JP3642644B2 - Method of manufacturing header for heat exchanger having partition wall and flow rate adjusting wall - Google Patents

Method of manufacturing header for heat exchanger having partition wall and flow rate adjusting wall Download PDF

Info

Publication number
JP3642644B2
JP3642644B2 JP31622596A JP31622596A JP3642644B2 JP 3642644 B2 JP3642644 B2 JP 3642644B2 JP 31622596 A JP31622596 A JP 31622596A JP 31622596 A JP31622596 A JP 31622596A JP 3642644 B2 JP3642644 B2 JP 3642644B2
Authority
JP
Japan
Prior art keywords
header
partition wall
flow rate
wall
rate adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31622596A
Other languages
Japanese (ja)
Other versions
JPH10160384A (en
Inventor
仁一 桧山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP31622596A priority Critical patent/JP3642644B2/en
Publication of JPH10160384A publication Critical patent/JPH10160384A/en
Application granted granted Critical
Publication of JP3642644B2 publication Critical patent/JP3642644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用空気調和装置に組み込んで冷媒と空気とを熱交換させるエバポレータ、コンデンサ等の熱交換器を構成するヘッダの製造方法に関し、特にヘッダ本体の内側に仕切壁及び流量調整壁を有するヘッダを安価に造る事を目的としている。
【0002】
【従来の技術】
自動車用空気調和装置に組み込まれる熱交換器のうち、冷媒により空調用の空気を冷却するエバポレータとして従来から、図11〜12に示す構造のものが知られている。この熱交換器1は、何れもアルミニウム合金によって造られた複数の部材を組み合わせて成り、コア部2を有する。このコア部2は、横方向に適当な間隔をあけて互いに平行に配置された複数の伝熱管素子3、3と、隣り合う伝熱管素子3、3同士の間に挟持されたコルゲート型のフィン4、4とから成る。そして、上記コア部2の両側面にサイドプレート5、5を添設している。このサイドプレート5、5の内側面と、上記コア部の両端部に位置する伝熱管素子3、3の外側面との間にも、フィン4、4を挟持している。又、上記コア部2の上端側には、互いに平行に配設された1対の管状のヘッダ6a、6bを設けている。そしてこのヘッダ6a、6bの内部と、上記各伝熱管素子3、3の内部とを、接続部の気密及び液密を保持した状態で、互いに連通させている。又、上記一方のヘッダ6aの側面には、冷媒を送り込む為の送り込み管7及び上記コア部2内を通過した冷媒を送り出す為の送り出し管8を接合している。
【0003】
上記各ヘッダ6a、6bのうち、少なくとも一方のヘッダ6aは、管状のヘッダ本体9aと、このヘッダ本体9aの内側中間部を密に仕切る仕切壁10と、この仕切壁10を挟んで上記ヘッダ本体9a内に設けられた第一室11a及び第二室11bと、これら第一室11a及び第二室11bのうちの少なくとも一方の室に設けられた流量調整壁12とを備える。これに対して、他方のヘッダ6bは、ヘッダ本体9bのみで構成している。
【0004】
上記各ヘッダ本体9a、9bは、船形状の第一部材13a、13bと、同じく船形状の第二部材14a、14bとを最中状に組み合わせて成る。このヘッダ本体9a、9bは、アルミニウム合金製の芯材(母材)の表面にろう材を積層した、所謂クラッド材をプレス成形する事により、軸方向(図11〜12の左右方向)の両端を塞がれた船形状に形成している。これら第一部材13a、13bと第二部材14a、14bとを組み合わせて上記各ヘッダ本体9a、9bとするには、第一部材13a、13bの開口部を第二部材14a、14bの開口部に嵌合し、嵌合部をろう付け接合する。
【0005】
又、上記各第一部材13a、13bのうち、一方の第一部材13aの長手方向の中間の頂部には、図12に示す様に、係止孔15a、15bを形成している。又、上記両第二部材14a、14bの底部には、それぞれスリット状の接続孔16、16を形成している。これら各接続孔16、16は、それぞれ上記伝熱管素子3、3の一端部を隙間なく挿入自在な形状・寸法を有する。又、上記各ヘッダ本体9a、9bのうち、一方のヘッダ本体9aを構成する第一部材13aの側面には、前記送り込み管7及び送り出し管8の基端部を接続する為の、送り込み口17及び送り出し口18を形成している。
【0006】
又、前記仕切壁10及び流量調整壁12は、上記ヘッダ本体9a、9bと同様、アルミニウム合金製の芯材の少なくとも片面にろう材を積層したクラッド材である板材から打ち抜き形成する。これら両壁10、12の外形及び寸法は、それぞれの上端部に形成した係合突部19、20と、上記第一部材13aの係止孔15a、15bとを係合させた状態で、その外周縁が、上記ヘッダ本体9aの内周面と合致し、これら外周縁と内周面とが互いに密着する様にしている。又、上記流量調整壁12の中央部には、冷媒を通過させる為の、流量調整用の貫通孔21を形成している。
【0007】
上記の様に形成された第一部材13a及び第二部材14aと仕切壁10及び流量調整壁12とは、図11に示す様に、第一部材13aと第二部材14aとの間で仕切壁10及び流量調整壁12を抑え付ける状態に、互いに組み合わせる。そして、各部材13a、14a、10、12の当接部分同士をろう付けする事により、ヘッダ6aを構成する。又、前記第一部材13bと第二部材14bとは、図11に示す様に互いの開口部同士を嵌合させ、互いの当接部分同士をろう付けする事により、ヘッダ6bを構成する。尚、これらヘッダ6a、6bの構成各部材同士のろう付け作業は、前述したコア部2の構成各部材のろう付けと同時に、加熱炉中で行なう。
【0008】
上述した通り、従来の仕切壁10と流量調整壁12とを有するヘッダ6aは、ヘッダ本体9aを構成する船形状の第一部材13aと第二部材14aとにより、これら両部材13a、14aと別個に造った仕切壁10及び流量調整壁12を挟持して成る。この為、上記ヘッダ6aを構成する部品点数が多く、しかもこれら各構成部品の組み合わせが面倒で、コスト高の原因となる。更には、組み付け精度が不安定になると、仕切壁10の設置部で冷媒の漏れが発生し、熱交換器の性能が悪くなる可能性がある。
【0009】
この様な問題を解決する為、例えば特開平7−314035号公報には、所定の寸法・形状に切断された平板をプレス成形する事によって円筒状のヘッダ本体とこのヘッダ本体の軸方向中間部に仕切壁を形成する、熱交換器用ヘッダの製造方法が記載されている。図13〜14に示す様に、この製造方法により造られる熱交換器用ヘッダ23は、管状のヘッダ本体24の中間部内側を仕切壁25により仕切っている。この様なヘッダ23は、図15〜22に示す様な工程で造る。
【0010】
先ず、図15に示す様に、アルミニウム合金である芯材26の表面にろう材層27を積層した、クラッド材である板材28を準備する。次いで、この板材にプレス加工を施す事により、図16に示す様な半筒部29、29を、1対形成する。これら1対の半筒部29、29は、円弧状の連続部30を介して互いに並列に形成する。又、これら1対の半筒部29、29の、それぞれ軸方向中間部で互いに整合する位置には、それぞれこれら各半筒部29、29の直径方向内側に突出する、断面U字状の仕切壁成形部31、31を形成する。
【0011】
次に、切除工程により、図17(a)に斜線で示した、上記連続部30の一部で、上記各仕切壁成形部31、31の間に位置する部分、並びにこれら両仕切壁成形部31、31の外側に位置する縁部32の肉余り部33、33を切除する。この切除作業は、プレス機械によるトリムピアスにより行なう。
【0012】
この切除工程の後、図18に示す様にして行なう圧縮工程により、上記各仕切壁成形部31を、上記半筒部29の軸方向両側から圧縮して、仕切壁半部34を形成する。この圧縮工程は、図19に示す様に、各半筒部29の外側を、スプリング35により付勢されるワーク抑え36により抑えつつ、上記各半筒部29の内側の仕切壁成形部31の両側に圧縮部材37、37を配置し、これら両圧縮部材37、37により上記仕切壁成形部31を押し潰す事により行なう。この際、仕切壁成形部31の突出量を、矯正ブロック38により矯正する。
【0013】
次に、図20に示す縁部成形工程により、1対の半筒部29、29の縁部32、32を、図20(a)から同図(b)に示す状態にまで、各半筒部29、29の直径方向内側に変形させて、これら各縁部32、32を、上記各半筒部29、29から連続する断面円弧状に形成する。
【0014】
その後、図21に示す対向工程により、連続部30を直径方向内側から外側に向けて突出させ、上記1対の半筒部29、29同士を対向配置する。この対向工程は、上記1対の半筒部29、29を金型39内に収容した状態で上記連続部30を、ポンチ40により金型39の円弧部41に押圧する事により行なう。次に、図22に示した合わせ工程により、対向状態の1対の半筒部29、29を合わせて、これら両半筒部29、29の対向縁部同士を当接させる。その後、これら両半筒部29、29の対向縁部同士の突き合わせ部、並びに1対の仕切壁成形部31、31同士の突き合わせ部をろう付け接合する。この接合によって、前述の図13〜14に示す様な、仕切壁25付きのヘッダ23となる。
【0015】
【発明が解決しようとする課題】
上述の様な製造方法により造られるヘッダ23は、部品点数が少なく、組み付けも容易となる為、低コスト化を図れる。但し、ヘッダ23の内側には仕切壁25を設けるのみであり、流量調整壁を必要とするヘッダには適用できない。
本発明は、この様な事情に鑑みて、仕切壁だけでなく流量調整壁も有する熱交換器用ヘッダを安価に得られる製造方法を提供するものである。
【0016】
【課題を解決するための手段】
本発明の仕切壁と流量調整壁を有する熱交換器用ヘッダの製造方法は、軸方向両端を塞がれた管状のヘッダ本体と、このヘッダ本体の内側中間部を密に仕切る仕切壁と、この仕切壁を挟んで上記ヘッダ本体内に設けられた第一室及び第二室と、これら第一室及び第二室のうちの少なくとも一方の室の内側に設けられた、その外周縁を上記ヘッダ本体の内周面に連続させ、中央部に上記ヘッダ本体内を流れる流体を通過させる為の流量調整孔を形成した流量調整壁とから成る、仕切壁と流量調整壁とを有する熱交換器用ヘッダを製造するものである。
【0017】
この様な本発明の仕切壁と流量調整壁とを有する熱交換器用ヘッダの製造方法は、それぞれがアルミニウム合金製である芯材の少なくとも片面にろう材を積層したクラッド材である板材の一部で幅方向に離隔した2箇所位置にそれぞれ通孔を穿設した後、上記板材の幅方向中間部でこれら両通孔の間部分を境に上記板材を塑性変形させて、これら両通孔の間部分に設けた折れ曲がり連続部を介して互いに連続する1対の半筒部を、これら各半筒部の内周面側と外周面側とのうちの少なくとも一方の周面側に上記ろう材が存在する状態で形成すると共に、これら各半筒部の軸方向中間部分を上記板材の長さ方向に押し潰す様に折り返す事により、上記各半筒部の一部を仕切る仕切壁半部を形成し、且つ上記各通孔を形成した部分を上記板材の長さ方向に、これら各通孔の中間部を境に押し潰す様に折り返す事により、上記各半筒部の一部を軸方向に仕切って、それぞれの端縁中央部に切り欠きを有する流量調整壁半部を形成し、その後、上記折れ曲がり連続部を塑性変形させる事により、上記1対の半筒部の端縁同士並びに上記各仕切壁半部及び各流量調整壁半部の端縁同士を互いに突き合わせた後加熱して、各突き合わせ部をろう付けする。
【0018】
【作用】
上述の様に構成される、本発明の仕切壁と流量調整壁とを有する熱交換器用ヘッダの製造方法によれば、仕切壁と流量調整壁とを有する熱交換器用ヘッダを1枚の板材から造れる。
【0019】
【発明の実施の形態】
図1〜10は、本発明の仕切壁と流量調整壁とを有する熱交換器用ヘッダの製造方法の実施の形態の1例を示している。尚、前述した従来技術と共通する部分に就いては同一符号を付し、又、構造上重複する部分に就いての図示及び説明は、省略若しくは簡略にする。特に、図1〜10に示した本発明の実施の形態に関して、前述の図11に示した熱交換器1、並びに図13〜22に示した従来の仕切壁25を有するヘッダ23の製造方法に就いては、共通する部分が多いので、説明を簡略にする。
【0020】
先ず、図1〜2は、以下に述べる本発明の製造方法によって造られるヘッダ43を示している。このヘッダ43は、軸方向の両端部を図示しない蓋部によって塞がれたヘッダ本体44と、このヘッダ本体44の軸方向中間部内側に形成された仕切壁25及び流量調整壁45とを備える。上記仕切壁25は、前述の図13〜22に示した従来の製造方法と同様に、後述する板材28(図3)を塑性変形させて、この板材28に設けたU字形の折れ曲がり連続部30を介して互いに連続する1対の半筒部29、29を形成する{図16(c)参照}。次いで、これら各半筒部29、29の中間部分を上記板材28の長手方向に押し潰す様に折り返す事によって、上記各半筒部29の軸方向一部で互いに整合する位置を仕切る、1対の仕切壁半部34、34を形成する。次いで、上記両半筒部29、29同士を連続させる連続部30を塑性変形させる事によって、上記1対の半筒部29、29の端縁同士並びに上記仕切壁半部34、34の端縁同士を突き合わせ、互いの突き合わせ部同士をろう付け接合する。上記仕切壁25の成形は、次述する流量調整壁45の成形と平行して行なう。
【0021】
次に、上記ヘッダ43を構成するヘッダ本体44の内側に、上述の仕切壁25の形成作業と平行して行なう、流量調整壁45の形成方法に就いて説明する。先ず、図3に示す様な、アルミニウム合金である芯材26の両面にろう材層27、27を設けた両面クラッド材である、板材28を準備する。次いで、この板材28の一部で幅方向(図3の左右方向)に離隔した2箇所位置に、それぞれ通孔47、47を穿設する。この穿設作業は、プレス作業により容易に行なえる。尚、図3は、厚さ方向の寸法を、面方向の寸法に比べ誇張して描いている。
【0022】
上記1対の通孔47、47を穿設したならば、次いで、図4に示す成形工程で、前記板材28に、1対の型同士の間で押圧するプレス成形を施し、上記板材28の幅方向中間部で通孔47、47の間部分を境として、1対の半筒部29、29を形成する。これら1対の29、29は、円弧状の連続部30を介して互いに並列に形成する。又、これら1対の半筒部29、29の一部で上記各通孔47、47を形成した部分には、これら各半筒部29、29を板材28の厚さ方向に押し込む事により、流量調整壁45を形成する為の、断面U字形の調整壁形成部48、48を形成する。
【0023】
次に、図5に示す切除工程により、同図(a)に斜線で示した、上記連続部30の一部で、上記各調整壁形成部48、48の間に位置する部分、並びにこれら両調整壁形成部48、48の外側に位置する縁部32の肉余り部33を切除する。この切除工程は、プレス機械によるトリムピアスにより行なう。
【0024】
この切除工程後、図6に示す圧縮工程により、上記各調整壁形成部48を両側から圧縮して、それぞれが半円形の切り欠き50を有する流量調整壁半部49を形成する。この圧縮工程は、図7に示す様に、各半筒部29の外側を、スプリング35により付勢されるワーク抑え36により抑えつつ、上記各半筒部29の内側の調整壁形成部48の両側に圧縮部材37、37を配置し、これら両圧縮部材37、37により上記調整壁形成部48を押し潰す事により行なう。この際、調整壁形成部48の突出量を、矯正ブロック38により矯正する。
【0025】
次に図8に示す縁部成形工程により、1対の半筒部29、29の縁部32、32を、図8(a)から同図(b)に示す状態にまで、各半筒部29、29の直径方向内側に変形させて、これら各縁部32、32を、上記各半筒部29、29から連続する断面円弧状に形成する。
【0026】
その後、図9に示す対向工程により、連続部30を直径方向内側から外側に向け突出させ、更に、上記1対の半筒部29、29同士を対向配置する。この対向工程は、上記1対の半筒部29、29を金型39内に収容した状態で上記連続部30を、ポンチ40により金型39の円弧部41に押圧する事により行なう。次に、図10に示した合わせ工程により、対向状態の1対の半筒部29、29を合わせて、これら両半筒部29、29の対向縁部同士を突き合わせる。この後、これら両半筒部29、29の対向縁部同士の突き合わせ部、並びに1対の仕切壁成形部31、31同士の突き合わせ部をろう付け接合する。この接合によって、前述の図1〜2に示す様な、仕切壁25及び流量調整壁45付きのヘッダ43となる。又、図示の例では、このヘッダ43を両面クラッド材により造る為、上記仕切壁25及び流量調整壁45を構成すべく、互いに重ね合わされた板材同士のろう付けも、同時に行なう。
【0027】
尚、上述の図3〜10に示した製造工程では、前述の仕切壁25の成形も併せて行なう。従って、上記接合工程にあっては、1対の半筒部29、29の端縁同士並びに前記仕切壁半部34、34及び流量調整壁半部49、49の端縁同士を同時にろう付け接合して、上記仕切壁25及び流量調整壁45付のヘッダ43を造る。又、図示の例では、エバポレータ用のヘッダに就いて説明したが、コンデンサ用のヘッダ等、他の熱交換器用のヘッダの製造に本発明を適用する事もできる。又、ヘッダ本体の形状は、断面が円形の管状体としたが、従来例で開示した様な偏平形でも良く、特にその形状は限定しない。更に、板材28を構成するろう材層27、27は、必ずしも芯材26の両面に設ける必要はなく、少なくとも片面に設ければ良い。片面にのみろう材層27を設けた場合でも、ろう付けの為の加熱に基づいて溶融したろう材は、毛細管現象によってろう付けすべき突き合わせ部に入り込み、この突き合わせ部を、気密且つ液密にろう付けする。
【0028】
【発明の効果】
本発明の仕切壁と流量調整壁とを有する熱交換器用ヘッダの製造方法は、以上に述べた通り構成されるので、仕切壁と流量調整壁とを有する熱交換器用ヘッダを、1枚の板材から造れる。この為、部品点数を少なくして、その組み立てに要する手間を低減し、低コストで、且つ精度の安定したヘッダを得られる。
【図面の簡単な説明】
【図1】本発明の方法により造られる仕切壁と流量調整壁とを有するヘッダの要部断面図。
【図2】図1のイ−イ断面図。
【図3】図1に示すヘッダを製造する為の板材の部分斜視図。
【図4】本発明の製造方法を実施する場合の成形工程を示しており、(a)は中間素材の平面図、(b)は(a)のロ−ロ断面図、(c)は(a)のハ−ハ断面図。
【図5】本発明の製造方法を実施する場合の切除工程を示しており、(a)は中間素材の平面図、(b)は(a)のニ−ニ断面図。
【図6】本発明の製造方法を実施する場合の圧縮工程を示しており、(a)は圧縮前の状態を示す断面図、(b)は圧縮後の状態を示す断面図。
【図7】上記圧縮工程を行なう装置のより具体的な構造を示しており、(a)は圧縮前の状態を示す断面図、(b)は圧縮後の状態を示す断面図。
【図8】本発明の製造方法を実施する場合の縁部成形工程を示しており、(a)は成形前の状態を、(b)は成形後の状態を、それぞれ示す断面図。
【図9】本発明の製造方法を実施する場合の対向工程を示しており、(a)は準備工程を、(b)は対向させる状態を、それぞれ示す断面図。
【図10】本発明の製造方法を実施する場合の合わせ工程を示しており、(a)は上記対向工程から連続する初期段階を、(b)は完了段階を、それぞれ示す断面図。
【図11】従来の仕切壁と流量調整壁とを有する熱交換器用ヘッダを組み込んだ熱交換器の1種であるエバポレータの略斜視図。
【図12】図11に示したエバポレータを構成するヘッダの要部分解斜視図。
【図13】別の従来方法により造られたヘッダの部分断面図。
【図14】図13のホ−ホ断面図。
【図15】図13に示すヘッダの素材となる板材の部分切断斜視図。
【図16】図13に示すヘッダを製造する場合の成形工程を示しており、(a)は中間素材の平面図、(b)は(a)のヘ−ヘ断面図、(c)は(a)のト−ト断面図。
【図17】図13に示すヘッダを製造する場合の切除工程を示しており、(a)は中間素材の平面図、(b)は(a)のチ−チ断面図。
【図18】図13に示すヘッダを製造する場合の圧縮工程を示しており、(a)は圧縮前の状態を示す断面図、(b)は圧縮後の状態を示す断面図。
【図19】上記圧縮工程を行なう装置のより具体的な構造を示しており、(a)は圧縮前の状態を示す断面図、(b)は圧縮後の状態を示す断面図。
【図20】図13に示すヘッダを製造する場合の縁部成形工程を示しており、(a)は成形前の状態を、(b)は成形後の状態を、それぞれ示す断面図。
【図21】図13に示すヘッダを製造する場合の対向工程を示しており、(a)は準備工程を、(b)は対向させる状態を、それぞれ示す断面図。
【図22】図13に示すヘッダを製造する場合の合わせ工程を示しており、(a)は上記対向工程から連続する初期段階を、(b)は完了段階を、それぞれ示す断面図。
【符号の説明】
1 熱交換器
2 コア部
3 伝熱管素子
4 フィン
5 サイドプレート
6a、6b ヘッダ
7 送り込み管
8 送り出し管
9a、9b ヘッダ本体
10 仕切壁
11a 第一室
11b 第二室
12 流量調整壁
13a、13b 第一部材
14a、14b 第二部材
15a、15b 係止孔
16 接続孔
17 送り込み口
18 送り出し口
19、20 係合突部
21 貫通孔
23 ヘッダ
24 ヘッダ本体
25 仕切壁
26 芯材
27 ろう材層
28 板材
29 半筒部
30 連続部
31 仕切壁成形部
32 縁部
33 肉余り部
34 仕切壁半部
35 スプリング
36 ワーク抑え
37 圧縮部材
38 矯正ブロック
39 金型
40 ポンチ
41 円弧部
43 ヘッダ
44 ヘッダ本体
45 流量調整壁
46 流量調整孔
47 通孔
48 調整壁形成部
49 流量調整壁半部
50 切り欠き
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a header that constitutes a heat exchanger such as an evaporator or a condenser that is incorporated in an air conditioner for an automobile to exchange heat between refrigerant and air, and in particular, a partition wall and a flow rate adjusting wall are provided inside the header body. The purpose is to produce a header with low cost.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, among heat exchangers incorporated in an automobile air conditioner, an evaporator having a structure shown in FIGS. 11 to 12 is conventionally known as an evaporator that cools air for air conditioning with a refrigerant. The heat exchanger 1 is formed by combining a plurality of members made of an aluminum alloy, and has a core portion 2. The core portion 2 includes a plurality of heat transfer tube elements 3 and 3 arranged in parallel with each other at an appropriate interval in the lateral direction, and a corrugated fin sandwiched between adjacent heat transfer tube elements 3 and 3. 4 and 4. Side plates 5 and 5 are attached to both side surfaces of the core portion 2. Fins 4, 4 are also sandwiched between the inner side surfaces of the side plates 5, 5 and the outer side surfaces of the heat transfer tube elements 3, 3 located at both ends of the core portion. A pair of tubular headers 6a and 6b arranged in parallel to each other are provided on the upper end side of the core portion 2. The interiors of the headers 6a and 6b and the interiors of the heat transfer tube elements 3 and 3 are communicated with each other in a state where the airtightness and liquid tightness of the connecting portions are maintained. Further, a feed pipe 7 for feeding the refrigerant and a feed pipe 8 for sending the refrigerant that has passed through the core portion 2 are joined to the side surface of the one header 6a.
[0003]
Among the headers 6a and 6b, at least one of the headers 6a includes a tubular header body 9a, a partition wall 10 for tightly partitioning an inner middle portion of the header body 9a, and the header body sandwiching the partition wall 10 therebetween. The first chamber 11a and the second chamber 11b provided in 9a, and the flow rate adjusting wall 12 provided in at least one of the first chamber 11a and the second chamber 11b. On the other hand, the other header 6b is composed of only the header body 9b.
[0004]
Each of the header bodies 9a and 9b is formed by combining a ship-shaped first member 13a and 13b and a ship-shaped second member 14a and 14b in the middle. The header bodies 9a and 9b are formed by press-molding a so-called clad material in which a brazing material is laminated on the surface of an aluminum alloy core material (base material), so that both ends in the axial direction (left and right directions in FIGS. 11 to 12). It is formed into a closed ship shape. In order to combine the first members 13a and 13b and the second members 14a and 14b to form the header bodies 9a and 9b, the openings of the first members 13a and 13b are changed to the openings of the second members 14a and 14b. Fit and braze and join the fitting.
[0005]
Further, among the first members 13a and 13b, locking holes 15a and 15b are formed at the top in the longitudinal direction of one of the first members 13a as shown in FIG. In addition, slit-shaped connection holes 16 and 16 are formed at the bottoms of the second members 14a and 14b, respectively. Each of the connection holes 16 and 16 has a shape and a dimension in which one end portions of the heat transfer tube elements 3 and 3 can be inserted without gaps. Of the header bodies 9a and 9b, a feed port 17 for connecting the proximal end portions of the feed pipe 7 and the feed pipe 8 to the side surface of the first member 13a constituting one header body 9a. And a delivery port 18 is formed.
[0006]
The partition wall 10 and the flow rate adjusting wall 12 are formed by stamping from a plate material which is a clad material in which a brazing material is laminated on at least one surface of an aluminum alloy core material, like the header bodies 9a and 9b. The external shapes and dimensions of both the walls 10 and 12 are such that the engaging projections 19 and 20 formed at the upper ends of the walls 10 and 12 are engaged with the locking holes 15a and 15b of the first member 13a. The outer peripheral edge coincides with the inner peripheral surface of the header body 9a so that the outer peripheral edge and the inner peripheral surface are in close contact with each other. A flow rate adjusting through-hole 21 is formed in the central portion of the flow rate adjusting wall 12 for allowing the refrigerant to pass therethrough.
[0007]
As shown in FIG. 11, the first member 13a and the second member 14a, the partition wall 10 and the flow rate adjusting wall 12 formed as described above are divided between the first member 13a and the second member 14a. 10 and the flow rate adjusting wall 12 are combined with each other. And the header 6a is comprised by brazing the contact part of each member 13a, 14a, 10, 12 with each other. Further, the first member 13b and the second member 14b constitute the header 6b by fitting the openings to each other and brazing the contact portions with each other as shown in FIG. In addition, the brazing operation | work of each structural member of these headers 6a and 6b is performed in a heating furnace simultaneously with brazing of the structural members of the core part 2 mentioned above.
[0008]
As described above, the header 6a having the conventional partition wall 10 and the flow rate adjusting wall 12 is separated from both the members 13a and 14a by the ship-shaped first member 13a and the second member 14a constituting the header body 9a. The partition wall 10 and the flow rate adjusting wall 12 made in the above are sandwiched. For this reason, the number of parts constituting the header 6a is large, and the combination of these constituent parts is troublesome, resulting in high costs. Furthermore, if the assembling accuracy becomes unstable, refrigerant leakage may occur at the installation portion of the partition wall 10, and the performance of the heat exchanger may deteriorate.
[0009]
In order to solve such problems, for example, Japanese Patent Application Laid-Open No. 7-314035 discloses a cylindrical header body and an axially intermediate portion of the header body by press-molding a flat plate cut into a predetermined size and shape. The manufacturing method of the header for heat exchangers which forms a partition wall is described. As shown in FIGS. 13 to 14, the heat exchanger header 23 manufactured by this manufacturing method partitions the inside of the intermediate portion of the tubular header body 24 by a partition wall 25. Such a header 23 is manufactured by a process as shown in FIGS.
[0010]
First, as shown in FIG. 15, a plate material 28, which is a clad material, is prepared by laminating a brazing material layer 27 on the surface of a core material 26, which is an aluminum alloy. Next, by pressing the plate material, a pair of half-cylinder portions 29 and 29 as shown in FIG. 16 are formed. The pair of half-cylinder portions 29 and 29 are formed in parallel with each other via an arc-shaped continuous portion 30. In addition, at a position where the pair of half-cylinder portions 29 and 29 are aligned with each other in the middle portion in the axial direction, a partition having a U-shaped cross section projecting inward in the diameter direction of each of the half-tube portions 29 and 29. Wall forming portions 31 and 31 are formed.
[0011]
Next, a part of the continuous portion 30 shown by hatching in FIG. 17A in the cutting process, a portion located between the partition wall forming portions 31, 31 and the both partition wall forming portions. The excess portions 33 and 33 of the edge portion 32 located outside the 31 and 31 are excised. This excision work is performed by trim piercing using a press machine.
[0012]
After the cutting step, the partition wall forming portions 31 are compressed from both sides in the axial direction of the half cylinder portion 29 by the compression step performed as shown in FIG. In this compression step, as shown in FIG. 19, the outer side of each half cylinder part 29 is restrained by a work restraint 36 biased by a spring 35, while the partition wall molding part 31 inside each half cylinder part 29 is restrained. The compression members 37 and 37 are disposed on both sides, and the partition wall forming portion 31 is crushed by the compression members 37 and 37. At this time, the protruding amount of the partition wall forming portion 31 is corrected by the correction block 38.
[0013]
Next, in the edge forming step shown in FIG. 20, the edge portions 32, 32 of the pair of half tube portions 29, 29 are moved from the state shown in FIG. 20 (a) to the state shown in FIG. The edges 29 and 29 are deformed inwardly in the diameter direction of the portions 29 and 29, and the edge portions 32 and 32 are formed in a circular arc shape continuous from the half cylinder portions 29 and 29.
[0014]
Thereafter, in the facing step shown in FIG. 21, the continuous portion 30 is protruded from the inner side in the diameter direction toward the outer side, and the pair of half-cylinder portions 29, 29 are arranged to face each other. This facing step is performed by pressing the continuous portion 30 against the arc portion 41 of the mold 39 by the punch 40 in a state where the pair of half cylinder portions 29 and 29 are accommodated in the mold 39. Next, by the alignment step shown in FIG. 22, the pair of half-cylinder portions 29, 29 in an opposed state are brought together and the opposed edge portions of both the half-cylinder portions 29, 29 are brought into contact with each other. Thereafter, the abutting portions between the opposing edge portions of the half cylinder portions 29 and 29 and the abutting portion between the pair of partition wall forming portions 31 and 31 are brazed and joined. By this joining, a header 23 with a partition wall 25 as shown in FIGS.
[0015]
[Problems to be solved by the invention]
Since the header 23 manufactured by the manufacturing method as described above has a small number of parts and can be easily assembled, the cost can be reduced. However, the partition wall 25 is only provided inside the header 23 and cannot be applied to a header that requires a flow rate adjusting wall.
In view of such circumstances, the present invention provides a manufacturing method for obtaining a heat exchanger header having not only a partition wall but also a flow rate adjusting wall at low cost.
[0016]
[Means for Solving the Problems]
A method of manufacturing a header for a heat exchanger having a partition wall and a flow rate adjusting wall according to the present invention includes a tubular header body closed at both ends in the axial direction, a partition wall that tightly partitions an inner middle portion of the header body, A first chamber and a second chamber provided in the header body across the partition wall, and an outer peripheral edge provided inside at least one of the first chamber and the second chamber is defined as the header. A header for a heat exchanger having a partition wall and a flow rate adjusting wall, comprising a flow rate adjusting wall which is continuous with the inner peripheral surface of the main body and has a flow rate adjusting hole formed at the center for allowing a fluid flowing through the header body to pass therethrough. Is to be manufactured.
[0017]
Such a method for manufacturing a header for a heat exchanger having a partition wall and a flow rate adjusting wall according to the present invention is a part of a plate material that is a clad material in which a brazing material is laminated on at least one side of a core material made of an aluminum alloy. The through holes are respectively formed at two positions separated in the width direction in the above, and then the plate material is plastically deformed at the intermediate portion in the width direction of the plate material at the boundary between the two through holes. A pair of half-cylinder portions that are continuous with each other via a bent continuous portion provided in an intermediate portion, and the brazing material on at least one of the inner peripheral surface side and the outer peripheral surface side of each of the half-tube portions. The partition wall half part which partitions off a part of each half cylinder part is formed by folding back so that the axial direction middle part of each half cylinder part may be crushed in the length direction of the plate material. The portion where each through hole is formed is the length of the plate material. The flow rate adjusting wall has a notch at the center of each end edge by dividing the half cylinder part in the axial direction by folding back in such a way that it crushes at the middle part of each through hole. Forming a half part, and then plastically deforming the bent continuous part, the edges of the pair of half tube parts and the edges of the partition wall half parts and the flow rate adjusting wall half parts are mutually connected. It heats after butt | matching, and each butt | matching part is brazed.
[0018]
[Action]
According to the manufacturing method of the header for a heat exchanger having the partition wall and the flow rate adjusting wall according to the present invention configured as described above, the header for the heat exchanger having the partition wall and the flow rate adjusting wall is formed from one plate material. I can make it.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
1-10 has shown one example of embodiment of the manufacturing method of the header for heat exchangers which has the partition wall and flow volume adjustment wall of this invention. In addition, the same code | symbol is attached | subjected about the part which is common in the prior art mentioned above, and the illustration and description about the part which overlaps on structure are abbreviate | omitted or simplified. In particular, with respect to the embodiment of the present invention shown in FIGS. 1 to 10, the heat exchanger 1 shown in FIG. 11 described above and the method of manufacturing the header 23 having the conventional partition wall 25 shown in FIGS. Since there are many common parts, the explanation will be simplified.
[0020]
First, FIGS. 1-2 has shown the header 43 produced by the manufacturing method of this invention described below. The header 43 includes a header main body 44 in which both end portions in the axial direction are closed by a lid portion (not shown), and a partition wall 25 and a flow rate adjusting wall 45 formed inside the intermediate portion in the axial direction of the header main body 44. . In the same manner as the conventional manufacturing method shown in FIGS. 13 to 22, the partition wall 25 is formed by plastically deforming a plate material 28 (FIG. 3) to be described later, and a U-shaped bent continuous portion 30 provided on the plate material 28. A pair of half-cylinder portions 29 and 29 that are continuous with each other are formed through {FIG. 16 (c)}. Next, by folding back the intermediate portions of the half tube portions 29, 29 so as to be crushed in the longitudinal direction of the plate member 28, a pair of the half tube portions 29 is separated from each other at positions aligned with each other in the axial direction. Partition wall halves 34, 34 are formed. Next, the end portions of the pair of half tube portions 29 and 29 and the edge portions of the partition wall half portions 34 and 34 are formed by plastically deforming the continuous portion 30 that makes the both half tube portions 29 and 29 continuous. Butts are brought together and brazed together. The partition wall 25 is formed in parallel with the flow rate adjusting wall 45 described below.
[0021]
Next, a method of forming the flow rate adjusting wall 45 performed inside the header main body 44 constituting the header 43 in parallel with the above-described operation of forming the partition wall 25 will be described. First, as shown in FIG. 3, a plate material 28, which is a double-sided clad material in which brazing material layers 27, 27 are provided on both surfaces of a core material 26 made of an aluminum alloy, is prepared. Next, through holes 47 and 47 are formed at two positions separated in the width direction (left and right direction in FIG. 3) in a part of the plate material 28, respectively. This drilling operation can be easily performed by pressing. In FIG. 3, the dimension in the thickness direction is exaggerated as compared with the dimension in the surface direction.
[0022]
After the pair of through holes 47, 47 are formed, next, in the molding step shown in FIG. 4, the plate material 28 is subjected to press molding for pressing between a pair of dies, and the plate material 28 A pair of half-cylinder portions 29 and 29 are formed at a middle portion in the width direction with a portion between the through holes 47 and 47 as a boundary. The pair 29 and 29 are formed in parallel with each other via the arc-shaped continuous portion 30. In addition, by pushing each half cylinder part 29, 29 in the thickness direction of the plate material 28 into a part where each of the through holes 47, 47 is formed in a part of the pair of half cylinder parts 29, 29, The adjusting wall forming portions 48 and 48 having a U-shaped cross section for forming the flow rate adjusting wall 45 are formed.
[0023]
Next, by the excision process shown in FIG. 5, a part of the continuous part 30 indicated by hatching in FIG. 5A is located between the adjustment wall forming parts 48, 48, and both of these parts. The excess portion 33 of the edge portion 32 located outside the adjustment wall forming portions 48 and 48 is cut off. This cutting process is performed by trim piercing using a press machine.
[0024]
After the cutting step, the adjusting wall forming portions 48 are compressed from both sides by a compressing step shown in FIG. 6 to form flow rate adjusting wall half portions 49 each having a semicircular cutout 50. In this compression step, as shown in FIG. 7, the outside of each half cylinder part 29 is restrained by a work restraint 36 biased by a spring 35, while the adjustment wall forming part 48 inside each half cylinder part 29 is restrained. The compression members 37 and 37 are arranged on both sides, and the adjustment wall forming portion 48 is crushed by these compression members 37 and 37. At this time, the protruding amount of the adjustment wall forming portion 48 is corrected by the correction block 38.
[0025]
Next, by the edge forming step shown in FIG. 8, the edge portions 32, 32 of the pair of half tube portions 29, 29 are moved from the state shown in FIG. 8 (a) to the state shown in FIG. 8 (b). 29, 29 is deformed inward in the diametrical direction, and each of the edge portions 32, 32 is formed in a cross-sectional arc shape continuous from the half tube portions 29, 29.
[0026]
Thereafter, in the facing step shown in FIG. 9, the continuous portion 30 is protruded from the inside to the outside in the diametrical direction, and the pair of half-tube portions 29 and 29 are arranged to face each other. This facing step is performed by pressing the continuous portion 30 against the arc portion 41 of the mold 39 by the punch 40 in a state where the pair of half cylinder portions 29 and 29 are accommodated in the mold 39. Next, in the alignment step shown in FIG. 10, the pair of half-cylinder portions 29, 29 in an opposed state are aligned, and the opposed edge portions of both the semi-cylindrical portions 29, 29 are butted together. Thereafter, the abutting portions between the opposed edge portions of the half cylinder portions 29 and 29 and the abutting portion between the pair of partition wall forming portions 31 and 31 are brazed and joined. By this joining, the header 43 with the partition wall 25 and the flow rate adjusting wall 45 as shown in FIGS. Further, in the illustrated example, since the header 43 is made of a double-sided clad material, the overlapping plate members are simultaneously brazed to form the partition wall 25 and the flow rate adjusting wall 45.
[0027]
In the manufacturing process shown in FIGS. 3 to 10 described above, the partition wall 25 is also molded. Therefore, in the above joining step, the edges of the pair of half tube portions 29, 29 and the edges of the partition wall half portions 34, 34 and the flow rate adjusting wall half portions 49, 49 are brazed and joined simultaneously. Then, the header 43 with the partition wall 25 and the flow rate adjusting wall 45 is made. In the illustrated example, the evaporator header has been described. However, the present invention can also be applied to the manufacture of headers for other heat exchangers such as condenser headers. The header body is a tubular body having a circular cross section, but may be a flat shape as disclosed in the prior art, and the shape is not particularly limited. Furthermore, the brazing material layers 27, 27 constituting the plate material 28 are not necessarily provided on both surfaces of the core material 26, and may be provided on at least one surface. Even when the brazing material layer 27 is provided only on one side, the brazing material melted by heating for brazing enters the butt portion to be brazed by capillary action, and this butt portion is made airtight and liquid tight. Braze.
[0028]
【The invention's effect】
Since the manufacturing method of the header for heat exchangers having the partition wall and the flow rate adjusting wall according to the present invention is configured as described above, the header for the heat exchanger having the partition wall and the flow rate adjusting wall is formed as one plate material. Can be made from For this reason, the number of parts can be reduced, the labor required for the assembly can be reduced, and a header with low cost and stable accuracy can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a header having a partition wall and a flow rate adjusting wall produced by the method of the present invention.
2 is a cross-sectional view taken along the line II in FIG. 1;
3 is a partial perspective view of a plate material for manufacturing the header shown in FIG. 1. FIG.
FIGS. 4A and 4B show molding steps when the manufacturing method of the present invention is carried out, in which FIG. 4A is a plan view of an intermediate material, FIG. 4B is a cross-sectional view of FIG. The ha sectional drawing of a).
5A and 5B show a cutting process when the manufacturing method of the present invention is carried out, in which FIG. 5A is a plan view of an intermediate material, and FIG. 5B is a knee cross-sectional view of FIG.
6A and 6B show a compression step when the manufacturing method of the present invention is carried out, in which FIG. 6A is a cross-sectional view showing a state before compression, and FIG. 6B is a cross-sectional view showing a state after compression.
FIGS. 7A and 7B show a more specific structure of an apparatus for performing the compression step, wherein FIG. 7A is a cross-sectional view showing a state before compression, and FIG. 7B is a cross-sectional view showing a state after compression.
FIGS. 8A and 8B show edge forming steps when the manufacturing method of the present invention is carried out, in which FIG. 8A is a sectional view showing a state before molding, and FIG. 8B is a state after molding.
FIGS. 9A and 9B are cross-sectional views showing a facing process when the manufacturing method of the present invention is carried out, in which FIG. 9A shows a preparation process and FIG.
10A and 10B are cross-sectional views showing an alignment process when the manufacturing method of the present invention is performed, in which FIG. 10A shows an initial stage continuous from the facing process, and FIG. 10B shows a completion stage.
FIG. 11 is a schematic perspective view of an evaporator that is a kind of heat exchanger incorporating a header for a heat exchanger having a conventional partition wall and a flow rate adjusting wall.
12 is an exploded perspective view of main parts of a header constituting the evaporator shown in FIG.
FIG. 13 is a partial cross-sectional view of a header manufactured by another conventional method.
14 is a sectional view of the hoe of FIG. 13;
15 is a partially cut perspective view of a plate material that is a material of the header shown in FIG. 13;
16 shows a molding process in the case of manufacturing the header shown in FIG. 13. (a) is a plan view of an intermediate material, (b) is a cross-sectional view of (a), and (c) is ( FIG.
17 shows a cutting process in manufacturing the header shown in FIG. 13, wherein (a) is a plan view of the intermediate material, and (b) is a cross-sectional view of the teach of (a).
18A and 18B show a compression process when manufacturing the header shown in FIG. 13, wherein FIG. 18A is a cross-sectional view showing a state before compression, and FIG. 18B is a cross-sectional view showing a state after compression.
FIG. 19 shows a more specific structure of an apparatus for performing the compression step, wherein (a) is a sectional view showing a state before compression, and (b) is a sectional view showing a state after compression.
20 shows an edge forming step in manufacturing the header shown in FIG. 13, wherein (a) is a cross-sectional view showing a state before forming, and (b) is a state after forming.
FIGS. 21A and 21B are cross-sectional views showing a facing process when the header shown in FIG. 13 is manufactured, wherein FIG. 21A shows a preparation process, and FIG.
22A and 22B are cross-sectional views showing an alignment process when manufacturing the header shown in FIG. 13, wherein FIG. 22A shows an initial stage continuous from the facing process, and FIG. 22B shows a completion stage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Core part 3 Heat exchanger tube element 4 Fin 5 Side plate 6a, 6b Header 7 Feed pipe 8 Feed pipe 9a, 9b Header main body 10 Partition wall 11a First chamber 11b Second chamber 12 Flow rate adjustment walls 13a, 13b First One member 14a, 14b Second member 15a, 15b Locking hole 16 Connection hole 17 Feeding port 18 Feeding port 19, 20 Engaging projection 21 Through hole 23 Header 24 Header body 25 Partition wall 26 Core material 27 Brazing material layer 28 Plate material 29 Half cylinder part 30 Continuous part 31 Partition wall molding part 32 Edge part 33 Overfill part 34 Partition wall half part 35 Spring 36 Work restraint 37 Compression member 38 Correction block 39 Mold 40 Punch 41 Arc part 43 Header 44 Header body 45 Flow rate Adjustment wall 46 Flow rate adjustment hole 47 Through hole 48 Adjustment wall forming part 49 Flow rate adjustment wall half part 50 Notch

Claims (1)

軸方向両端を塞がれた管状のヘッダ本体と、このヘッダ本体の内側中間部を密に仕切る仕切壁と、この仕切壁を挟んで上記ヘッダ本体内に設けられた第一室及び第二室と、これら第一室及び第二室のうちの少なくとも一方の室の内側に設けられた、その外周縁を上記ヘッダ本体の内周面に連続させ、中央部に上記ヘッダ本体内を流れる流体を通過させる為の流量調整孔を形成した流量調整壁とから成る、仕切壁と流量調整壁とを有する熱交換器用ヘッダを製造する方法であって、それぞれがアルミニウム合金製である芯材の少なくとも片面にろう材を積層したクラッド材である板材の一部で幅方向に離隔した2箇所位置にそれぞれ通孔を穿設した後、上記板材の幅方向中間部でこれら両通孔の間部分を境に上記板材を塑性変形させて、これら両通孔の間部分に設けた折れ曲がり連続部を介して互いに連続する1対の半筒部を、これら各半筒部の内周面側と外周面側とのうちの少なくとも一方の周面側に上記ろう材が存在する状態で形成すると共に、これら各半筒部の軸方向中間部分を上記板材の長さ方向に押し潰す様に折り返す事により、上記各半筒部の一部を軸方向に仕切る仕切壁半部を形成し、且つ上記各通孔を形成した部分を上記板材の長さ方向に、これら各通孔の中間部を境に押し潰す様に折り返す事により、上記各半筒部の一部を軸方向に仕切って、それぞれの端縁中央部に切り欠きを有する流量調整壁半部を形成し、その後、上記折れ曲がり連続部を塑性変形させる事により、上記1対の半筒部の端縁同士並びに上記各仕切壁半部及び各流量調整壁半部の端縁同士を互いに突き合わせた後加熱して、各突き合わせ部をろう付けする、仕切壁と流量調整壁とを有する熱交換器用ヘッダの製造方法。Tubular header body closed at both ends in the axial direction, a partition wall for tightly partitioning the inner intermediate portion of the header body, and a first chamber and a second chamber provided in the header body across the partition wall And the outer periphery provided inside at least one of the first chamber and the second chamber is made continuous with the inner peripheral surface of the header body, and the fluid flowing in the header body is flown at the center. A method of manufacturing a heat exchanger header having a partition wall and a flow rate adjusting wall, comprising a flow rate adjusting wall having a flow rate adjusting hole for allowing passage, wherein each of the core members is made of an aluminum alloy. After a through-hole is formed at two positions separated in the width direction by a part of the plate material that is a clad material in which brazing material is laminated, a portion between the two through-holes is defined at the intermediate portion in the width direction of the plate material. These plates are plastically deformed to A pair of semi-cylindrical portions that are continuous with each other via a bent continuous portion provided in a portion between the through holes are disposed on at least one of the inner peripheral surface side and the outer peripheral surface side of each of the semi-cylindrical portions. The brazing material is formed in a state in which it exists, and a part of each half cylinder part is axially folded by folding back the axial middle part of each half cylinder part in the length direction of the plate material. Each half cylinder part is formed by forming a partition wall half part for partitioning and folding the part where each through hole is formed in the longitudinal direction of the plate material so as to crush the intermediate part of each through hole as a boundary. A pair of the half-tube portions are formed by partitioning a part of each of the half-tube portions in the axial direction, forming a flow-adjusting wall half portion having a notch at the center of each edge, and then plastically deforming the bent continuous portion. And the edges of the partition wall halves and the flow rate adjusting wall halves are Heated after the butt, each butt portion brazed, manufacturing process of the heat exchanger header with a partition wall and a flow rate adjustment wall.
JP31622596A 1996-11-27 1996-11-27 Method of manufacturing header for heat exchanger having partition wall and flow rate adjusting wall Expired - Fee Related JP3642644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31622596A JP3642644B2 (en) 1996-11-27 1996-11-27 Method of manufacturing header for heat exchanger having partition wall and flow rate adjusting wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31622596A JP3642644B2 (en) 1996-11-27 1996-11-27 Method of manufacturing header for heat exchanger having partition wall and flow rate adjusting wall

Publications (2)

Publication Number Publication Date
JPH10160384A JPH10160384A (en) 1998-06-19
JP3642644B2 true JP3642644B2 (en) 2005-04-27

Family

ID=18074708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31622596A Expired - Fee Related JP3642644B2 (en) 1996-11-27 1996-11-27 Method of manufacturing header for heat exchanger having partition wall and flow rate adjusting wall

Country Status (1)

Country Link
JP (1) JP3642644B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164837B2 (en) * 2012-12-26 2017-07-19 カルソニックカンセイ株式会社 Evaporator structure
JP2017223399A (en) * 2016-06-14 2017-12-21 株式会社デンソー Cooling system
JP2022161501A (en) * 2021-04-09 2022-10-21 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle device

Also Published As

Publication number Publication date
JPH10160384A (en) 1998-06-19

Similar Documents

Publication Publication Date Title
EP0617250B1 (en) A method of producing a refrigerant tube for heat exchangers
CA2508684C (en) Stacking-type, multi-flow, heat exchangers and methods for manufacturing such heat exchangers
JP2000304488A (en) Aluminum alloy heat exchanger
JPH10238896A (en) Lamination type evaporator
JP2001041675A (en) Tube for heat exchanger and heat exchanger
JPH05172488A (en) Partition plate assembling structure of header pipe for heat exchanger and assembling method therefor
JPH07318289A (en) Heat exchanger
US6513585B2 (en) Header-less vehicle radiator
JPH09329397A (en) Heat exchanger
JP4217469B2 (en) Heat exchanger
GB2371505A (en) Heat exchanger construction
JP3642644B2 (en) Method of manufacturing header for heat exchanger having partition wall and flow rate adjusting wall
JPH11142087A (en) Heat-exchanger
JP2007147173A (en) Heat exchanger and its manufacturing method
EP1027942A1 (en) Tube for heat exchanger and method of manufacturing same
JPH05322467A (en) Heat exchanger
EP0866301A1 (en) Heat exchanger and method of manufacturing same
JP2701939B2 (en) Manufacturing method of aluminum heat exchanger
JP2002250596A (en) Method for manufacturing stacked heat exchanger
JPH054600B2 (en)
JP4214582B2 (en) Stacked evaporator
JP2511157Y2 (en) Automotive heat exchanger
JP2752481B2 (en) Manufacturing method of laminated heat exchanger
JP3804151B2 (en) Laminate heat exchanger
JP2001153585A (en) Heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees