JP3643243B2 - Supply water storage method - Google Patents

Supply water storage method Download PDF

Info

Publication number
JP3643243B2
JP3643243B2 JP24537598A JP24537598A JP3643243B2 JP 3643243 B2 JP3643243 B2 JP 3643243B2 JP 24537598 A JP24537598 A JP 24537598A JP 24537598 A JP24537598 A JP 24537598A JP 3643243 B2 JP3643243 B2 JP 3643243B2
Authority
JP
Japan
Prior art keywords
water
storage tank
water storage
supply
residual chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24537598A
Other languages
Japanese (ja)
Other versions
JP2000070946A (en
Inventor
章斤 石塚
昭宏 若林
正孝 丹治
典之 沼田
広幸 桑畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Hitachi Maxell Ltd
Original Assignee
Kyushu Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Hitachi Maxell Ltd filed Critical Kyushu Hitachi Maxell Ltd
Priority to JP24537598A priority Critical patent/JP3643243B2/en
Publication of JP2000070946A publication Critical patent/JP2000070946A/en
Application granted granted Critical
Publication of JP3643243B2 publication Critical patent/JP3643243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は必要に応じて供給する水をタンク内に貯えておく供給水の貯留方法に係わり、特に、貯水タンク内における供給水中の微生物(水道法およびその関連法令規則に記載の細菌)の殺菌に関するものである。
【0002】
【従来の技術】
震災等の有事の際に飲料水レベルに殺菌浄化された生活水を罹災者に供給するために、貯水タンクを地下に埋設し遮断弁を介して水道管と直結させておき、平常時は貯水タンクの前後に設置している遮断弁を開放しておいて水道水を貯水タンクを通過させてから各家庭等に給水し、有事の際は、貯水タンクの前後における遮断弁を動作させて貯水タンクと水道管を切離し、貯水タンクに別途設けた取水口から貯水を供給するようにしたものが特開昭56−139321号公報などで提案されている。
【0003】
この従来技術は、貯水タンクにおける貯水が浄水場で殺菌浄化された新鮮な水道水そのものであるから、有事の際にさらに殺菌浄化を行なうことなく、直ちに貯水タンクから給水することができる利点を備えている。
【0004】
水道水は人体への影響を考慮して遊離残留塩素濃度を0.1ppm以上に保持できる程度にしているために、水道管路における流水量が少ないあるいは動圧が低い場合には、貯水タンクにおける貯水の循環に時間が掛かり、遊離残留塩素が水中の他の物質と結合して濃度が低下し、殺菌効果が低下する。
【0005】
それで、貯水タンクを水道管路の末端部に設置することができず、末端部の罹災者に生活水を供給することができない恐れがある。
【0006】
そこで、水道管路とは独立した形で貯水タンクを設け、貯水タンクに水質維持装置を付属させて水質の維持を図るものが特開平7−132299号公報で提案されている。
【0007】
【発明が解決しようとする課題】
しかし、水道管路とは独立した形で貯水タンクを設けた上記従来技術では、残留塩素計やpH計の検出結果に基づいて薬品を定期的に投入して水質の維持を図っており、水質維持に費用が掛かる。
【0008】
それゆえ、本発明の目的は、貯留場所について制限がなくしかも費用を掛けることなく水質を維持することができる供給水の貯留方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成する本発明の特徴とするところは、貯水タンクに供給水を注入して、次に該貯水タンクに付属した電解手段で電解処理を行なって注入された該貯水タンク内における供給水中の微生物を死滅させるに充分な濃度まで遊離残留塩素を供給し、以後、必要に応じて水を供給するまで上記貯水タンク内に供給水を保管しておくことにある。
【0010】
または、貯水タンクに供給水を注入して、次に該貯水タンクに付属した電解手段で電解処理を行なって注入された該貯水タンク内における供給水中の微生物を死滅させるに充分な濃度まで遊離残留塩素を供給し、その後該供給水中の遊離残留塩素の濃度を計測して計測値が0.1ppm未満であればその濃度が1.0ppm以下の任意の濃度になるまで該電解手段で電解処理を行って該処理を停止し、以後、必要に応じて水を供給するまで該濃度計測と電解処理を繰り返すことにある。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。まず、図1は、本発明供給水の貯留方法が使用可能である貯留式給水装置の概略縦断面図であり、図2は、図1に示した貯留式給水装置の配管ならびに電気系統を示す図である。
【0012】
図1において、1は大地Eに埋設された鉄筋コンクリートの基盤で、基盤1上に貯水タンク2と機械室3が設置固定されている。これらは大地Eに穴を掘って基盤1を形成し、その上に貯水タンク2と機械室3を設置固定して後述する所要の配管工事などをして土砂を穴に戻し、埋設したものである。貯水タンク2の給水口2aにはマンホール4が設けられ、給水口2aは中蓋5そしてマンホール4は外蓋6で地上と遮断されている。貯水タンク2に外蓋6と中蓋5を開けて給水車などにより給水口2aから貯留水Wが供給される。この時、必要に応じて塩分NaClも供給される。貯水タンク2と機械室3は配管7a〜7dで接続されている。配管7a〜7cは貯留水Wを循環するためのもの、配管7dは給水口2aに溜るガスを大気中に放出するためのものである。配管7aと7bは貯水タンク2の抜出口2b、2cに、配管7cは貯水タンク2の戻口2dに挿通され、配管7dは貯水タンク2のガス抜出口2eに挿通されている。
【0013】
機械室3内の配管7aと7bは電磁弁8a、8bを介して循環ポンプ9と接続されている。循環ポンプ9から出た配管7eに順次電磁弁8c、残留塩素計10、貯留水に対して電気化学的処理を行う電解装置11、気液分離装置12が接続され、さらに電磁弁8dを経て配管7cと接続されている。循環ポンプ9と電磁弁8cの間の配管7eには圧力スイッチ13が設置され、また分岐配管7fが接続されている。機械室3内の配管7dには、貯水タンク2側から見て順次一方通行の電磁弁8e、フィルタ14、吸引ポンプ15が接続されている。
【0014】
機械室3内にはさらに制御盤16、自家発電装置17および非常用蓄電池18が設置されている。作業者は、機械室3内に基台19に設けたマンホール20を介して梯子21で立ち入ることができる。基台19上に給水塔22が設置され、配管7d、7fが機械室3から導入され、配管7fには電磁弁8f〜8hを介して蛇口23、ホース接続用栓24が外壁に設置されている。また、配管7fの分岐部7faは電磁弁8iを介して気液分離装置12と電磁弁8dの間の配管7eに連通されている。なお、25はマンホール20を覆う外蓋である。貯水タンク2内の貯留水Wの残量は水位計26で計測され、計測結果は制御盤16内の後述する制御装置に送られる。貯水タンク2や配管7a〜7f、7faには耐蝕性の大きいビニエステルや不飽和ポリエステル系の繊維強化樹脂(FRP)などを用いる。
【0015】
貯水タンク2と機械室3の間の配管7a〜7dには蛇腹部を設け、工事や地震の際に生じる僅かな位置ずれを吸収できるようになっている。残留塩素計10は市販品であるが、計測結果は電気信号で得て制御盤16内の制御装置28に送られる。
【0016】
電解装置11は塩素化合物を含む貯留水Wの電気分解(電気化学的処理)を行なう。この電気化学的処理において、電解装置11では下式(1)〜(4)で示される反応が生じて次亜塩素酸 HClO や次亜塩素酸イオン ClO の遊離残留塩素が発生する。
【0017】
【化1】

Figure 0003643243
【0018】
なお、遊離残留塩素は0.1ppmで水中に存在する腸チフス菌、赤痢菌、コレラ菌などを15〜30秒で死滅させ(室温、pH6.2〜7.4)、0.2ppmでは大腸菌を瞬時に死滅させるが、水中のアンモニアや有機物と結合(酸化)して徐々に減少する。電解装置11はその電極として、耐蝕性の大きいチタンに白金を被覆したものを用い、表面にスケールが析出することを防止するために一定時間毎に印加電圧の極性を反転できるものを用いる。電解装置11で発生する塩素ガス Cl や遊離残留塩素は、直ちに貯留水W中に溶解するが、酸素や水素は電極周辺から気泡となって湧きあがる。それらを電解装置11に内蔵のファンで拡散させて機械室3と給水塔22の間に設置した通気筒27を介して大気中に放散する。気液分離装置12は電解装置11で除去できなかった気泡を貯留水W中よりさらに除去して、内蔵のファンで拡散させた上で通気筒27を介して大気中に放散する。
【0019】
図2において、30は制御盤16に内蔵のマイクロコンピュータを主体とした制御装置で入力装置として操作パネル31を備えている。32は循環ポンプ9や吸引ポンプ15のドライバで、電解装置11や気液分離装置12に内蔵されたファン33、34のドライバも兼ねている。35は電力会社から引き込まれる動力線に配置されたブレーカであり、36はこの動力線,自家発電装置17,非常用蓄電池18のいずれから電力を得るか切り替えを行なう切替器で、平常時には動力線から制御装置30に電力を供給し、災害発生で動力線から電力が得られなくなると制御装置30から指令を受けて一時的に非常用蓄電池18より電力を得たり直ちに立ち上げられた自家発電装置17から制御装置30に電力を継続して供給し給水の便を取れるようにする。非常用蓄電池18に太陽電池ユニットを接続して平常の天気の良い日にはこの太陽電池ユニットで得た電力を蓄えて、切替器36を照度センサの検出結果に基いて動作させ、非常用蓄電池18から制御装置30に電力を供給するようにしても良い。37は例えば設定震度6であれば震度≧6の地震の時にその旨を制御装置30に通報する感震センサ、38は貯水タンク2内の貯留水量がほぼ無くなった時に警報を出す警報機で、罹災者に貯留水減少を知らせるために給水塔22に設置するのが良い。
【0020】
貯水タンク2の貯留水Wは循環ポンプ9の作動で配管7aより吸い込まれ、残留塩素計10,電解装置11,気液分離装置12を通過して、配管7cで戻る循環系が形成されている。貯水タンク2では貯留水Wが均一的に循環するように、配管7aの吸込口と配管7cの戻口は貯水タンク2の円筒形長手方向軸中心に配置し、貯水タンク2内での流れを軸対称としている。
【0021】
貯水タンク2には給水車などにより塩素イオン200ppm以下、遊離残留塩素1.0ppm以下の水もしくは飲料水レベルの水が供給される。塩素ガス Cl の一部は大気中に拡散し、貯留水W中の遊離残留塩素濃度は徐々に減少していくが、平常時には貯留水W中の遊離残留塩素濃度を殺菌に有効な濃度に維持している。
【0022】
一方、災害発生時には貯水タンク2から貯留水Wを汲み上げ給水塔22の蛇口23やホース接続用栓24から罹災者に貯留水Wを供給する。
【0023】
以下、図3に示す処理フロー図により本発明による第一の実施形態を説明する。
【0024】
貯水タンク2に水道水を注入し、ステップ1(以下、ステップはSと略記する)で循環ポンプ9を作動する。続いてS2で電解装置11を運転し、水道水に初回の電気化学的処理を施す。中蓋5(図1参照)より注入される水道水は水道法施行規則上においては大腸菌は不検出で、一般細菌は100/ml以下でなければならない。
【0025】
また、注入時に微生物が混入する可能性があるため、貯留水Wの注入完了後に初回の電気化学的処理を行う。S3で残留塩素計10を作動させて、図4に示すように貯水タンク2内における貯留水Wの遊離残留塩素濃度P1を10ppm程度まで上昇させる。10ppm程度まで上昇させる理由としては、通常の塩素殺菌に対し耐性を持ったシュードモナス属等の耐性菌を含め、貯留水Wの微生物を殺菌するためである。S4で貯留水Wの遊離残留塩素濃度が10ppm程度になったかどうかを判断する。なっていなければこの処理を繰り返す。
【0026】
10ppm程度であれば、S5、S6で電解装置11、循環ポンプ9をそれぞれ停止して、マニュアル操作による緊急作動指令があるかどうかをS7で判断する。平常時にはその様な指令は無いのでS8に進み、感震センサ37の計測値が例えば震度設定6以上とするとセンサに取込まれる信号が震度6以上かどうか判断する。平常時には当然震度6以下であるから、S9に進み、循環ポンプ9が作動される。この場合、電磁弁8a,8c,8dは開放、電磁弁8b,8f〜8iまでは閉止の状態になっている。
【0027】
従って循環ポンプ9が作動されると、貯水タンク2の貯留水Wは配管7aから汲み上げられて、電磁弁8a、8cを通って配管7e上の残留塩素計10−電解装置11−気液分離装置12を経て電磁弁8dを通って配管7cから貯水タンク2に戻される。
【0028】
続いて、S10で残留塩素計10での計測値が制御装置30に取込まれる(遊離残留塩素濃度測定)。そしてS10において制御装置30は、遊離残留塩素濃度が設定(既定)の0.1ppm未満であるかどうか判断する。この場合、残留塩素計10の計測精度上、計測値が0.1ppmであれば、絶対値が0.1ppmでなくても(貯留水Wにおける実質的な濃度が0.1ppmでないとしても)制御装置30では遊離残留塩素濃度は0.1ppmであるとして処理する。
【0029】
初期段階で遊離残留塩素濃度は充分高いのでS11に進み、制御装置30における内蔵タイマー(図示せず)を始動させ、S12で残留塩素計10からの測定値取込を止め、S13で循環ポンプ9を停止させる。そしてS14でS11において開始したタイマーの一定時間(カウント)を停止させS7に戻る。このタイマーの運転は図4の時間tをカウントするものである。従って、循環ポンプ9はこのタイマーの動作で図4に示す時間T1ごとに作動される。遊離残留塩素濃度が0.1ppm未満でなければS7〜S14の動作を繰り返す。水中の遊離残留塩素は有機物や器材接触により消費されるため、図4に曲線P2で示すように貯水タンク2の遊離残留塩素濃度も減少していく。
【0030】
何度目かのS11の時刻t1で遊離残留塩素濃度が0.1ppm未満になると、S15に進み、電解装置11を運転し電圧印加で貯留水W中の塩素化合物を電気分解し、遊離残留塩素を生成する。S15に続いてS16で電解装置11から気泡のまま循環してきた酸素や水素、塩素を気液分離装置12により大気に開放する。
【0031】
そして、S17で残留塩素計10を作動させ、S18においてS17で計測した遊離残留塩素濃度が0.4ppm以上になっているかどうか判断し、0.4ppmになっていなければ、S15にもどってS18で遊離残留塩素濃度が0.4ppm以上になったと判断されるまでS15〜S18を繰り返す。この間、循環ポンプ9は運転している。
【0032】
S15〜S18を繰り返した結果、図4にt2で示すように遊離残留塩素濃度が0.4ppm以上になるとS19に進んで電解装置11の運転を止め、S20に進んで気液分離装置12を停止し、S12に戻って残留塩素計10による計測を停止し、S13で循環ポンプ9を停止する。
【0033】
ここで0.4ppmとした理由であるが、水道法で衛生面から0.1ppm以上としなければならないが、色並びに臭いなどを配慮した快適水質項目として設定された目標値として1.0ppm以下が良いとされており、両者の間を採って0.4ppmを任意の遊離残留塩素濃度とした。
【0034】
S15〜S18の間の、電解装置11の運転時間は図4にT2で示している。S7〜S14を繰り返し、ある時にS10〜S15に移ってS15〜S18を繰り返し、S18〜S20に進んでS12〜S14に進むことを繰り返すことによって、S7〜S14を繰り返している間は循環ポンプ9と電解装置11は図4の時間T3の間に時間T2だけ間歇的な運転をして電気化学的処理を行う。このためS7〜S14を繰り返している間は貯留水Wは循環ポンプ9の作動で電解装置11内を通過していくだけで、電気化学的処理は行われず電力の節約を図っている。
【0035】
さて、操作パネル31から緊急作動指令があり、S7でこの指令のあることが判断され、または指令がないとしてもS8で感震センサ37から設定震度6以上の計測結果が入っていることを判断すると、S21に進んで電磁弁8g〜8iを開き、S22で電磁弁8dを閉じ、これで罹災者等はS23で蛇口23やホース接続用栓24から供給を受けられる準備ができあがる。そしてS24で循環ポンプ9を作動し、水圧を高め、S25で圧力スイッチ13の作動状況を確認し、配管7a,7e,7f,7faにおける水圧が供給に足りる水圧になっているか上限値との比較を行なう。
【0036】
圧力スイッチ13が作動すれば、S26で循環ポンプ9を停止させ、S27でさらに圧力スイッチ13によって配管7a、7e、7f、7faにおける水圧が供給に足りる水圧を下回っているか下限値との比較を行う。すなわち、循環ポンプ9の作動を受けられるので、供給できないほど配管7a、7e、7f、7faにおける水圧が低下すると、S24に戻って循環ポンプ9を再始動させる。また、水位を水位計26で監視し、供給の結果、貯水タンク2における貯留水Wの水位が低下し配管7aで吸い上げられなくなると、電磁弁8aを閉じ電磁弁8bを開いて配管7bによる吸い上げを継続し、配管7bによる吸い上げが不可能かどうかS28で判断し、不可能になるまで吸い上げを継続して不可能と判断したところで供給を終了する。
【0037】
供給終了状況は警報機38で報知する。それで給水車などによる貯水タンク2への注入を促す。S24で循環ポンプ9が作動されたら点灯する表示ランプを給水塔22に設けておくと、罹災者などには好都合である。
【0038】
次に図5に示す処理フロー図により本発明による第二の実施形態を説明する。
【0039】
貯水タンク2に水道水を注入し、ステップ1(以下、ステップはSと略記する)で循環ポンプ9を作動する。続いてS2で電解装置11を運転し、水道水に初回の電気化学的処理を施す。S3で残留塩素計10を作動させて、図6に示すように貯水タンク2内の遊離残留塩素濃度P1を10ppm程度まで上昇させる。S4で貯留水Wの遊離残留塩素濃度が10ppm程度になったかどうかを判断する。なっていなければこの処理を繰り返す。
【0040】
10ppm程度であれば、S5、S6で電解装置11、循環ポンプ9をそれぞれ停止して、マニュアル操作による緊急作動指令があるかどうかをS7で判断し、緊急作動指令がなければ、S8へ進む。S8で感震センサ37の作動がなければ、電解装置が停止状態であるため遊離残留塩素濃度は図6に曲線P2で示すように減少していく。S7で緊急作動、もしくはS8で感震センサ37が作動すれば、S9で循環ポンプ9を作動させて、S10で遊離残留塩素濃度が0.1ppm以上になればS13で電磁弁8g〜8iを開き、S14で電磁弁8dを閉じてS15で蛇口23へ貯留水Wの供給を行う(図6では時刻t1の個所)。S16〜S19までの処理動作フローは図3に示すS25〜S28の処理動作フローと同様である。
【0041】
上記の実施形態では、循環ポンプ9、電解装置11は貯留水Wに初回の電気化学的処理時に運転した後は、緊急作動時、感震センサ37が作動時までは、運転を行わないため、第一の実施形態と同様に電力の節約が図れる。
【0042】
以上、第一と第二の実施形態で説明したように貯水タンク2内の貯留水(供給水)W中の微生物に初回の電気化学的処理を施し微生物を死滅させて、薬品を定期的に投入することなく貯留水Wの水質を維持できる。
【0043】
また、本発明供給水の貯留方法が用いることが可能な貯留式給水装置においては水道管と全く独立しており設置場所に制限を受けないので、水道が敷設されていない領域や水道管の端末領域などに自由に設置することができる。
【0044】
なお、貯留水Wを消火に限定して利用したい場合には、図1、図2において、循環ポンプ9の下流と電磁弁8cの間の配管に接続された電磁弁8fを開き、分岐7fa上の電磁弁8iを閉止させれば、残留塩素計10、電解装置11、気液分離装置12などを通過させることなく電磁弁8hを介して消火用水をホース接続用栓24から直ちに供給できる。
【0045】
【発明の効果】
以上、説明したように本発明供給水の貯留方法によれば、貯留場所について制限がなくしかも費用を掛けることなく水質を維持することができる。
【図面の簡単な説明】
【図1】本発明供給水の貯留方法が可能である貯留式給水装置の概略縦断面図である。
【図2】図1に示した貯留式給水装置の配管ならびに電気系統を示す図である。
【図3】本発明における第一の実施形態を示した処理フロー図である。
【図4】図3に示した各部の処理動作を示した図である。
【図5】本発明における第二の実施形態を示した処理フロー図である
【図6】図5に示した各部の処理動作を示した図である。
【符号の説明】
E…大地
W…貯留水
1…基盤
2…貯水タンク
2a…給水口
2b、2c、2e…抜出口
2d…戻口
3…機械室
4、20…マンホール
5…中蓋
6、25…外蓋
7a〜7f、7fa…配管
8a〜8i…電磁弁
9…循環ポンプ
10…残留塩素計
11…電解装置
12…気液分離装置
13…圧力スイッチ
14…フィルタ
15…吸引ポンプ
16…制御盤
17…自家発電装置
18…非常用蓄電池
19…基台
21…梯子
22…給水塔
23…蛇口
24…ホース接続用栓
26…水位計
27…通気塔
30…制御装置
31…操作パネル
32…ドライバ
33、34…内蔵ファン
35…ブレーカ
36…切替器
37…感震センサ
38…警報機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for storing supply water that stores water to be supplied as needed, and in particular, sterilization of microorganisms in the supply water in the storage tank (bacteria described in the Water Supply Law and related laws and regulations). It is about.
[0002]
[Prior art]
In order to supply living water that has been sterilized and purified to the drinking water level in case of an emergency such as an earthquake disaster, a water storage tank is buried underground and directly connected to the water pipe via a shutoff valve. Open the shut-off valves installed before and after the water storage tank, pass tap water through the water storage tank, and then supply water to each household. In case of an emergency, operate the shut-off valves before and after the water storage tank. Japanese Patent Application Laid-Open No. 56-139321 proposes a system in which a water storage tank and a water pipe are separated and water is supplied from a water intake provided separately in the water storage tank.
[0003]
This conventional technology has the advantage that the water stored in the water storage tank is fresh tap water that has been sterilized and purified at the water purification plant, so that it can be immediately supplied from the water tank without further sterilization and purification in the event of an emergency. ing.
[0004]
Since tap water is designed to maintain the free residual chlorine concentration at 0.1 ppm or higher in consideration of the effects on the human body, when the amount of running water is low or the dynamic pressure is low, Circulation of the water takes time, free residual chlorine combines with other substances in the water, the concentration decreases, and the sterilization effect decreases.
[0005]
As a result, the water storage tank cannot be installed at the end of the water pipe, and there is a risk that domestic water cannot be supplied to the victims at the end.
[0006]
Japanese Patent Application Laid-Open No. 7-132299 proposes a water storage tank that is provided independently of the water pipe, and is provided with a water quality maintenance device to maintain the water quality.
[0007]
[Problems to be solved by the invention]
However, in the above-described conventional technology in which a water storage tank is provided independently from the water pipe, chemicals are periodically added based on the detection results of the residual chlorine meter and pH meter to maintain the water quality. It is expensive to maintain.
[0008]
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a supply water storage method that can maintain water quality without any restriction on the storage location and without cost.
[0009]
[Means for Solving the Problems]
A feature of the present invention that achieves the above object is that the supply water is injected into the water storage tank and then injected into the water storage tank by electrolytic treatment with an electrolytic means attached to the water storage tank. The free residual chlorine is supplied to a concentration sufficient to kill the microorganisms, and then the supplied water is stored in the water storage tank until water is supplied as necessary.
[0010]
Alternatively, the supply water is injected into the water storage tank, and then electrolyzed by the electrolysis means attached to the water storage tank, and then the free residual residue to a concentration sufficient to kill the microorganisms in the supply water in the water storage tank injected. Chlorine is supplied, and then the concentration of free residual chlorine in the feed water is measured. If the measured value is less than 0.1 ppm, the electrolytic treatment is performed by the electrolysis means until the concentration reaches an arbitrary concentration of 1.0 ppm or less. The treatment is performed to stop, and thereafter, the concentration measurement and the electrolytic treatment are repeated until water is supplied as necessary.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. First, FIG. 1 is a schematic longitudinal sectional view of a storage-type water supply apparatus that can use the method for storing supply water of the present invention, and FIG. 2 shows piping and an electrical system of the storage-type water supply apparatus shown in FIG. FIG.
[0012]
In FIG. 1, reference numeral 1 denotes a reinforced concrete base embedded in the ground E, and a water storage tank 2 and a machine room 3 are installed and fixed on the base 1. These are digging holes in the ground E to form the base 1, on which the water storage tank 2 and the machine room 3 are installed and fixed, and the necessary plumbing work, which will be described later, is performed to return the earth and sand to the holes and bury them. is there. The water supply port 2 a of the water storage tank 2 is provided with a manhole 4, and the water supply port 2 a is shut off from the ground by an inner lid 5 and the manhole 4 by an outer lid 6. The outer lid 6 and the inner lid 5 are opened in the water storage tank 2, and the stored water W is supplied from the water supply port 2a by a water supply vehicle or the like. At this time, NaCl NaCl is also supplied as necessary. The water storage tank 2 and the machine room 3 are connected by pipes 7a to 7d. The pipes 7a to 7c are for circulating the stored water W, and the pipe 7d is for releasing the gas accumulated in the water supply port 2a into the atmosphere. The pipes 7 a and 7 b are inserted into the outlets 2 b and 2 c of the water tank 2, the pipe 7 c is inserted into the return port 2 d of the water tank 2, and the pipe 7 d is inserted into the gas outlet 2 e of the water tank 2.
[0013]
Pipes 7a and 7b in the machine room 3 are connected to a circulation pump 9 through electromagnetic valves 8a and 8b. A solenoid valve 8c, a residual chlorine meter 10, an electrolyzer 11 for performing electrochemical treatment on the stored water, and a gas-liquid separator 12 are sequentially connected to the pipe 7e that comes out of the circulation pump 9, and further piped through the solenoid valve 8d. 7c. A pressure switch 13 is installed in a pipe 7e between the circulation pump 9 and the electromagnetic valve 8c, and a branch pipe 7f is connected. A one-way electromagnetic valve 8e, a filter 14, and a suction pump 15 are sequentially connected to the piping 7d in the machine room 3 as viewed from the water storage tank 2 side.
[0014]
A control panel 16, a private power generator 17 and an emergency storage battery 18 are further installed in the machine room 3. An operator can enter the machine room 3 with a ladder 21 through a manhole 20 provided in the base 19. A water supply tower 22 is installed on the base 19, pipes 7d and 7f are introduced from the machine room 3, and a faucet 23 and a hose connection plug 24 are installed on the outer wall of the pipe 7f via electromagnetic valves 8f to 8h. Yes. Further, the branch portion 7fa of the pipe 7f is communicated with the pipe 7e between the gas-liquid separator 12 and the electromagnetic valve 8d via the electromagnetic valve 8i. Reference numeral 25 denotes an outer lid that covers the manhole 20. The remaining amount of the stored water W in the water storage tank 2 is measured by the water level meter 26, and the measurement result is sent to a control device described later in the control panel 16. For the water storage tank 2 and the pipes 7a to 7f and 7fa, vinyl ester having high corrosion resistance, unsaturated polyester fiber reinforced resin (FRP), or the like is used.
[0015]
The pipes 7a to 7d between the water storage tank 2 and the machine room 3 are provided with bellows portions so that slight positional deviations that occur during construction and earthquakes can be absorbed. Although the residual chlorine meter 10 is a commercial product, the measurement result is obtained as an electrical signal and sent to the control device 28 in the control panel 16.
[0016]
The electrolyzer 11 performs electrolysis (electrochemical treatment) of the stored water W containing a chlorine compound. In this electrochemical treatment, the reaction represented by the following formulas (1) to (4) occurs in the electrolysis apparatus 11 to produce hypochlorous acid HClO or hypochlorite ion ClO −. Of free residual chlorine.
[0017]
[Chemical 1]
Figure 0003643243
[0018]
In addition, free residual chlorine is 0.1 ppm and kills Salmonella typhi, Shigella, Vibrio cholerae, etc. existing in water in 15 to 30 seconds (room temperature, pH 6.2 to 7.4). Although it is killed, it is gradually reduced by combining (oxidizing) with ammonia and organic substances in water. The electrolysis apparatus 11 uses an electrode in which platinum having a high corrosion resistance is coated with platinum, and can reverse the polarity of the applied voltage every predetermined time in order to prevent scale from being deposited on the surface. Chlorine gas generated in the electrolyzer 11 Cl 2 And free residual chlorine immediately dissolves in the stored water W, but oxygen and hydrogen spring out as bubbles from around the electrode. They are diffused by a fan built in the electrolyzer 11 and diffused into the atmosphere through a through-cylinder 27 installed between the machine room 3 and the water tower 22. The gas-liquid separator 12 further removes bubbles that could not be removed by the electrolyzer 11 from the stored water W, diffuses them with a built-in fan, and diffuses them into the atmosphere via the through-cylinder 27.
[0019]
In FIG. 2, reference numeral 30 denotes a control device mainly composed of a microcomputer built in the control panel 16 and includes an operation panel 31 as an input device. Reference numeral 32 denotes a driver for the circulation pump 9 and the suction pump 15, which also serves as a driver for the fans 33 and 34 built in the electrolysis device 11 and the gas-liquid separation device 12. Reference numeral 35 denotes a breaker arranged on a power line drawn from an electric power company. Reference numeral 36 denotes a switch for switching whether to obtain power from the power line, the private power generation device 17 or the emergency storage battery 18. Power is supplied to the control device 30 from the power line, and when power cannot be obtained from the power line due to the occurrence of a disaster, a private power generation device that receives power from the emergency storage battery 18 upon receiving a command from the control device 30 or is immediately started up The power is continuously supplied from 17 to the control device 30 so that the water supply can be taken. When the solar battery unit is connected to the emergency storage battery 18 and the electric power obtained by this solar battery unit is stored on a day when the weather is normal, the switch 36 is operated based on the detection result of the illuminance sensor, and the emergency storage battery Power may be supplied from 18 to the control device 30. 37 is a seismic sensor that notifies the control device 30 of an earthquake having a seismic intensity ≧ 6 if the seismic intensity is 6, for example, and 38 is an alarm device that issues an alarm when the amount of water stored in the water storage tank 2 is almost exhausted. It is good to install in the water tower 22 in order to notify a victim of the decrease in stored water.
[0020]
The water W stored in the water storage tank 2 is sucked from the pipe 7a by the operation of the circulation pump 9, and a circulation system is formed which passes through the residual chlorine meter 10, the electrolyzer 11, and the gas-liquid separator 12 and returns by the pipe 7c. . In the water storage tank 2, the suction port of the pipe 7 a and the return port of the pipe 7 c are arranged at the center of the cylindrical longitudinal axis of the water storage tank 2 so that the stored water W circulates uniformly. Axisymmetric.
[0021]
The water storage tank 2 is supplied with water having a chlorine ion level of 200 ppm or less and free residual chlorine of 1.0 ppm or less or drinking water level by a water truck or the like. Part of the chlorine gas Cl 2 diffuses into the atmosphere, and the concentration of free residual chlorine in the stored water W gradually decreases. In normal times, the concentration of free residual chlorine in the stored water W is made effective for sterilization. Is maintained.
[0022]
On the other hand, when a disaster occurs, the stored water W is pumped from the water storage tank 2 and supplied to the victim from the faucet 23 of the water supply tower 22 and the hose connection plug 24.
[0023]
The first embodiment according to the present invention will be described below with reference to the process flow diagram shown in FIG.
[0024]
Tap water is injected into the water storage tank 2 and the circulation pump 9 is operated in step 1 (hereinafter, step is abbreviated as S). Subsequently, the electrolysis apparatus 11 is operated in S2, and the first electrochemical treatment is performed on the tap water. In the tap water injected from the inner lid 5 (see FIG. 1), E. coli is not detected and general bacteria must be 100 / ml or less in accordance with the enforcement regulations of the Water Supply Law.
[0025]
In addition, since there is a possibility that microorganisms are mixed at the time of injection, the first electrochemical treatment is performed after the injection of the stored water W is completed. In S3, the residual chlorine meter 10 is operated to increase the free residual chlorine concentration P1 of the stored water W in the water storage tank 2 to about 10 ppm as shown in FIG. The reason why it is increased to about 10 ppm is to sterilize microorganisms in the stored water W including resistant bacteria such as Pseudomonas having resistance to normal chlorine sterilization. In S4, it is determined whether or not the free residual chlorine concentration of the stored water W is about 10 ppm. If not, repeat this process.
[0026]
If it is about 10 ppm, the electrolyzer 11 and the circulation pump 9 are stopped in S5 and S6, respectively, and it is determined in S7 whether or not there is an emergency operation command by manual operation. Since there is no such command in normal times, the process proceeds to S8, and if the measured value of the seismic sensor 37 is, for example, seismic intensity setting 6 or more, it is determined whether or not the signal taken into the sensor is seismic intensity 6 or more. Since the seismic intensity is naturally 6 or less in normal times, the process proceeds to S9 and the circulation pump 9 is operated. In this case, the solenoid valves 8a, 8c and 8d are opened, and the solenoid valves 8b, 8f to 8i are closed.
[0027]
Therefore, when the circulation pump 9 is operated, the stored water W in the water storage tank 2 is pumped up from the pipe 7a, passes through the solenoid valves 8a and 8c, the residual chlorine meter 10 on the pipe 7e, the electrolyzer 11 and the gas-liquid separator. 12 is returned to the water storage tank 2 from the pipe 7c through the electromagnetic valve 8d.
[0028]
Subsequently, in S10, the measurement value of the residual chlorine meter 10 is taken into the control device 30 (free residual chlorine concentration measurement). In S10, control device 30 determines whether or not the free residual chlorine concentration is less than the preset (default) 0.1 ppm. In this case, if the measured value is 0.1 ppm on the measurement accuracy of the residual chlorine meter 10, the absolute value is not 0.1 ppm (even if the substantial concentration in the stored water W is not 0.1 ppm). In the apparatus 30, the free residual chlorine concentration is treated as 0.1 ppm.
[0029]
Since the free residual chlorine concentration is sufficiently high at the initial stage, the process proceeds to S11, a built-in timer (not shown) in the control device 30 is started, the measurement value taking in from the residual chlorine meter 10 is stopped in S12, and the circulation pump 9 in S13. Stop. In S14, the predetermined time (count) of the timer started in S11 is stopped, and the process returns to S7. This timer operation is for counting the time t in FIG. Therefore, the circulation pump 9 is operated every time T1 shown in FIG. 4 by the operation of this timer. If the free residual chlorine concentration is not less than 0.1 ppm, the operations of S7 to S14 are repeated. Since free residual chlorine in water is consumed by contact with organic matter and equipment, the concentration of free residual chlorine in the water storage tank 2 also decreases as shown by a curve P2 in FIG.
[0030]
When the free residual chlorine concentration becomes less than 0.1 ppm at the time t1 of S11 several times, the process proceeds to S15, and the electrolyzer 11 is operated to electrolyze the chlorine compound in the stored water W by applying a voltage, and free residual chlorine is removed. Generate. Following S15, oxygen, hydrogen, and chlorine circulated in the form of bubbles from the electrolyzer 11 are released to the atmosphere by the gas-liquid separator 12 in S16.
[0031]
Then, the residual chlorine meter 10 is operated in S17, and it is determined in S18 whether the free residual chlorine concentration measured in S17 is 0.4 ppm or more. If not, the process returns to S15 and returns to S18. S15 to S18 are repeated until it is determined that the free residual chlorine concentration is 0.4 ppm or more. During this time, the circulation pump 9 is in operation.
[0032]
As a result of repeating S15 to S18, when the free residual chlorine concentration becomes 0.4 ppm or more as shown by t2 in FIG. 4, the process proceeds to S19 to stop the operation of the electrolyzer 11, and proceeds to S20 to stop the gas-liquid separator 12 Then, returning to S12, the measurement by the residual chlorine meter 10 is stopped, and the circulation pump 9 is stopped in S13.
[0033]
The reason for this is 0.4 ppm, but it must be 0.1 ppm or more in terms of hygiene under the Water Supply Law, but the target value set as a comfortable water quality item considering color and odor is 1.0 ppm or less. It was considered good, and between them, 0.4 ppm was taken as an arbitrary free residual chlorine concentration.
[0034]
The operation time of the electrolyzer 11 between S15 and S18 is indicated by T2 in FIG. By repeating S7 to S14, moving to S10 to S15 at a certain time, repeating S15 to S18, proceeding to S18 to S20 and proceeding to S12 to S14, the circulation pump 9 and the like are repeated while repeating S7 to S14. The electrolyzer 11 performs an electrochemical process by intermittent operation for a time T2 during a time T3 in FIG. For this reason, while repeating S7-S14, the stored water W only passes the inside of the electrolysis apparatus 11 by the action | operation of the circulation pump 9, and an electrochemical process is not performed but the electric power saving is aimed at.
[0035]
Now, there is an emergency operation command from the operation panel 31, and it is determined that there is this command in S7, or even if there is no command, it is determined in S8 that the measurement result of the seismic intensity 6 or more is entered from the seismic sensor 37. Then, the process proceeds to S21, the solenoid valves 8g to 8i are opened, the solenoid valve 8d is closed in S22, and the victims are ready to be supplied from the faucet 23 and the hose connection plug 24 in S23. Then, in S24, the circulation pump 9 is operated to increase the water pressure, and in S25, the operating state of the pressure switch 13 is confirmed, and the water pressure in the pipes 7a, 7e, 7f, 7fa is a water pressure sufficient for supply or a comparison with the upper limit value. To do.
[0036]
If the pressure switch 13 is activated, the circulation pump 9 is stopped in S26, and in S27, the water pressure in the pipes 7a, 7e, 7f, and 7fa is lower than the water pressure sufficient for supply or is compared with the lower limit value. . That is, since the operation of the circulation pump 9 can be received, when the water pressure in the pipes 7a, 7e, 7f, and 7fa decreases so that it cannot be supplied, the process returns to S24 and the circulation pump 9 is restarted. Further, when the water level is monitored by the water level gauge 26 and the water level of the stored water W in the water storage tank 2 decreases and cannot be sucked up by the pipe 7a as a result of supply, the solenoid valve 8a is closed and the solenoid valve 8b is opened and sucked up by the pipe 7b In step S28, it is determined whether or not siphoning by the pipe 7b is impossible. When it is determined that siphoning is impossible, the supply is terminated.
[0037]
The supply end status is notified by an alarm 38. Therefore, the injection into the water storage tank 2 by a water truck or the like is urged. If the water supply tower 22 is provided with a display lamp that is turned on when the circulation pump 9 is activated in S24, it is convenient for victims and the like.
[0038]
Next, a second embodiment according to the present invention will be described with reference to a processing flowchart shown in FIG.
[0039]
Tap water is injected into the water storage tank 2 and the circulation pump 9 is operated in step 1 (hereinafter, step is abbreviated as S). Subsequently, the electrolysis apparatus 11 is operated in S2, and the first electrochemical treatment is performed on the tap water. In S3, the residual chlorine meter 10 is operated to increase the free residual chlorine concentration P1 in the water storage tank 2 to about 10 ppm as shown in FIG. In S4, it is determined whether or not the free residual chlorine concentration of the stored water W is about 10 ppm. If not, repeat this process.
[0040]
If it is about 10 ppm, the electrolyzer 11 and the circulation pump 9 are respectively stopped in S5 and S6, and it is determined in S7 whether or not there is an emergency operation command by manual operation. If there is no emergency operation command, the process proceeds to S8. If the seismic sensor 37 is not activated in S8, the electrolyzer is in a stopped state, so that the free residual chlorine concentration decreases as shown by the curve P2 in FIG. If the seismic sensor 37 is activated in S7 or the seismic sensor 37 is activated in S7, the circulating pump 9 is activated in S9. If the free residual chlorine concentration is 0.1 ppm or more in S10, the solenoid valves 8g to 8i are opened in S13. Then, the electromagnetic valve 8d is closed in S14, and the stored water W is supplied to the faucet 23 in S15 (the location at time t1 in FIG. 6). The processing operation flow from S16 to S19 is the same as the processing operation flow from S25 to S28 shown in FIG.
[0041]
In the above embodiment, the circulation pump 9 and the electrolyzer 11 are not operated until the seismic sensor 37 is activated at the time of emergency operation after operating the stored water W during the first electrochemical treatment. As in the first embodiment, power can be saved.
[0042]
As described above in the first and second embodiments, the microorganisms in the stored water (supply water) W in the water storage tank 2 are subjected to the first electrochemical treatment to kill the microorganisms, and the chemicals are periodically removed. The water quality of the stored water W can be maintained without charging.
[0043]
In addition, in the storage type water supply apparatus that can use the method for storing the supply water of the present invention, it is completely independent of the water pipe and is not limited by the installation location, so the area where the water is not laid or the terminal of the water pipe It can be installed freely in the area.
[0044]
When the stored water W is used only for extinguishing the fire, the solenoid valve 8f connected to the pipe between the downstream of the circulation pump 9 and the solenoid valve 8c is opened in FIGS. If the electromagnetic valve 8i is closed, the fire-extinguishing water can be immediately supplied from the hose connection plug 24 via the electromagnetic valve 8h without passing through the residual chlorine meter 10, the electrolyzer 11, the gas-liquid separator 12 and the like.
[0045]
【The invention's effect】
As described above, according to the method for storing the supply water of the present invention, the water quality can be maintained without any limitation on the storage location and without cost.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a storage-type water supply device capable of storing the supply water of the present invention.
FIG. 2 is a diagram showing piping and an electrical system of the storage-type water supply apparatus shown in FIG.
FIG. 3 is a processing flowchart showing the first embodiment of the present invention.
4 is a diagram illustrating a processing operation of each unit illustrated in FIG. 3;
FIG. 5 is a process flow diagram showing a second embodiment of the present invention. FIG. 6 is a diagram showing a processing operation of each unit shown in FIG.
[Explanation of symbols]
E ... Ground W ... Reserved water 1 ... Base 2 ... Water tank 2a ... Water supply ports 2b, 2c, 2e ... Exit 2d ... Return port 3 ... Machine room 4, 20 ... Manhole 5 ... Inner lid 6, 25 ... Outer lid 7a 7f, 7fa ... Pipes 8a-8i ... Solenoid valve 9 ... Circulating pump 10 ... Residual chlorine meter 11 ... Electrolytic device 12 ... Gas-liquid separator 13 ... Pressure switch 14 ... Filter 15 ... Suction pump 16 ... Control panel 17 ... In-house power generation Device 18 ... Emergency storage battery 19 ... Base 21 ... Ladder 22 ... Water tower 23 ... Fauce tap 24 ... Hose connection plug 26 ... Water level meter 27 ... Ventilation tower 30 ... Control device 31 ... Operation panel 32 ... Drivers 33, 34 ... Built-in Fan 35 ... Breaker 36 ... Switch 37 ... Seismic sensor 38 ... Alarm

Claims (5)

必要に応じて供給する水をタンク内に貯えておく供給水の貯留方法において、
貯水タンクに供給水を注入して、次に該貯水タンクに付属した電解手段で電解処理を行なって、該貯水タンクに供給水を注入した時点で該供給水中の遊離残留塩素の濃度が10ppmを越えるまで遊離残留塩素を供給して該供給水中の微生物を死滅させ、以後、必要に応じて水を供給するまで該貯水タンク内に供給水を保管しておくことを特徴とする供給水の貯留方法。
In the supply water storage method of storing water to be supplied in a tank as needed,
The supply water is injected into the water storage tank, and then the electrolytic treatment is performed by the electrolysis means attached to the water storage tank. When the supply water is injected into the water storage tank, the concentration of free residual chlorine in the supply water is 10 ppm. The supply water is stored in the water storage tank until the residual chlorine is supplied to kill microorganisms in the supply water until it exceeds, and the water is stored in the water storage tank until water is supplied if necessary. Method.
上記請求項1に記載の供給水の貯留方法において、必要に応じて水を供給する時点で上記電解手段で電解処理を行なって該供給水中の遊離残留塩素の濃度を0.1ppm以上としてから供給を行なうことを特徴とする供給水の貯留方法。  2. The supply water storage method according to claim 1, wherein the supply of water is performed after the electrolytic treatment is performed by the electrolysis means at the time when water is supplied as necessary, and the concentration of free residual chlorine in the supply water is set to 0.1 ppm or more. A method for storing supply water, comprising: 必要に応じて供給する水をタンク内に貯えておく供給水の貯留方法において、
貯水タンクに供給水を注入して、次に該貯水タンクに付属した電解手段で電解処理を行なって、該貯水タンクに供給水を注入した時点で該供給水中の遊離残留塩素の濃度が10ppmを越えるまで遊離残留塩素を供給して該供給水中の微生物を死滅させ、その後該供給水中の遊離残留塩素の濃度を計測して計測値が0.1ppm未満であればその濃度が1.0ppm以下の任意の濃度になるまで該電解手段で電解処理を行なって該処理を停止し、以後、必要に応じて水を供給するまで該濃度計測と電解処理を繰り返すことを特徴とする供給水の貯留方法。
In the supply water storage method of storing water to be supplied in a tank as needed,
The supply water is injected into the water storage tank, and then the electrolytic treatment is performed by the electrolysis means attached to the water storage tank. When the supply water is injected into the water storage tank, the concentration of free residual chlorine in the supply water is 10 ppm. Free residual chlorine is supplied until it exceeds, and microorganisms in the supply water are killed. Thereafter, the concentration of free residual chlorine in the supply water is measured. If the measured value is less than 0.1 ppm, the concentration is 1.0 ppm or less. Electrolytic treatment is performed with the electrolysis means until an arbitrary concentration is reached, the treatment is stopped, and thereafter, the concentration measurement and the electrolytic treatment are repeated until water is supplied as necessary. .
請求項3に記載の供給水の貯留方法において、前記1.0ppm以下の任意の濃度は、0.4ppmであることを特徴とする供給水の貯留方法。  4. The method for storing supply water according to claim 3, wherein the arbitrary concentration of 1.0 ppm or less is 0.4 ppm. 上記請求項1または請求項3に記載の供給水の貯留方法において、該貯水タンクに供給水を満水状態に注入して該貯水タンクを密閉状態とすることを特徴とする供給水の貯留方法。  4. The supply water storage method according to claim 1 or 3, wherein the supply water is injected into the water storage tank in a full state so that the water storage tank is sealed.
JP24537598A 1998-08-31 1998-08-31 Supply water storage method Expired - Fee Related JP3643243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24537598A JP3643243B2 (en) 1998-08-31 1998-08-31 Supply water storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24537598A JP3643243B2 (en) 1998-08-31 1998-08-31 Supply water storage method

Publications (2)

Publication Number Publication Date
JP2000070946A JP2000070946A (en) 2000-03-07
JP3643243B2 true JP3643243B2 (en) 2005-04-27

Family

ID=17132734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24537598A Expired - Fee Related JP3643243B2 (en) 1998-08-31 1998-08-31 Supply water storage method

Country Status (1)

Country Link
JP (1) JP3643243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604664B2 (en) * 2004-11-08 2011-01-05 富士電機リテイルシステムズ株式会社 Chlorine generator

Also Published As

Publication number Publication date
JP2000070946A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
US5422014A (en) Automatic chemical monitor and control system
JPS6320496A (en) Automated chlorine generator
US4962789A (en) Emergency water reservoir
US6508929B1 (en) Water treatment apparatus and method
US8470143B2 (en) Advanced chlorine generating system
US5993669A (en) Method and apparatus for optimizing electrolytic production of a halogen in a water treatment system
AU595145B2 (en) Electrolytic pool chlorinator
AU2017225104A1 (en) Device for manufacturing sodium hypochlorite or hypochlorous acid and water treatment system in general
US5637230A (en) Water treatment method and apparatus for adding calcium hypochlorite to potable water
US6096202A (en) Method and apparatus for optimizing electrolytic production of a halogen in a water treatment system
US20160122210A1 (en) Water sanitizing system with a hydrolysis cell and ozone generator
JP4259850B2 (en) Water treatment equipment
KR102172075B1 (en) Electrolysis of tubular type for water waste and sweage treatment device including thereof
US20050189216A1 (en) Method and apparatus for producing a disinfecting or therapeutic fluid
JP3643243B2 (en) Supply water storage method
US6281802B1 (en) Automatic chlorinator alarm system
JP3326096B2 (en) Storage type water supply device
JPH0615276A (en) Electrolytic disinfection of water and flowing water type water electrolytic disinfector
JP2004277755A (en) Ozone-generating apparatus
KR102172074B1 (en) Sewage treatment device having grinding and sterilzing apparatus by electrolysis
JPH07163982A (en) Electrolytic sterilization device for stored water
JPH08117757A (en) Sterilization of legionella bacteria in cooling column
JP2003334538A (en) Method and apparatus for distribution of purified water and water quality control management
US20030150784A1 (en) Liquid chlorine injection device
JPH1043761A (en) Alkaline ion water conditioning device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees