formed with a large radius concave spherical surface than the radius of the convex spherical surface, and concave spherical surface of the elastic support member, said metal equivalents The upper surface of the anchor bolt protruding from the concrete base is loosely inserted into the bolt hole of the base and protruded from the base at the upper end of the anchor bolt. This is an earthquake resistant construction method for a wooden structure characterized in that an elastic washer having rubber plates sandwiched between upper and lower steel plates is fitted to the part, and then a nut is screwed onto an anchor bolt to tighten on a foundation.
[0008]
In addition, the invention of the seismic device can swing between the upper surface of the concrete foundation and the lower surface of the foundation and has a concave and convex spherical surface in which the radius of the concave spherical surface of the elastic bearing is larger than the radius of the convex spherical surface of the metal contact tool. The upper end of the anchor bolt protruding from the concrete foundation is loosely inserted into the bolt hole of the base, and the rubber plate is sandwiched by the upper and lower steel plates at the upper end of the anchor bolt from the base. fitted to the elastic washer, a seismic device wooden structure, characterized in that it has fastened to the base of the foundation is screwed a nut anchor bolt, the bearing means has swelled from a metal plate A metal contact tool having a convex spherical surface and an elastic bearing device having a concave spherical surface are in contact with each other in a swingable manner. The elastic support device is a natural rubber plate or a synthetic rubber plate embedded with a steel plate. is there.
[0009]
Further, the invention of an earthquake-resistant device is a wooden structure characterized in that a steel plate is embedded in a natural rubber plate, a synthetic rubber plate or a polyurethane plate, a concave spherical surface is provided on the upper surface, and a drainage means is provided at the bottom of the concave spherical surface. It is a seismic device for things. It is also an anti-seismic device for wooden structures, characterized in that a metal plate is in contact with the upper and lower surfaces of a natural rubber plate, synthetic rubber plate or polyurethane plate, and a bolt hole is provided in the center. In the swollen metal abutment tool, the quake-proof device for a wooden structure is characterized in that the radius of the convex spherical surface is made smaller than the radius of the concave spherical surface of the elastic bearing member.
[0010]
In the above invention, the elastic bearing must be made of a material having elasticity and durability that can sufficiently withstand the maximum load (for example, about 500 kg / cm 2 ) applied to the lower part of the column in a wooden structure. Accordingly, natural rubber plates, synthetic rubber plates, polyurethane plates and other synthetic resins are also conceivable. In short, it must have sufficient compressive strength both during an earthquake and during normal times, and must have the ability to automatically recover by deforming within the elastic limits and absorbing vibrations as appropriate.
[0011]
In addition, the installation location is under the floor, exposed to the outside air and moisture, and can withstand a temperature difference of several tens of degrees in summer and winter, even if there is little sudden change in temperature, and it has no weather resistance other than temperature must not.
[0012]
Further, the abutment tool is preferably a metal plate which is made of stainless steel and has rigidity. By using an elastically deformable material for the support member and a rigid and non-deformable material for the abutment device, it is possible to obtain a vibration isolating means using a vibration isolation structure having the necessary strength and durability.
[0013]
Next, the anchor bolt prevents the resonance phenomenon from occurring in the event of an earthquake with a large amplitude, as it prevents the structure from excessively moving in the horizontal direction and preventing the support and the abutment from coming off. Regulates the support and the contact so as not to come off.
[0014]
In the earthquake-resistant device according to the invention, the support and the contact tool are as described above, but the washer of the anchor bolt is also required to have sufficient strength and deformation within the elastic limit. In other words, for sufficient strength, steel plates are in contact with both the upper and lower surfaces of natural rubber plates, synthetic rubber plates, polyurethane plates, and other strong elastic synthetic resin plates, and if necessary, steel plates are embedded in the middle part for a long time. Therefore, it is necessary to possess elasticity and toughness.
[0015]
Therefore, the above was developed as a washer for an anchor bolt, but it is of course useful as a washer for fastening bolts of other structures.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides a wooden structure according to the present invention by interposing a support and an abutting tool that are in contact with a concave and convex spherical surface between a concrete foundation and a base, and loosely inserting and fixing an anchor bolt into a bolt hole of the base. The earthquake-proof construction method and earthquake-proof device for the building were completed.
[0017]
In addition, one of the support or contact tool is a metal convex spherical surface, the other is an elastic concave spherical surface, and the radius of the concave spherical surface is larger than the radius of the convex spherical surface, so that the degree of freedom of edge cutting of the contact portion is increased. Is made larger.
[0018]
Moreover, it is an earthquake-resistant instrument in which a steel plate is embedded in a rubber plate to improve the rigidity of the support on the concave hemisphere, and the rigidity of the seat plate is improved by contacting the steel plate on both the upper and lower surfaces of the rubber plate.
[0019]
[Example 1]
An embodiment of the present invention will be described with reference to FIGS. 1, 3, 4, 5, 6, and 7. The support 2 is fixed to the upper surface of the concrete foundation 1. The support 2 has a steel plate 4 embedded in a lower part (for example, a position of 1/3 of the thickness from below) of a rubber plate 3 (for example, 60 mm thick) made of synthetic rubber, and a concave spherical surface 5 on the upper surface of the rubber plate 3. (FIG. 6). In the figure, 6 is a drain hole.
[0020]
The support 2 is fixed to the nut 7 embedded in the concrete foundation 1 by screwing a bolt 9 inserted from the bolt holes 8 and 8 of the rubber plate 3.
[0021]
Next, a stainless steel abutting tool 11 is fixed to the lower surface of the base 10 (below the connecting portion of the pillar 22) with a wood screw 12. The abutting tool 11 is formed by bulging a convex spherical surface 11b on a rectangular stainless steel plate 11a (FIG. 5).
[0022]
Since the radius (for example, 60 mm) of the concave spherical surface 5 is larger than the radius (for example, 45 mm) of the convex spherical surface 11b, the degree of freedom of swinging of the support device 2 and the contact device 11 during an earthquake is relatively large. Therefore, both can swing freely.
[0023]
Further, the other end of the anchor bolt 13 whose one end is embedded in the concrete foundation 1 is loosely inserted into the bolt hole 14 of the base 10. For example, an anchor bolt 13 having a diameter of 12 mm is inserted into a bolt hole 14 having a diameter of 30 mm or more.
[0024]
The anchor bolt 13 is fastened and fixed to the base 10 with a nut 18 via a washer 17 having steel plates 16, 16a (circular or polygonal) in contact with the upper and lower surfaces of the synthetic rubber plate 15. In the figure, reference numeral 19 denotes a fitting hole for the washer 17.
[0025]
In the above embodiment, when the concrete foundation 1 reciprocates in the directions indicated by arrows 20 and 21 due to an earthquake, the vibration transmitted by the anchor bolt 13 is small, and the movement of the support 2 is transmitted loosely to the abutment 11. The vibration due to the earthquake is attenuated by the rubber plate 3 (the bearing is deformed).
[0026]
Therefore, the shaking of the building is reduced, the force applied to each joint is also reduced, and the damage can be prevented beforehand. However, when the earthquake stops, the anchor bolt 13 returns the relative position of the support 2 and the contact tool 11 to the old position.
[0027]
If rainwater (or condensed water) enters the support 2, it is removed from the drain hole 6, but there are few opportunities for water to enter depending on the installation position of the support 2. Therefore, the drain hole 6 is not an essential requirement.
[0028]
The washer 17 maintains the same elasticity for a long period (10 to 30 years) and maintains a tightened state, and can be used as a fastening washer for a building other than the earthquake-resistant device.
[0029]
The washer 17 contacts the steel plates 16 and 16a on both the upper and lower surfaces of the synthetic rubber plate 15. However, the synthetic rubber plate 15 and the steel plates 16 and 16a are separated from each other because they do not have to be bonded with an adhesive or the like. Can also be assembled on site. In some cases, the steel plate 16b is embedded in an intermediate portion of the synthetic rubber plate 15 (FIG. 7B). The shape of the steel plate 16 is a plane circle or a polygon (for example, an octagon), but is not specified. In the figure, 23 is a bolt hole.
[0030]
The support 2 in the above embodiment embeds the steel plate 4 so as not to be deformed excessively, but leaves a rubber thickness that is not exposed from the bottom of the concave spherical surface 5 and that does not increase the amount of deformation. preferable. The elastic support 2 is fastened and fixed with bolts 9 and 9, but since the steel plate 4 is embedded, there is no excessive deformation.
[0031]
The elastic support 2 is elastic and easily deformed, but since the abutment 11 is formed of a metal plate, the spherical surface is not likely to be deformed. Therefore, the vibration isolator is constituted by the support 2 and the contact tool 11.
[0032]
The bearing device 2 and the abutment device 11 preferably have substantially the same durability as that of the building, but can be partially replaced if it becomes unusable due to some special circumstances. is there.
[0033]
If it does as mentioned above, since a considerable space is made between the foundation and the concrete foundation, there is no need for a vent hole, air permeability under the floor can be improved, and moisture can be prevented beforehand. However, it is the same as the current building that it is better to stretch a net or the like so that small animals do not enter under the floor in the vicinity of the building.
[0034]
[Example 2]
In the embodiment shown in FIG. 2, the contact tool 11 of the first embodiment is fixed to the upper surface of the concrete foundation 1, and the support tool 2 is fixed to the lower surface of the base 10 (the support tool 2 and the contact tool 11 are connected to each other). The material and the operational effects are the same as those in the first embodiment, and the detailed description is omitted.
[0035]
【The invention's effect】
According to the construction method of the present invention, the support tool and the abutment tool are fixed to predetermined positions, respectively, the base is placed on the concrete foundation, and the anchor bolt is tightened. There is an effect that it can be easily and reliably assembled without requiring a technique.
[0036]
Further, according to the seismic device of the present invention, the load of the building is swingably supported by contacting the concave spherical surface of the elastic bearing with the convex spherical surface having a radius smaller than the radius of the concave spherical surface. Since the amplitude and the vertical movement are regulated by the anchor bolt that is loosely inserted , a sufficient seismic isolation effect can be expected, and the resonance phenomenon of each part can be prevented.
[0037]
According to the earthquake-resistant device of the present invention, sufficient durability can be imparted by deformation within the elastic limit, and the required strength can be imparted, and a long and reliable earthquake-resistant building can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view in which a part of an embodiment of the present invention is cut in section and a part thereof is omitted.
FIG. 2 is an explanatory view of another embodiment.
FIG. 3 is a cross-sectional view perpendicular to FIG.
4 is a cross-sectional view perpendicular to FIG.
FIG. 5 is a perspective view of an embodiment of a contact tool.
FIG. 6 is a perspective view of an embodiment of the bearing device.
FIG. 7A is a sectional view of an embodiment of a washer.
(B) Cross-sectional view of another embodiment.
(C) The same top view.
FIG. 8A is a plan view of an embodiment of a steel plate that similarly contacts the upper and lower sides of the synthetic rubber plate 15;
(B) The top view of another Example similarly.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Concrete foundation 2 Support tool 3 Rubber plate 4 Steel plate 5 Concave spherical surface 6 Drain hole 7, 18 Nut 8, 14, 23 Bolt hole 9 Bolt 10 Base 11 Contact tool 11a Stainless steel plate 11b Convex spherical surface 12 Wood screw 13 Anchor bolt 15 Synthetic rubber Plate 16, 16a Steel plate 17 Washer 19 Insertion hole 22 Column

Claims (7)

上面に凹球面を形成した弾性支承具をコンクリート基礎上へ固定し、該コンクリート基礎上へ、下面に前記凹球面の半径より小さい半径でステンレス板に出した凸球面を有する金属当接具を固定した土台を載せて、前記弾性支承具の凹球面と、前記金属当接具の凸球面とを揺動可能に当接させると共に、前記コンクリート基礎に突設固定したアンカーボルトの上端突出部を土台のボルト孔に緩く挿通し、前記アンカーボルトの上端で土台よりの突出部に、上下鋼板によりゴム板を挟着した弾性座金を嵌装し、ついでアンカーボルトの上端部にナットを螺合して土台を基礎に締め付けることを特徴とした木造建造物の耐震施工方法。An elastic support member forming a concave spherical surface on the upper surface and fixed on a concrete foundation, on the concrete foundation, a metal contact member having a convex spherical surface which issued Rise stainless steel plate at a smaller radius radius of the a lower surface concave spherical surface put a fixed base, a concave spherical surface of the elastic support member, and a convex spherical surface causes swingably abut the metal contact member, the upper projecting portion of the projecting fixed anchor bolts to the concrete foundation Insert an elastic washer with rubber plates sandwiched between upper and lower steel plates into the protruding part of the base at the upper end of the anchor bolt, and then screw a nut onto the upper end of the anchor bolt. Seismic construction method for wooden structures, characterized by tightening on the foundation . 上面にステンレス板に膨出した凸球面を有する金属当接具をコンクリート基礎上へ固定し、該コンクリート基礎上へ、下面に前記凸球面の半径より大きい半径の凹球面を形成した弾性支承具を固定した土台を載せて、前記弾性支承具の凹球面と、前記金属当接具の凸球面とを揺動可能に当接させると共に、前記コンクリート基礎に突設固定したアンカーボルトの上端突出部を土台のボルト孔に緩く挿通し、前記アンカーボルトの上端で土台よりの突出部に、上下鋼板によりゴム板を挟着した弾性座金を嵌装し、ついでアンカーボルトにナットを螺合して土台を基礎に締め付けることを特徴とした木造建造物の耐震施工方法。A metal contact member having a convex spherical surface that bulges in a stainless steel plate on the upper surface and fixed onto a concrete foundation, on the concrete foundation, the lower surface, the elastic support member formed with a radius greater than the radius of the concave spherical surface of the convex spherical surface put a fixed base and a concave spherical surface of the elastic support member, and a convex spherical surface causes swingably abut the metal contact member, an upper end projecting portion of the anchor bolt projecting from fixed to the concrete foundation Insert an elastic washer with rubber plates sandwiched between the upper and lower steel plates at the upper end of the anchor bolt, and then screw the nut onto the anchor bolt. Seismic construction method for wooden structures characterized by tightening to the foundation . コンクリート基礎の上面と、土台の下面との間に、弾性支承具の凹球面の半径を、金属当接具の凸球面の半径より大きくした凹凸球面を有する揺動可能な支承手段を介装すると共に、コンクリート基礎から突出したアンカーボルトの上端部を、土台のボルト孔に緩く挿通し、前記アンカーボルトの上端で土台よりの突出部に上下鋼板によりゴム板を挟着した弾性座金を嵌装し、アンカーボルトにナットを螺合して土台を基礎に締付固定したことを特徴とする木造建造物の耐震装置。Between the upper surface of the concrete foundation and the lower surface of the base, a swingable support means having an uneven spherical surface in which the radius of the concave spherical surface of the elastic bearing device is larger than the radius of the convex spherical surface of the metal contact tool is interposed. At the same time, the upper end of the anchor bolt protruding from the concrete foundation is loosely inserted into the bolt hole of the base, and the upper end of the anchor bolt is fitted with an elastic washer with rubber plates sandwiched between the upper and lower steel plates. , seismic devices wooden structure, characterized in that it has fastened to the base of the foundation is screwed a nut anchor bolt. 支承手段は、金属板から膨出させた凸球面を有する金属当接具と、凹球面を有する弾性支承具とを揺動自在に当接したことを特徴とする請求項3記載の木造建造物の耐震装置。Bearing means includes a metal contact member having a convex spherical surface was bulged from the metal plate, wooden structure according to claim 3, characterized in that the elastic support member has pivotably abuts with concave spherical Earthquake-proof device. 弾性支承具は、天然ゴム板又は合成ゴム板に、鋼板を埋設したことを特徴とする請求項4記載の木造建造物の耐震装置。  5. The earthquake resistant device for a wooden structure according to claim 4, wherein the elastic bearing member is a steel plate embedded in a natural rubber plate or a synthetic rubber plate. 天然ゴム板、合成ゴム板又はポリウレタン板に、鋼板を埋設し、上面に凹球面を設けると共に、該凹球面の底部に水抜手段を設けたことを特徴とする請求項3又は4記載の耐震装置に用いる木造建造物の耐震器具。5. A seismic apparatus according to claim 3 , wherein a steel plate is embedded in a natural rubber plate, a synthetic rubber plate, or a polyurethane plate, and a concave spherical surface is provided on the upper surface, and a water draining means is provided at the bottom of the concave spherical surface. Seismic appliances for wooden structures used for construction. 天然ゴム板、合成ゴム板又はポリウレタン板の上下面に、金属板を当接し、中央部にボルト孔を設けたことを特徴とする請求項3又は4記載の耐震装置に用いる木造建造物の耐震器具。5. A seismic resistance of a wooden structure used in a seismic resistance device according to claim 3 or 4 , wherein a metal plate is brought into contact with the upper and lower surfaces of a natural rubber plate, a synthetic rubber plate or a polyurethane plate, and a bolt hole is provided in the center portion. Instruments.
JP00575699A 1999-01-12 1999-01-12 Seismic construction method, seismic equipment and seismic equipment for wooden structures Expired - Lifetime JP3644026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00575699A JP3644026B2 (en) 1999-01-12 1999-01-12 Seismic construction method, seismic equipment and seismic equipment for wooden structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00575699A JP3644026B2 (en) 1999-01-12 1999-01-12 Seismic construction method, seismic equipment and seismic equipment for wooden structures

Publications (2)

Publication Number Publication Date
JP2000204791A JP2000204791A (en) 2000-07-25
JP3644026B2 true JP3644026B2 (en) 2005-04-27

Family

ID=11619975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00575699A Expired - Lifetime JP3644026B2 (en) 1999-01-12 1999-01-12 Seismic construction method, seismic equipment and seismic equipment for wooden structures

Country Status (1)

Country Link
JP (1) JP3644026B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106514279B (en) * 2016-11-09 2019-01-29 北京工业大学 A kind of ground-machine tool basic structure and lathe bed connection structure
CN109972856B (en) * 2019-05-09 2024-05-14 西安建筑科技大学 Ancient building wood structure bucket arch self-resetting energy consumption connection node and connection method
CN114135629B (en) * 2021-12-06 2023-04-11 西南科技大学 Damping-adjustable semi-active control three-way vibration isolation device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100242A (en) * 1980-12-15 1982-06-22 Kouji Sugai Vibration dampening structure of building structure
JPS6091832U (en) * 1983-11-29 1985-06-22 日本電気ホームエレクトロニクス株式会社 Vibration isolator
JPH0972125A (en) * 1995-06-29 1997-03-18 Mitsubishi Heavy Ind Ltd Vibration isolator for box-shaped structure
JP2819454B2 (en) * 1995-07-14 1998-10-30 ハウスビル株式会社 Seismic isolation device for small buildings
JPH10140875A (en) * 1996-11-08 1998-05-26 Haruto Matsui Base isolation structure
JPH10231642A (en) * 1997-02-18 1998-09-02 Sugiyama Kensetsu Kk Vibration-isolation structure
JP3047389U (en) * 1997-09-24 1998-04-10 台中精機廠股▲ふん▼有限公司 Seismic isolation structure

Also Published As

Publication number Publication date
JP2000204791A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
US7509777B2 (en) Base connection for connecting a concrete wall panel to a foundation
KR101691326B1 (en) Seismic Water Tank
JP3644026B2 (en) Seismic construction method, seismic equipment and seismic equipment for wooden structures
KR101915707B1 (en) Seismic design the water tank
JP3550574B2 (en) Sliding bearing seismic isolation device
JP4565295B2 (en) Seismic isolation device
JP4346044B2 (en) Slope stabilizer
JP3113980B2 (en) Connecting device for preventing bridge drop and method for preventing bridge drop using the same
JP3649791B2 (en) Laminated rubber support structure
JP3579211B2 (en) Steel column base joining method
JP3825081B2 (en) Seismic isolation system and lift prevention device in the seismic isolation system
JP2000266116A (en) Swinging bearing type base isolation device
JP3640330B2 (en) Seismic isolation devices and seismic isolation structures for light weight buildings
JP2006112164A (en) Base isolation anchor bolt for wooden building and base isolation device using the base isolation anchor bolt
JPH0932345A (en) Vibration isolation device for small-sized building
JPH09151622A (en) Base isolation device for building
JP3475015B2 (en) Residential vibration absorbing rubber material
JPH11166331A (en) Base isolation pull-out resistance device
JP2816818B2 (en) Seismic bearing device
KR102490855B1 (en) reinforceing device for seismic
KR200352084Y1 (en) Hanger for the ceiling member capable of adjusting height
JP3157553U (en) Tombstone with earthquake-resistant structure
JP3061127U (en) Oscillating bearing seismic isolation device
JPH0626133A (en) Vibration-absorbing material
JP4313164B2 (en) Pile head joint structure

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term