JP3643845B2 - Organic sludge liquefaction reactor - Google Patents

Organic sludge liquefaction reactor Download PDF

Info

Publication number
JP3643845B2
JP3643845B2 JP12508797A JP12508797A JP3643845B2 JP 3643845 B2 JP3643845 B2 JP 3643845B2 JP 12508797 A JP12508797 A JP 12508797A JP 12508797 A JP12508797 A JP 12508797A JP 3643845 B2 JP3643845 B2 JP 3643845B2
Authority
JP
Japan
Prior art keywords
sludge
container
stage
scraper mechanism
organic sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12508797A
Other languages
Japanese (ja)
Other versions
JPH10296300A (en
Inventor
武生 寺田
敏郎 原田
新治 伊藤
誠 井上
正夫 野々廣
俊明 寺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Organo Corp
Tokyo Metropolitan Government
Original Assignee
Chugai Ro Co Ltd
Organo Corp
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd, Organo Corp, Tokyo Metropolitan Government filed Critical Chugai Ro Co Ltd
Priority to JP12508797A priority Critical patent/JP3643845B2/en
Publication of JPH10296300A publication Critical patent/JPH10296300A/en
Application granted granted Critical
Publication of JP3643845B2 publication Critical patent/JP3643845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水に代表される有機廃水の生物処理装置から発生する余剰汚泥等の固形状態の有機性汚泥を液状化処理する反応装置に関するものである。
【0002】
【従来の技術】
固形状態の有機性汚泥(以下、単に汚泥とも言う)を密閉性容器に入れ、高温高圧で処理して液状化することは知られている。このような有機性汚泥の液状化技術において、その汚泥の液状化を効率良くかつ低コストで実施するためには、操作性にすぐれるとともに、装置効率の良い反応装置の開発が必要となる。
特公平7−75718号公報によれば、全体が竪型の密閉性筒状容器からなり、その下部に撹拌用のスクリュー機構を有し、その上部に内壁面に付着した固形物を剥離除去するなで付け型のスクレーパを有する反応装置が提案されている。この装置においては、脱水汚泥は装置下部から供給され、容器内部を上昇するとともに、その間に液状化され、得られた液状化物は装置上部から抜出される。この場合、装置は外部加熱方式で加熱され、汚泥の液状化反応に必要な熱量は、その容器壁を介して内部に導入される。
このような装置は、流通方式の装置であり、汚泥を連続的に処理できるため、元来、効率の良いものであるが、その加熱方式が外部加熱方式であるため、スケールアップして容器の筒径を大きくすると、筒外壁から筒状容器の軸中心までの伝熱が悪くなり、汚泥の均一な液状化反応を充分に達成することができなくなる。このため、伝熱量を高めようとすると、装置の壁面温度が高くなりすぎ、局部過熱等の不都合が生じ、その結果、壁面上に汚泥からの粘稠物が生成付着するようになる。そして、このような壁面上に付着した粘稠物は、スクレーパによる壁面からの掻取り除去が困難で、壁面上に付着残存し、最終的に固化物となり、壁面の熱伝達係数を著しく悪化させる。またこの粘稠物は付着性が強く、塊りになりやすいために、設備の貯槽やポンプ、配管内で閉塞が起きる。さらに、低含水率で高粘度な固形状汚泥を供した場合には、なで付け型スクレーパのブレードを内壁面に押し付けている板バネの力よりも汚泥の抵抗が大きく、ブレードが内壁面に接触できなくなるために、内壁面の汚泥をはく離できず、伝熱面が減少して汚泥の加熱が不足するという問題も生じる。
【0003】
【発明が解決しようとする課題】
本発明は、全体が竪型の筒状容器からなり、その前段にスクリュー機構を有し、後段にスクレーパ機構を有する有機性汚泥の液状化反応装置において、スケールアップが容易で高粘度な固形状汚泥に対しても安定運転が可能な装置を提供することをその課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。即ち、本発明によれば、固形状態の有機性汚泥を高温高圧の条件下で連続的に液状化する外部加熱方式の反応装置において、(i)全体が竪型の筒状容器からなること、(ii)該筒状容器の前段部に、スクリュー機構を有すること、(iii)該筒状容器の後段部に、スクレーパ機構を有すること、(iv)該筒状容器中段部に、該筒状容器の内径をRとしたときに、0.〜0.の外径Rを有する両端が封止された回転円筒体が挿入されていること、(v)該円筒体の外周面にすき上げ型のスクレーパ機構が付設されていること、を特徴とする有機性汚泥の液状化反応装置が提供される。
【0005】
【発明の実施の形態】
図1に本発明の装置の1例についての説明構造図を示し、図2にその容器の中心軸に沿った説明断面図を示す。
これらの図において、1は竪型筒状容器、2は回転軸、3はスクリュー機構、、4は円筒体、5,6はスクレーパ機構、7は汚泥導入口、8は汚泥液状化物排出口、9,10は蓋体、11,12は回転軸接続部、21,22は加熱ジャケットを示す。A、B、Cは、それぞれ、容器1におけるその前段部、中段部及び後段部を示す。
【0006】
容器1の前段部Aには、その内部にスクリュー機構3が配設されている。このスクリュー機構3は、回転軸2を介して回転し、容器下部に供給された汚泥を撹拌しながら上方へ押し上げるためのもので、慣用のものを用いることができる。
【0007】
容器1の中段部Bには、その内部に外周面にすき上げ型スクレーパ機構が付設された円筒体4が挿入されている。
この円筒体は4は、その両端部において回転軸2に固定され、回転軸2を介して回転するようになっている。また、この円筒体4の両端は封止され、汚泥がその内部に侵入しないようになっている。
【0008】
図3に円筒体4の断面図(図2のC−C断面図)を示す。
図3において、dはスクレーパ機構のブレード、eはスクレーパ機構の止め具を示す。
ブレードdは帯状の金属板からなり、その先端部が刃先に形成されたものである。このものは、図3に示すように、円周方向に間隔を置いて複数列配設される。また、これらの各ブレードは、ネジ付きボルト等の止め具eにより円筒体の外周面に固定され、すき上げ型のスクレーパを形成する。
【0009】
円筒体4において、その外径Rは、筒状容器Rの内径に対応して適宜決められるが、一般的には、0.5〜0.8Rとなるように決めるのがよい。筒体4の外周面にはすき上げ型スクレーパが付設されているため、そのスクレーパによる汚泥掻取り作用により、容器内壁面への汚泥の付着が効果的に防止される。前記のように、容器1の中段部Bにおいては、容器内壁面への汚泥の付着が防止されることから、容器外部から内部へ流れる熱伝達が円滑に行われる。その上、容器1内への円筒体4の挿入により、汚泥は円筒体4の外周面と容器1の内周面との間の環状空隙部を流れることから、汚泥への均一な熱供給も円滑に行われる。その結果、中段部Bにおいては、汚泥の円滑な熱化学反応が達成される。また、高粘度な固形状汚泥を供した場合にも、中段部Bのブレードは内壁面に押し付けられ、汚泥をすき上げて確実に内壁面への付着を防止できる。
【0010】
容器1の後段部Cには、その内部にスクレーパ機構5、6を有する。このスクレーパ機構5、6は、回転軸2に固定され、回転軸2を介して回転するようになっている。
図4にスクレーパ機構6の断面図(図2におけるA−A断面図)を示し、図5にスクレーパ機構5の断面図(図2におけるB−B断面図)を示す。スクレーパ機構5とスクレーパ機構6は同一構造のものであるが、回転軸2に対する配設位置を90度ずらした位置関係になっている。
【0011】
スクレーパ機構5、6は、従来公知の各種のスクレーパ機構であることができるが、一般的には、図4〜図5に示すように、なで付け型スクレーパ機構が用いられる。このなで付け型スクレーパ機構は、ブレードの先端(刃先)が容器1の内周壁に接触し、ブレードの後端が回転軸2に支持固定されている構造のもので、これを回転させたときに、そのブレードの先端が容器1の内周壁面をなで付けるようにして接触するものである。
なお、図4〜5に示した羽根gは、容器中心部への汚泥の流れを促進して、均一な加熱を行う作用を示すものである。
【0012】
容器1の中段部Bを通過した汚泥は、スクレーパ機構を有する後段部Cに入り、容器1内を上昇するが、その上昇線速度は、その後段部の汚泥通路の水平断面積が、中段部Bの汚泥通路の水平断面積より大きいため、中段部Bにおける上昇線速度に比べて著しく遅くなる。このために後段部Cにおいては、汚泥はゆっくりとした速度で上昇し、その間に加熱され、最終段階の熱化学反応を受け、液状化されるための反応時間を確保することができる。この後段部Cに導入される汚泥は、既に中段部Bにおいて液状化が相当程度進行して粘度が低下したものであるため、容器1の内周壁面に付着しにくくなっており、また、付着しても掻取りの容易なものになっている。従って、この後段部Cにおけるスクレーパ機構は、掻取り力の大きいものである必要はなく、前記のような構造の簡単ななで付け型スクレーパ機構の使用で十分である。
【0013】
本発明において被処理原料として用いる固形状態の有機性汚泥としては、通常の下水処理場から排出される下水汚泥や各種の有機性廃水の生物処理装置から排出される余剰汚泥等を脱水した汚泥が包含される。
有機性汚泥の脱水は、通常、機械脱水(真空脱水、加圧脱水、ベルトプレス脱水及び遠心脱水)が用いられるが、特に制約されない。ただし、脱水前の有機性汚泥には汚泥調質薬品の添加が望ましく、特に、高分子凝集剤の添加が有利である。従って、脱水方式に関しても、高分子凝集剤の添加に適しているベルトプレス脱水か遠心脱水が望ましい。この有機性汚泥の脱水は、得られる脱水汚泥の含水率が60〜90重量%、好ましくは70〜80重量%の範囲になるように行うのがよい。
また、この汚泥には、その液状化を促進させるために、必要に応じ、液状化促進剤としてのアルカリ性物質の存在下で行うことができる。このアルカリ性物質は、脱水汚泥中の固形分に対して、0〜20重量%、好ましくは0〜5重量%の割合で添加するのがよい。アルカリ性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、ギ酸ナトリウム、ギ酸カリウム等のアルカリ金属化合物や、酸化カルシウム、水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属化合物等があげられる。
【0014】
図1に示した本発明の反応装置を用いて有機性汚泥を液状化させるには、ライン23を通して汚泥を容器1の前段部Aに供給する。前段部Aには、回転軸2を介して回転するスクリュー機構3が付設されており、汚泥はこのスクリュー機構の回転により上方に移送される。
回転軸2は、モータMにより回転される。
この前段部Aは、特に加熱する必要はないが、必要に応じ、外部加熱方式で、50〜150℃に加熱することもできる。
【0015】
前段部Aからスクリュー機構3により上方に移送された汚泥は、さらに中段部B内に押上げられ、その円筒体4の外周面と容器1の内周面との間の空隙部を上昇し、その間に加熱される。この加熱は、加熱ジャケット22内に導入された熱媒体により実施されるが、電熱方式によって加熱することもできる。
中段部Bにおける汚泥の加熱温度は、150〜300℃、好ましくは200〜250℃である。
【0016】
前段部Aのスクリュー機構3により、汚泥は、中段部Bを通してさらに後段部Cに押上げられ、容器1内を上昇し、ライン24を通して外部へ抜出され、後段部Cを上昇する間に加熱される。この加熱は加熱ジャケット21内に導入された熱媒体により実施されるが、電熱方式によって加熱することもできる。後段部Cにおける汚泥の加熱温度は、200〜300℃、好ましくは250〜300℃である。反応装置内の圧力は、反応装置内の最高温度における飽和水蒸気圧以上を保てば良い。例えば温度が200℃の場合、16kg/cm2Abs、300℃の場合、88kg/cm2Absである。この加圧は、汚泥からの水蒸気による自己発生圧を利用することができるが、必要に応じ、例えば、窒素ガス、炭酸ガス、アルゴンガス等を用いて加圧することができる。後段部Cにおける汚泥の滞留時間は1〜120分、好ましくは0〜60分である。
この後段部Cにおける加熱により、汚泥は熱化学的反応を受け、汚泥の液状化が完了する。
【0017】
前記のようにして得られた有機性汚泥液状化物は、さらに、従来公知の方法に従って処理される。このような処理には、焼却処理や、油分回収処理等が包含される。
前記有機性汚泥液状化物は、輸送性にすぐれたもので、パイプ圧送や、バキュームカー、タンクローリによる輸送の可能なものである。また、噴霧燃焼性にすぐれていることから、バーナを介しての噴霧燃焼による焼却処理の容易なものである。
【0018】
【実施例】
次に本発明を実施例によりさらに詳細に説明する。
【0019】
実施例1
有機性汚泥として下水汚泥を選択し、標準活性汚泥法の処理場から排出された混合生汚泥の脱水ケーキを試験に用いた。この汚泥は高分子凝集剤を添加した後、ベルトプレスにて脱水したものである。その代表的な性状は、含水率78重量%、有機物比78重量%及び低位発熱量3940kcal/kgである。
【0020】
上記脱水汚泥を図1に示した連続汚泥液状化装置(処理能力:250kg/hr)を用いて液状化した。
図1に示した装置において、容器1の高さは7.3mであり、前段部A、中段部B及び後段部Cの各長さA、B、Cは、それぞれ、A=2.4m、B=2.1m、C=2.8mであった。容器1の内径R1=43cmであり、円筒体4の外径R2=30cmであった。
汚泥の温度は、前段部Aで30℃、中段部Bの出口温度で250℃、後段部Cの出口温度で260℃であった。容器1内の圧力は、85kg/cm2Absであった。
【0021】
前記の条件で有機性汚泥を連続的に液状化処理した。この処理物は、反応装置出口で充分に液状となっており、高温高圧状態の液状汚泥を減圧バルブを介して大気圧のフラッシュタンクに放出した。フラッシュタンクでは汚泥中の水分が蒸発し、汚泥の温度は100℃まで冷却された。有機酸や油状物質等の低沸点成分が水蒸気とともにフラッシュタンクの上部から排出され、コンデンサで常温まで冷却した後、希薄液タンクに貯留した。一方、フラッシュタンクの下部に残った濃縮液はバルブ操作により自動的に排出し、濃縮液タンクに貯留した。
前記の操作により、含水率78重量%(固形分濃度22重量%)の脱水汚泥から固形分濃度25重量%の濃縮液と、固形分濃度2重量%の悪臭を生じる希薄液を得た。濃宿液は液状であり充分な流動性を有していた。
【0022】
【発明の効果】
本発明の反応装置を用いて有機性汚泥を液状化処理することにより、反応装置の器壁面での局部過熱による汚泥の粘稠物への変換を防止し、器壁面へのその粘稠物の付着を効果的に防止することができ、有機性汚泥の液状化を長時間にわたって連続的に実施することができる。また、本発明によれば、スケールアップが容易になるととにも、高粘度な固形状汚泥にも適用可能な装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の装置の全体構造の説明図を示す。
【図2】本発明で用いる筒状容器の軸方向に沿った説明断面図を示す。
【図3】図2におけるC−C断面図を示す。
【図4】図2におけるA−A断面図を示す。
【図5】図2におけるB−B断面図を示す。
【符号の説明】
1 筒状容器
2 回転軸
3 スクリュー機構
4 円筒体
5、6 なで付け型スクレーパ機構
21、22 加熱ジャケット
A 容器1の前段部
B 容器1の中段部
C 容器1の後段部
d すき上げ型スクレーパ機構のブレード
e ブレードの止め具
f クッション材
g 羽根
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reaction apparatus for liquefying solid organic sludge such as surplus sludge generated from a biological treatment apparatus of organic wastewater represented by sewage.
[0002]
[Prior art]
It is known that solid organic sludge (hereinafter also simply referred to as sludge) is placed in a hermetic container and liquefied by treatment at high temperature and high pressure. In such organic sludge liquefaction technology, in order to efficiently liquefy the sludge at low cost, it is necessary to develop a reactor having excellent operability and high device efficiency.
According to Japanese Examined Patent Publication No. 7-75718, the whole consists of a bowl-shaped hermetic cylindrical container, which has a screw mechanism for stirring at its lower part, and peels and removes solid matter adhering to the inner wall surface at its upper part. A reactor having a navel-type scraper has been proposed. In this apparatus, the dewatered sludge is supplied from the lower part of the apparatus, rises inside the container, and is liquefied during that time, and the liquefied material obtained is extracted from the upper part of the apparatus. In this case, the apparatus is heated by an external heating method, and the amount of heat necessary for the sludge liquefaction reaction is introduced into the inside through the container wall.
Such a device is a distribution-type device, and is capable of continuously treating sludge, so it is originally efficient, but its heating method is an external heating method, so it can be scaled up to When the cylinder diameter is increased, heat transfer from the outer wall of the cylinder to the axial center of the cylindrical container is deteriorated, and the uniform liquefaction reaction of sludge cannot be sufficiently achieved. For this reason, if it is going to raise the amount of heat transfer, the wall surface temperature of an apparatus will become high too much, inconveniences, such as local overheating, will arise, and as a result, the viscous material from sludge will produce | generate and adhere to a wall surface. And it is difficult to scrape and remove the sticky material adhering to the wall surface from the wall surface by the scraper, and it remains adhering to the wall surface and finally becomes a solidified product, which significantly deteriorates the heat transfer coefficient of the wall surface. . Moreover, since this viscous material has strong adhesiveness and tends to be agglomerated, clogging occurs in the storage tank, pump, and piping of the equipment. Furthermore, when solid sludge with a low moisture content and high viscosity is used, the sludge resistance is greater than the force of the leaf spring that presses the blade of the brazing scraper against the inner wall surface, and the blade contacts the inner wall surface. Since it becomes impossible to contact, the sludge of an inner wall surface cannot be peeled off, but the problem also arises that the heat transfer surface is reduced and the sludge is insufficiently heated.
[0003]
[Problems to be solved by the invention]
The present invention is an organic sludge liquefaction reaction apparatus having a screw-type cylindrical container as a whole, having a screw mechanism at the front stage and a scraper mechanism at the rear stage, and is easily solidified with high viscosity. It is an object of the present invention to provide an apparatus capable of stable operation even with sludge.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, according to the present invention, in an external heating system reactor that continuously liquefies organic sludge in a solid state under high-temperature and high-pressure conditions, (i) the whole consists of a bowl-shaped cylindrical container; (Ii) having a screw mechanism at the front stage of the cylindrical container; (iii) having a scraper mechanism at the rear stage of the cylindrical container; and (iv) having the cylindrical shape at the middle stage of the cylindrical container. the inner diameter of the container when the R 1, 0. 5 R 1 ~0. 8 R 1 having an outer diameter R 2 of which both ends are sealed and a rotating cylindrical body is inserted, and (v) a lift-up type scraper mechanism is attached to the outer peripheral surface of the cylindrical body. A characteristic organic sludge liquefaction reactor is provided.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an explanatory structural diagram of an example of the apparatus of the present invention, and FIG. 2 shows an explanatory sectional view along the central axis of the container.
In these figures, 1 is a vertical cylindrical container, 2 is a rotating shaft, 3 is a screw mechanism, 4 is a cylindrical body, 5 and 6 are scraper mechanisms, 7 is a sludge inlet, 8 is a sludge liquefied material outlet, Reference numerals 9 and 10 denote lids, reference numerals 11 and 12 denote rotating shaft connecting portions, and reference numerals 21 and 22 denote heating jackets. A, B, and C respectively show the front stage part, the middle stage part, and the rear stage part in the container 1.
[0006]
A screw mechanism 3 is disposed in the front part A of the container 1. The screw mechanism 3 is for rotating through the rotating shaft 2 and pushing up the sludge supplied to the lower part of the container while stirring, and a conventional one can be used.
[0007]
In the middle part B of the container 1, a cylindrical body 4 having a lifting scraper mechanism attached to the outer peripheral surface is inserted.
The cylindrical body 4 is fixed to the rotary shaft 2 at both ends thereof, and is rotated via the rotary shaft 2. Further, both ends of the cylindrical body 4 are sealed so that sludge does not enter the inside.
[0008]
FIG. 3 shows a sectional view of the cylindrical body 4 (a sectional view taken along the line CC in FIG. 2).
In FIG. 3, d is a blade of the scraper mechanism, and e is a stopper of the scraper mechanism.
The blade d is made of a band-shaped metal plate, and its tip is formed on the blade edge. As shown in FIG. 3, these are arranged in a plurality of rows at intervals in the circumferential direction. Each of these blades is fixed to the outer peripheral surface of the cylindrical body by a stopper e such as a threaded bolt to form a lift-up type scraper.
[0009]
In the cylinder 4, the outer diameter R 2 is suitably determined corresponding to the inner diameter of the cylindrical vessel R 1, in general, to decide such that 0.5 R 1 ~0.8R 1 Good. Since the lifting scraper is attached to the outer peripheral surface of the cylindrical body 4, the sludge scraping action by the scraper effectively prevents the sludge from adhering to the inner wall surface of the container. As described above, in the middle stage B of the container 1, sludge is prevented from adhering to the inner wall surface of the container, so that heat transfer from the outside to the inside of the container is smoothly performed. In addition, by inserting the cylindrical body 4 into the container 1, the sludge flows through an annular gap between the outer peripheral surface of the cylindrical body 4 and the inner peripheral surface of the container 1, so that uniform heat supply to the sludge is also achieved. It is done smoothly. As a result, in the middle stage B, a smooth thermochemical reaction of sludge is achieved. In addition, even when high-viscosity solid sludge is provided, the blade of the middle section B is pressed against the inner wall surface, and the sludge can be lifted to reliably prevent adhesion to the inner wall surface.
[0010]
The rear stage C of the container 1 has scraper mechanisms 5 and 6 inside thereof. The scraper mechanisms 5 and 6 are fixed to the rotary shaft 2 and rotate via the rotary shaft 2.
4 shows a sectional view of the scraper mechanism 6 (AA sectional view in FIG. 2), and FIG. 5 shows a sectional view of the scraper mechanism 5 (BB sectional view in FIG. 2). The scraper mechanism 5 and the scraper mechanism 6 have the same structure, but have a positional relationship in which the arrangement position with respect to the rotating shaft 2 is shifted by 90 degrees.
[0011]
Although the scraper mechanisms 5 and 6 can be various conventionally known scraper mechanisms, generally, as shown in FIGS. 4 to 5, a stroking-type scraper mechanism is used. This stroking-type scraper mechanism has a structure in which the tip (blade edge) of the blade is in contact with the inner peripheral wall of the container 1 and the rear end of the blade is supported and fixed to the rotary shaft 2 when the blade is rotated. Further, the tip of the blade comes into contact with the inner peripheral wall surface of the container 1 by stroking.
The blades g shown in FIGS. 4 to 5 have an effect of promoting uniform heating by promoting the flow of sludge to the center of the container.
[0012]
The sludge that has passed through the middle stage B of the container 1 enters the rear stage C having the scraper mechanism and rises in the container 1, but the rising linear velocity is determined by the horizontal cross-sectional area of the sludge passage in the rear stage being the middle stage. Since it is larger than the horizontal cross-sectional area of the sludge passage of B, it is significantly slower than the rising linear velocity at the middle stage B. For this reason, in the rear stage C, the sludge rises at a slow speed and is heated during that time to receive the final stage thermochemical reaction and secure a reaction time for liquefaction. The sludge introduced into the rear part C has already been liquefied to a considerable extent in the middle part B and has decreased in viscosity, so that it is difficult to adhere to the inner peripheral wall surface of the container 1. Even so, it is easy to scrape. Therefore, the scraper mechanism in the rear stage portion C does not need to have a large scraping force, and it is sufficient to use a stick-type scraper mechanism having a simple structure as described above.
[0013]
Solid organic sludge used as a raw material to be treated in the present invention includes sludge obtained by dewatering sewage sludge discharged from a normal sewage treatment plant or surplus sludge discharged from various organic wastewater biological treatment equipment. Is included.
The organic sludge is usually dehydrated by mechanical dehydration (vacuum dehydration, pressure dehydration, belt press dehydration, and centrifugal dehydration), but is not particularly limited. However, it is desirable to add sludge refining chemicals to the organic sludge before dehydration, and it is particularly advantageous to add a polymer flocculant. Therefore, regarding the dehydration method, belt press dehydration or centrifugal dehydration suitable for addition of the polymer flocculant is desirable. The organic sludge should be dehydrated so that the water content of the obtained dehydrated sludge is 60 to 90% by weight, preferably 70 to 80% by weight.
Moreover, in order to accelerate | stimulate the liquefaction, this sludge can be performed in presence of the alkaline substance as a liquefaction promoter as needed. This alkaline substance is added in a proportion of 0 to 20% by weight, preferably 0 to 5% by weight, based on the solid content in the dewatered sludge. Examples of the alkaline substance include alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium formate, potassium formate, calcium oxide, calcium hydroxide, and hydroxide. Examples thereof include alkaline earth metal compounds such as magnesium.
[0014]
In order to liquefy the organic sludge using the reaction apparatus of the present invention shown in FIG. 1, the sludge is supplied to the front part A of the container 1 through the line 23. A screw mechanism 3 that rotates via a rotating shaft 2 is attached to the front stage A, and sludge is transferred upward by the rotation of the screw mechanism.
The rotating shaft 2 is rotated by a motor M.
This front part A does not need to be heated in particular, but can be heated to 50 to 150 ° C. by an external heating method as necessary.
[0015]
The sludge transported upward by the screw mechanism 3 from the front stage A is further pushed up into the middle stage B, and rises in the gap between the outer peripheral surface of the cylindrical body 4 and the inner peripheral surface of the container 1, In the meantime it is heated. This heating is performed by a heat medium introduced into the heating jacket 22, but it can also be heated by an electric heating method.
The sludge heating temperature in the middle stage B is 150 to 300 ° C, preferably 200 to 250 ° C.
[0016]
By the screw mechanism 3 in the front stage A, the sludge is further pushed up to the rear stage C through the middle stage B, rises in the container 1, is extracted to the outside through the line 24, and is heated while the rear stage C is raised. Is done. This heating is performed by a heat medium introduced into the heating jacket 21, but it can also be heated by an electric heating method. The heating temperature of the sludge in the latter stage part C is 200-300 degreeC, Preferably it is 250-300 degreeC. The pressure in the reaction apparatus may be maintained at a saturated water vapor pressure or higher at the maximum temperature in the reaction apparatus. For example, when the temperature is 200 ° C., it is 16 kg / cm 2 Abs, and when it is 300 ° C., it is 88 kg / cm 2 Abs. Although this pressurization can utilize the self-generated pressure by the water vapor | steam from sludge, it can pressurize using nitrogen gas, a carbon dioxide gas, argon gas etc. as needed. The sludge residence time in the rear part C is 1 to 120 minutes, preferably 0 to 60 minutes.
By the heating in the rear stage C, the sludge undergoes a thermochemical reaction, and the liquefaction of the sludge is completed.
[0017]
The organic sludge liquefied material obtained as described above is further treated according to a conventionally known method. Such processing includes incineration processing, oil recovery processing, and the like.
The organic sludge liquefied material is excellent in transportability and can be transported by pipe pumping, vacuum car, or tank truck. Moreover, since it is excellent in spray combustibility, incineration processing by spray combustion through a burner is easy.
[0018]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0019]
Example 1
Sewage sludge was selected as the organic sludge, and the mixed raw sludge dewatered cake discharged from the standard activated sludge treatment plant was used for the test. This sludge is dehydrated with a belt press after adding a polymer flocculant. Its typical properties are a moisture content of 78% by weight, an organic matter ratio of 78% by weight and a lower heating value of 3940 kcal / kg.
[0020]
The dewatered sludge was liquefied using the continuous sludge liquefaction apparatus (processing capacity: 250 kg / hr) shown in FIG.
In the apparatus shown in FIG. 1, the height of the container 1 is 7.3 m, and the lengths A, B, and C of the front stage A, the middle stage B, and the rear stage C are respectively A = 2.4 m, B = 2.1 m and C = 2.8 m. The inner diameter R 1 of the container 1 was 43 cm, and the outer diameter R 2 of the cylindrical body 4 was 30 cm.
The temperature of the sludge was 30 ° C. at the front stage A, 250 ° C. at the outlet temperature of the middle stage B, and 260 ° C. at the outlet temperature of the rear stage C. The pressure in the container 1 was 85 kg / cm 2 Abs.
[0021]
Organic sludge was liquefied continuously under the above conditions. This treated product was sufficiently liquid at the outlet of the reactor, and liquid sludge in a high temperature and high pressure state was discharged to a flash tank at atmospheric pressure through a pressure reducing valve. In the flash tank, the water in the sludge evaporated, and the temperature of the sludge was cooled to 100 ° C. Low boiling components such as organic acids and oily substances were discharged from the upper part of the flash tank together with water vapor, cooled to room temperature with a condenser, and stored in a dilute liquid tank. On the other hand, the concentrate remaining in the lower part of the flash tank was automatically discharged by valve operation and stored in the concentrate tank.
By the above operation, a concentrated liquid having a solid content concentration of 25% by weight and a dilute liquid having a solid content concentration of 2% by weight were obtained from dehydrated sludge having a water content of 78% by weight (solid content concentration of 22% by weight). The thick juice liquid was liquid and had sufficient fluidity.
[0022]
【The invention's effect】
By liquefying the organic sludge using the reactor of the present invention, it is possible to prevent the sludge from being converted to a viscous material due to local overheating on the reactor wall surface of the reactor, and Adhesion can be effectively prevented, and organic sludge can be liquefied continuously for a long time. In addition, according to the present invention, it is possible to provide an apparatus that can be easily scaled up and can be applied to high-viscosity solid sludge.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the overall structure of an apparatus according to the present invention.
FIG. 2 is an explanatory cross-sectional view along the axial direction of a cylindrical container used in the present invention.
FIG. 3 is a cross-sectional view taken along the line CC in FIG.
4 is a cross-sectional view taken along line AA in FIG.
5 is a cross-sectional view taken along the line BB in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical container 2 Rotating shaft 3 Screw mechanism 4 Cylindrical bodies 5 and 6 Stroke type scraper mechanism 21 and 22 Heating jacket A The front part B of the container 1 The middle part C of the container 1 The rear part d of the container 1 The lifting scraper Mechanism blade e Blade stopper f Cushion material g Blade

Claims (2)

固形状態の有機性汚泥を高温高圧の条件下で連続的に液状化する外部加熱方式の反応装置において、(i)全体が竪型の筒状容器からなること、(ii)該筒状容器の前段部に、スクリュー機構を有すること、(iii)該筒状容器の後段部に、スクレーパ機構を有すること、(iv)該筒状容器の前段部と後段部の間の中段部に、該筒状容器の内径をRとしたときに、0.〜0.の外径Rを有する両端が封止された回転円筒体が挿入されていること、(v)該円筒体の外周面にすき上げ型のスクレーパ機構が付設されていること、を特徴とする有機性汚泥の液状化反応装置。In an external heating type reactor that continuously liquefies organic sludge in a solid state under high-temperature and high-pressure conditions, (i) the whole consists of a bowl-shaped cylindrical container, (ii) the cylindrical container (Iii) having a scraper mechanism in the rear stage of the cylindrical container, and (iv) having the cylinder in the middle stage between the front stage and the rear stage of the cylindrical container. the inner diameter of the Jo container when the R 1, 0. 5 R 1 ~0. 8 R 1 having an outer diameter R 2 of which both ends are sealed and a rotating cylindrical body is inserted, and (v) a lift-up type scraper mechanism is attached to the outer peripheral surface of the cylindrical body. A characteristic organic sludge liquefaction reactor. 該後段部のスクレーパ機構が、なで付け型スクレーパ機構である請求項1の装置。 2. The apparatus according to claim 1, wherein the scraper mechanism at the rear stage is a stroking type scraper mechanism.
JP12508797A 1997-04-28 1997-04-28 Organic sludge liquefaction reactor Expired - Fee Related JP3643845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12508797A JP3643845B2 (en) 1997-04-28 1997-04-28 Organic sludge liquefaction reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12508797A JP3643845B2 (en) 1997-04-28 1997-04-28 Organic sludge liquefaction reactor

Publications (2)

Publication Number Publication Date
JPH10296300A JPH10296300A (en) 1998-11-10
JP3643845B2 true JP3643845B2 (en) 2005-04-27

Family

ID=14901523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12508797A Expired - Fee Related JP3643845B2 (en) 1997-04-28 1997-04-28 Organic sludge liquefaction reactor

Country Status (1)

Country Link
JP (1) JP3643845B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010036039A2 (en) * 2008-09-26 2010-04-01 주식회사 디스텍 Continuous treatment apparatus for producing solid-liquid slurry from organic sludge, and method for producing solid-liquid slurry or methane gas using the continuous treatment apparatus
CN117342774B (en) * 2023-12-06 2024-03-08 北京百灵天地环保科技股份有限公司 Sludge treatment device based on groove type reactor

Also Published As

Publication number Publication date
JPH10296300A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
US5810975A (en) Apparatus for extracting solid residue from a fluid by evaporation
CN111547975B (en) Method for separating active sludge biomass by high-speed mechanical cyclone
CN101346476B (en) Method of saccharifying/decomposing cellulose-based biomass and saccharification/decomposition device
JP3643845B2 (en) Organic sludge liquefaction reactor
EP1906123A2 (en) System for securing plants for drying organic substances susceptible of causing explosive reactions and process for drying said substances
CN114075478A (en) Energy-saving and environment-friendly animal fat refining device and process
JP3318483B2 (en) Supercritical water oxidation method of organic sludge and organic sludge supply device used for the method
JP6025877B2 (en) Process and plant for the production of solid products
CN111217505B (en) Method for improving heating efficiency by high-speed mixing of cold and hot sludge
JP3646131B2 (en) Treatment method of organic sludge
JP3646183B2 (en) Treatment method of organic sludge
JP3646132B2 (en) Treatment method of organic sludge
JPH1080699A (en) Treatment of organic sludge
JP3869240B2 (en) Oil and fat-containing material processing equipment
JP2004041858A (en) Liquid-containing waste treatment plant
CN219239576U (en) Oil-based mud thermal desorption device
CN212403901U (en) Thermal hydrolysis treatment reaction kettle for carbon-deposition-free sludge
JP2003300099A (en) Hydrothermal reaction apparatus and method
CN219429804U (en) Device for treating high COD wastewater by ozone
CN113956899B (en) Method for removing impurities from coal tar
CN219469746U (en) Salt-containing sewage low-temperature evaporation desalting equipment
CN218306222U (en) Flash distillation device for agricultural potassium nitrate preparation
CN211836424U (en) Supercritical carbon dioxide continuous extraction system
RU2247144C1 (en) Apparatus for preliminary preparing of malt before drying
JP2004358455A (en) Waste treating method,apparatus, and system, and drying apparatus and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050207

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees