JP3642288B2 - Coaxial flexible piezoelectric cable polarization apparatus and polarization method - Google Patents

Coaxial flexible piezoelectric cable polarization apparatus and polarization method Download PDF

Info

Publication number
JP3642288B2
JP3642288B2 JP2001077883A JP2001077883A JP3642288B2 JP 3642288 B2 JP3642288 B2 JP 3642288B2 JP 2001077883 A JP2001077883 A JP 2001077883A JP 2001077883 A JP2001077883 A JP 2001077883A JP 3642288 B2 JP3642288 B2 JP 3642288B2
Authority
JP
Japan
Prior art keywords
piezoelectric
block
coaxial flexible
flexible piezoelectric
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001077883A
Other languages
Japanese (ja)
Other versions
JP2002280632A (en
Inventor
満男 海老澤
透 杉森
彪 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001077883A priority Critical patent/JP3642288B2/en
Priority to US10/020,474 priority patent/US6593681B2/en
Priority to EP01129761A priority patent/EP1215737A3/en
Priority to CNB011381647A priority patent/CN1323442C/en
Publication of JP2002280632A publication Critical patent/JP2002280632A/en
Application granted granted Critical
Publication of JP3642288B2 publication Critical patent/JP3642288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は同軸状可撓性圧電ケーブルの分極に関するものである。
【0002】
【従来の技術】
同軸状可撓性圧電ケーブルは、図4に示すように、芯電極1の周囲に同軸状可撓性圧電体2を形成した圧電体チューブ3の外表面に外側電極4を形成し、更に、その周囲に保護被覆層5を形成して構成される。
【0003】
従来、可撓性圧電体ケーブルは以下のようにして分極されていた。
【0004】
文献1(“圧電セラミック粉末と合成ゴムとから成る圧電複合材料”、粉体と工業、22巻、1号、50−56頁、1990)では、芯電極1と外側電極4の間に高電圧を印加して、同軸状可撓性圧電体2を分極することが示されている。このことは、USP4,568,851にも明示されている。分極により、セラミック粒子の自発分極の方向が電界方向に揃うので、同軸状可撓性圧電体2に圧電性が付与される。この点で、分極は重要な役割を担っている。
【0005】
【発明が解決しようとする課題】
しかしながら,前記従来の方法では、次のような課題があった。芯電極1と外側電極4の間に高電圧を印加したとき、同軸状可撓性圧電体2中に微少なクラックや空隙などの欠陥が存在する場合、その欠陥部で微少放電が生じる。この微少放電により、可撓性圧電体2の構成材料が熱的に蒸発、飛散して、芯電極1と外側電極4間が短絡する。その結果、芯電極1と外側電極4間に高電圧を印加できなくなるので、同軸状可撓性圧電体2(通常、数百m以上の長さ)を分極できなくなる。
【0006】
また、芯電極1と外側電極4の間に高電圧を印加するまで、言い換えると、分極することを除いて、同軸状可撓性圧電ケーブルとして完成するまで欠陥の存在を検出できないので、製造が不安定になり、歩留まりが低下する。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するために、芯電極周囲に同軸状可撓性圧電体を形成した圧電体チューブと、前記圧電体チューブを移動させる移動手段と、前記圧電体チューブ停止と移動時間、又は、移動速度を制御する制御手段と、ブロック状導電体と前記芯電極に接続された直流電圧発生手段を有し、前記圧電体チューブは前記ブロック状導電体の面上に配設されることを特徴とした同軸状可撓性圧電ケーブルの分極装置を提供する。
【0008】
上記発明によれば、同軸状可撓性圧電体がブロック状導電体に接触しているので、ブロック状導電体は外側電極4として作用する。従って、前記ブロック状導電体と芯電極間に直流電圧手段により直流電圧を印加することにより、ブロック状導電体に配設された部分の同軸状可撓性圧電体を分極できる。
【0009】
また、制御手段により、圧電体チュブの停止と移動時間、又は、移動速度を制御することにより必要な時間で同軸状可撓性圧電体を分極できる。
【0010】
【発明の実施の形態】
請求項1に記載の分極装置は、圧電体チューブをブロック状導電体の面上に配設することにより、ブロック状導電体は外側電極として作用する。従って、ブロック状導電体と芯電極の間に高電圧を印加することにより、ブロック状導電体の通路とブロック状導電体の面上に配設された部分の同軸状可撓性圧電体(以下、被分極同軸状可撓性圧電体と言う)だけを分極できる。また、ブロック状導電体に圧電体チューブ通路の加工を施す必要がないため、ブロック状導電体加工が容易になる。また、圧電体チューブをブロック状導電体の溝、孔に配設する必要がないため、圧電体チューブをより簡単に配設できる。
【0011】
また、圧電体チューブ停止と移動時間、又は、移動速度を制御する制御手段を備え圧電体チューブを停止または移動させて分極を行うものである。これによって、圧電体チュブの停止と移動時間、又は、移動速度を制御することにより必要な時間で同軸状可撓性圧電体を分極できる。
【0012】
微少な欠陥を含む部分の同軸状可撓性圧電体が被分極同軸状可撓性圧電体になったとき、欠陥部での放電による芯電極と外側電極間の短絡により、導通手段と芯電極間に高電圧を印加できなくなる。しかし、この短絡部がブロック状導電体とブロック状導電体から離脱した後の被分極同軸状可撓性圧電体は、再び正常に分極できる。従って、欠陥部が存在しても、全体の同軸状可撓性圧電体が分極できなくなることは無い。また、このことは、微少な欠陥が、一定長さの被分極同軸状可撓性圧電体の部分に存在することを示すので、外側電極を形成する前に、微少な欠陥が一定長さ範囲内に存在することを検出できる。
【0013】
請求項に記載の分極装置は、請求項1に記載の構成に加えて、ヒータを配設した加熱ブロックによりブロック状導電体を加熱し、ブロック状導電体に配設された圧電体チューブに熱を加える加熱手段を設けた構成である。そのため、圧電体チューブの温度を制御できるので、必要な温度で同軸状可撓性圧電体を分極できる。
【0014】
また請求項3に記載の分極装置は、上記記載の発明の構成に加えて、圧電体チューブと直列に抵抗を設けた構成である。微少な欠陥を含む部分の同軸状可撓性圧電体が被分極同軸状可撓性圧電体になったとき、同軸状可撓性圧電体は印可される電圧が下がり分極出来なくなる。しかし、適切な抵抗により電流をを制御できるため直流電圧発生手段に損傷を与えることが無い。また、同軸状可撓性圧電体の欠陥部がブロック状導電体から離脱した後の被分極同軸状可撓性圧電体は、再び正常に分極できる。従って、欠陥部が存在しても、全体の同軸状可撓性圧電体が分極できなくなることは無い。また、このことは、微少な欠陥が、一定長さの被分極同軸状可撓性圧電体の部分に存在することを示すので、外側電極を形成する前に、微少な欠陥が一定長さ範囲内に存在することを検出できる。
【0015】
請求項に記載の発明は、圧電体チューブブロック状導電体の面上に配設し、記圧電体チューブ停止、又は、移動手段により移動させ、制御手段により前記圧電体チューブ停止と移動時間、又は、移動速度を制御し、圧電体チューブの芯線とブロック状導電体間に直流電圧を印加する分極方法である。従って、ブロック状導電体は外側電極として作用するので、ブロック状導電体と芯電極の間に高電圧を印加することにより、ブロック状導電体の面上とブロック状導電体の通路に配設された部分の同軸状可撓性圧電体だけを分極できる。そして、圧電体チューブ停止と移動時間、又は、移動速度を制御する制御手段を備えたので、必要な時間で同軸状可撓性圧電体を分極できる。
【0016】
また、本発明の方法によれば、圧電体チューブを連続的に分極できる。
【0017】
請求項に記載の分極方法は、上記記載の分極方法において、圧電体チューブの芯線をアース電位にして、芯線とブロック状導電体の間に直流電圧を印加する分極方法である。ブロック状導電体と芯電極の間に直流高電圧を印加したとき、人体に危険な直流高電圧部分をブロック状導電体に限定できるので、仕切り壁などにより人体への安全を容易に確保できる。
【0018】
請求項に記載の分極方法は、ヒータを配設した加熱ブロックによりブロック状導電体を加熱し、ブロック状導電体に配設された圧電体チューブに熱を加えながら、圧電体チューブの芯線とブロック状導電体間に直流電圧を印加する分極方法である。圧電体チューブの温度を制御できるので、必要な温度で同軸状可撓性圧電体を分極できる。
【0019】
【実施例】
以下、本本発明の実施例について図1〜4を用いて説明する。
【0020】
(実施例1)
図1は本発明の第1の実施例における同軸状可撓性圧電体分極装置の構成を示す外観見取図である。芯電極1に対して同軸状可撓性圧電体2が形成される(以下では、この成形体を圧電体チューブ3と言う)。芯電極1として、コイル状金属線や金属細線を束ねた線などが用いられる。可撓性圧電体2として、エポキシ樹脂,ウレタン樹脂,クロロプレン樹脂,塩素化ポリエチレン樹脂などの高分子母材に,チタン酸ジルコン酸鉛などのセラミック圧電体粉末を添加した複合圧電体やPVDFなどの高分子圧電体が用いられる。
【0021】
圧電体チューブ3は、ブロック状導電体6の面上に配設された後、移動手段(図示していない)により移動される。ブロック状導電体6として、鉄、ステンレス、銅、黄銅、アルミニウムなどの導電体を用いる。ブロック状導電体6の加工は切削、研削、押出、プレス加工などでおこなう。本実施例ではブロック状導電体6の材料として、容易に入手でき、加工の容易なアルミニウムを用た。具体的には、外径2ミリメートルの圧電体チューブ3に対して、幅30ミリメートル、高さ20ミリメートル、長さ500ミリメートルとしている。移動手段(図示していない)としては、巻き取りドラムに圧電体チューブ3を巻き付け、巻き取りドラムを回転させて圧電体チューブ3を移動させる。なお、図1では、ブロック状導電体6に配設された圧電体チューブ3の移動方向を矢印で示している。
【0022】
同軸状可撓性圧電体2を分極するときの温度は、一般的に、それが使用される温度以上である。このため、分極時同軸状可撓性圧電体2の温度を適切に保持するために、加熱手段を設けている。加熱手段として、ヒータ7を配設した加熱ブロック71を用い絶縁シート72を介してブロック状導電体6を任意の温度に加熱している。本実施例において、絶縁シート72として厚さ0.5ミリメートルのマイカを使用したが、ポリイミド、ポリ‐テトラ‐フルオロ‐エチレン、ポリエチレンテレフタラート(PETと略称される)、シリコーンゴムなどを用いてもよい。圧電体チューブ3はブロック状導電体6の面上に配設されることにより圧電体チューブ3の下側から間接的に加熱される。そして、ヒータ7の出力を制御する事により圧電体チューブ3の温度を任意に保つことができるので、必要な温度で同軸状可撓性圧電体2を分極できる。
【0023】
ブロック状導電体6は、リード線8bにより電気的に接続される。リード線8aは電気的に直流電圧発生手段9の正極または負極に接続され、また、芯電極1はリード線8aを介して電気的に直流電圧発生手段9の他の極に接続される。
【0024】
このように接続して、圧電体チューブ3を静止、または移動させながら、直流電圧発生手段9により芯電極1とブロック状導電体6間に高電圧が印加されるので、同軸状可撓性圧電体2が分極される。分極時には、芯電極1とブロック状導電体6に5〜10kV/mmの高電圧が印加される。具体的には、圧電体チューブ3の温度は120℃、印加電圧は8kV/mm で分極を行った。
【0025】
同軸状可撓性圧電体2の中に微少な欠陥が含まれ、その部分がブロック状導電体6に配設されているとき、欠陥部で生じる微少な放電により、ブロック状導電体6と芯電極1間が短絡する。この結果、分極できなくなる。しかし、この欠陥部がブロック状導電体6から離脱し、そのときブロック状導電体6に配設されている同軸状可撓性圧電体2中に欠陥がなければ、ブロック状導電体6と芯電極1間の絶縁性は再び回復するので、分極が可能になる。このように、本発明の分極装置によれば、欠陥を含む部分がブロック状導電体6の面上に配設されているときのみ、分極ができないが、それ以外の場合は分極可能である。従って、欠陥部の存在により、圧電体チューブ3が全体にわたり分極できなくなることは無い。また、放電が生じた時点の同軸状可撓性圧電体2に欠陥が存在することは、明らかである。従って、外側電極4が形成される前に、欠陥が一定長さの圧電体チューブ3に存在することが検出できるので、圧電ケーブルとして完成した後、その欠陥部を容易に除去できる。これにより、製造を安定化できると共に、歩留まりも向上できる。
【0026】
(実施例2)
図2は本発明の第2の実施例における同軸状可撓性圧電体分極装置の構成を示す外観見取図である。実施例1と異なる点は、覆い10を設けたことである。覆い10は圧電体チューブ3が移動できるように空間が設けられており、凹状の形をしている。圧電体チューブ3はブロック状導電体6の上面に配設されることにより圧電体チューブ3の下側から間接的に加熱される。さらに、圧電体チューブ3は覆い10により覆われているので圧電体チューブ3の温度をより均一に保つことが出来、必要な温度で同軸状可撓性圧電体2を分極できる。覆い10として、一般的な断熱材(グラスウール、セラミックファイバー等)、耐熱樹脂、金属(鉄、ステンレス、銅、黄銅、アルミニウム等)などが用いられる。本実施例では覆い10として、アルミニウムの押出材を用いた。
【0027】
(実施例3)
図3は本発明の第3の実施例における同軸状可撓性圧電体分極装置の構成を示す外観見取図である。本実施例では、実施例1または実施例2の構成に加えて、圧電体チューブ3と直列に抵抗11を設けた構成としている。微少な欠陥を含む部分の同軸状可撓性圧電体2が被分極同軸状可撓性圧電体2になったとき、同軸状可撓性圧電体2に印可される電圧が下がり分極出来なくなる。しかし、抵抗11により電流を制御できるため直流電圧発生手段に損傷を与えることが無く、また、同軸状可撓性圧電体2の欠陥部がブロック状導電体から離脱した後の被分極同軸状可撓性圧電体2は、再び正常に分極できる。従って、欠陥部が存在しても、全体の同軸状可撓性圧電体2が分極できなくなることは無い。また、このことは、微少な欠陥が、一定長さの被分極同軸状可撓性圧電体2の部分に存在することを示すので、外側電極4を形成する前に、微少な欠陥が一定長さ範囲内に存在することを検出できる。
【0028】
【発明の効果】
以上説明したように本発明によれば、ブロック状導電体に配設された可撓性圧電体の部分に微少な欠陥が含まれる場合、欠陥を含む一定長さの被分極可撓性圧電体は分極できないが、残りの圧電体チューブは分極できる。また、外側電極4を形成する前に、欠陥がその一定長さの被分極可撓性圧電体に存在することも検出できる。
【0029】
また、本発明の方法によれば、圧電体チューブを連続的に分極できる。
【図面の簡単な説明】
【図1】 本発明の実施例1における分極装置の構成を示す外観見取図
【図2】 本発明の実施例2における分極装置の構成を示す外観見取図
【図3】 本発明の実施例3における分極装置の構成を示す外観見取図
【図4】 従来の同軸状可撓性圧電素子の構成を示す外観斜視図
【符号の説明】
1 芯電極
2 同軸状可撓性圧電体
3 圧電体チューブ
4 外側電極
6 導電体ブロック
7 ヒータ
71 加熱ブロック
10 覆い
11 抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to polarization of a coaxial flexible piezoelectric cable.
[0002]
[Prior art]
As shown in FIG. 4, the coaxial flexible piezoelectric cable has an outer electrode 4 formed on the outer surface of a piezoelectric tube 3 in which a coaxial flexible piezoelectric body 2 is formed around a core electrode 1, A protective coating layer 5 is formed around the periphery.
[0003]
Conventionally, flexible piezoelectric cables have been polarized as follows.
[0004]
In Reference 1 (“Piezoelectric Composite Material Composed of Piezoelectric Ceramic Powder and Synthetic Rubber”, Powder and Industry, Vol. 22, No. 1, pp. 50-56, 1990), a high voltage is applied between the core electrode 1 and the outer electrode 4. Is applied to polarize the coaxial flexible piezoelectric body 2. This is also specified in USP 4,568,851. Due to the polarization, the direction of spontaneous polarization of the ceramic particles is aligned with the direction of the electric field, so that piezoelectricity is imparted to the coaxial flexible piezoelectric body 2. In this respect, polarization plays an important role.
[0005]
[Problems to be solved by the invention]
However, the conventional method has the following problems. When a high voltage is applied between the core electrode 1 and the outer electrode 4, if a defect such as a minute crack or a gap exists in the coaxial flexible piezoelectric body 2, a minute discharge occurs at the defect portion. By this slight discharge, the constituent material of the flexible piezoelectric body 2 is thermally evaporated and scattered, and the core electrode 1 and the outer electrode 4 are short-circuited. As a result, since it becomes impossible to apply a high voltage between the core electrode 1 and the outer electrode 4, the coaxial flexible piezoelectric body 2 (usually a length of several hundreds m or more) cannot be polarized.
[0006]
Further, since the presence of defects cannot be detected until a high voltage is applied between the core electrode 1 and the outer electrode 4, in other words, except for polarization, it is impossible to detect the presence of defects until the coaxial flexible piezoelectric cable is completed. It becomes unstable and the yield decreases.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a piezoelectric tube in which a coaxial flexible piezoelectric body is formed around a core electrode, moving means for moving the piezoelectric tube , and stopping and moving the piezoelectric tube. Control means for controlling time or moving speed, and DC voltage generating means connected to the block-shaped conductor and the core electrode, and the piezoelectric tube is disposed on the surface of the block-shaped conductor. A polarization device for a coaxial flexible piezoelectric cable is provided.
[0008]
According to the above invention, since the coaxial flexible piezoelectric material is in contact with the block-shaped conductor, the block-shaped conductor acts as the outer electrode 4. Therefore, by applying a DC voltage between the block-shaped conductor and the core electrode by a DC voltage means, the portion of the coaxial flexible piezoelectric body disposed on the block-shaped conductor can be polarized.
[0009]
Further, the control means stops the movement time of the piezoelectric tubing, or can polarize the coaxial flexible piezoelectric member at the required time by controlling the moving speed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the polarization device according to the first aspect, the piezoelectric conductor is disposed on the surface of the block-like conductor so that the block-like conductor acts as an outer electrode. Therefore, by applying a high voltage between the block-shaped conductor and the core electrode, a coaxial flexible piezoelectric body (hereinafter referred to as a portion of the block-shaped conductor disposed on the surface of the block-shaped conductor and the surface of the block-shaped conductor). Only a polarized coaxial flexible piezoelectric body). Further, since it is not necessary to process the piezoelectric tube passage on the block-shaped conductor, the block-shaped conductor processing is facilitated. Further, since it is not necessary to dispose the piezoelectric tube in the groove or hole of the block-like conductor, the piezoelectric tube can be disposed more easily.
[0011]
In addition, the piezoelectric tube is provided with a control means for controlling the stop and moving time or moving speed of the piezoelectric tube, and polarization is performed by stopping or moving the piezoelectric tube. Thus, stopping the travel time of the piezoelectric tubing, or can polarize the coaxial flexible piezoelectric member at the required time by controlling the moving speed.
[0012]
When the coaxial flexible piezoelectric body in a portion including a minute defect becomes a polarized coaxial flexible piezoelectric body, the conduction means and the core electrode are caused by a short circuit between the core electrode and the outer electrode due to discharge at the defective portion. A high voltage cannot be applied between them. However, the polarized coaxial flexible piezoelectric body after the short-circuit portion is separated from the block-shaped conductor and the block-shaped conductor can be normally polarized again. Therefore, even if there is a defect portion, the entire coaxial flexible piezoelectric body does not become polarized. In addition, this indicates that a minute defect exists in a portion of the polarized coaxial flexible piezoelectric body having a certain length, so that the minute defect has a certain length range before forming the outer electrode. Can be detected.
[0013]
In addition to the structure of claim 1, the polarization device according to claim 2 heats the block-shaped conductor by a heating block provided with a heater, and the piezoelectric device disposed on the block-shaped conductor is heated. The heating means for applying heat is provided. Therefore, since the temperature of the piezoelectric tube can be controlled, the coaxial flexible piezoelectric body can be polarized at a necessary temperature.
[0014]
The polarization device according to claim 3 has a configuration in which a resistor is provided in series with the piezoelectric tube in addition to the configuration of the invention described above . When the coaxial flexible piezoelectric material in a portion including a minute defect becomes a polarized coaxial flexible piezoelectric material, the applied voltage is lowered in the coaxial flexible piezoelectric material and cannot be polarized. However, since the current can be controlled by an appropriate resistance, the DC voltage generating means is not damaged. In addition, the polarized coaxial flexible piezoelectric material after the defective portion of the coaxial flexible piezoelectric material is detached from the block-shaped conductor can be normally polarized again. Therefore, even if there is a defect portion, the entire coaxial flexible piezoelectric body does not become polarized. In addition, this indicates that a minute defect exists in a portion of the polarized coaxial flexible piezoelectric body having a certain length, so that the minute defect has a certain length range before forming the outer electrode. Can be detected.
[0015]
Invention according to claim 4, arranged piezoelectric tube on the surface of the block-shaped conductors, stopped before Symbol piezoelectric tube, or moved by moving means, stopping of the piezoelectric tube by the control means And a moving time or a moving speed, and a direct current voltage is applied between the core wire of the piezoelectric tube and the block-shaped conductor. Therefore, the block conductor acts as an outer electrode, and therefore, by applying a high voltage between the block conductor and the core electrode, the block conductor is disposed on the surface of the block conductor and in the passage of the block conductor. Only the coaxial flexible piezoelectric body in the part can be polarized. And since the control means which controls the stop and moving time or moving speed of a piezoelectric material tube is provided, a coaxial flexible piezoelectric material can be polarized in required time.
[0016]
Moreover, according to the method of the present invention, the piezoelectric tube can be continuously polarized.
[0017]
Polarization method according to claim 5, in the polarization method described above, and the core wire of the piezoelectric tube to a ground potential, a polarization method of applying a DC voltage between the core wire and the block-shaped conductors. When a DC high voltage is applied between the block-shaped conductor and the core electrode, a DC high-voltage portion that is dangerous to the human body can be limited to the block-shaped conductor, so that safety to the human body can be easily ensured by a partition wall or the like.
[0018]
In the polarization method according to claim 6 , the block conductor is heated by a heating block provided with a heater, and heat is applied to the piezoelectric tube disposed on the block conductor, This is a polarization method in which a DC voltage is applied between block-shaped conductors. Since the temperature of the piezoelectric tube can be controlled, the coaxial flexible piezoelectric material can be polarized at a necessary temperature.
[0019]
【Example】
Examples of the present invention will be described below with reference to FIGS.
[0020]
(Example 1)
FIG. 1 is an outline sketch showing the configuration of a coaxial flexible piezoelectric polarization device in a first embodiment of the present invention. A coaxial flexible piezoelectric body 2 is formed with respect to the core electrode 1 (hereinafter, this molded body is referred to as a piezoelectric tube 3). As the core electrode 1, a coiled metal wire, a wire bundled with fine metal wires, or the like is used. As the flexible piezoelectric body 2, a composite piezoelectric body in which a ceramic piezoelectric powder such as lead zirconate titanate is added to a polymer base material such as an epoxy resin, a urethane resin, a chloroprene resin, or a chlorinated polyethylene resin, PVDF, or the like is used. A polymer piezoelectric material is used.
[0021]
The piezoelectric tube 3 is disposed on the surface of the block-like conductor 6 and then moved by a moving means (not shown). As the block-like conductor 6, a conductor such as iron, stainless steel, copper, brass, or aluminum is used. The block-shaped conductor 6 is processed by cutting, grinding, extrusion, pressing, or the like. In this embodiment, aluminum that can be easily obtained and easily processed is used as the material of the block-shaped conductor 6. Specifically, for the piezoelectric tube 3 having an outer diameter of 2 mm, the width is 30 mm, the height is 20 mm, and the length is 500 mm. As a moving means (not shown), the piezoelectric tube 3 is wound around a winding drum, and the piezoelectric tube 3 is moved by rotating the winding drum. In FIG. 1, the moving direction of the piezoelectric tube 3 disposed on the block-like conductor 6 is indicated by an arrow.
[0022]
The temperature at which the coaxial flexible piezoelectric body 2 is polarized is generally higher than the temperature at which it is used. For this reason, a heating means is provided in order to appropriately maintain the temperature of the coaxial flexible piezoelectric body 2 during polarization. As a heating means, a heating block 71 provided with a heater 7 is used to heat the block-like conductor 6 to an arbitrary temperature via an insulating sheet 72. In this embodiment, mica having a thickness of 0.5 mm was used as the insulating sheet 72. However, polyimide, poly-tetra-fluoro-ethylene, polyethylene terephthalate (abbreviated as PET), silicone rubber, or the like may be used. Good. The piezoelectric tube 3 is indirectly heated from below the piezoelectric tube 3 by being disposed on the surface of the block-shaped conductor 6. Since the temperature of the piezoelectric tube 3 can be arbitrarily maintained by controlling the output of the heater 7, the coaxial flexible piezoelectric body 2 can be polarized at a necessary temperature.
[0023]
The block conductors 6 are electrically connected by lead wires 8b. The lead wire 8a is electrically connected to the positive electrode or the negative electrode of the DC voltage generating means 9, and the core electrode 1 is electrically connected to the other pole of the DC voltage generating means 9 via the lead wire 8a.
[0024]
Since a high voltage is applied between the core electrode 1 and the block-shaped conductor 6 by the DC voltage generating means 9 while the piezoelectric tube 3 is stationary or moved while being connected in this way, the coaxial flexible piezoelectric The body 2 is polarized. At the time of polarization, a high voltage of 5 to 10 kV / mm is applied to the core electrode 1 and the block-shaped conductor 6. Specifically, the piezoelectric tube 3 was polarized at a temperature of 120 ° C. and an applied voltage of 8 kV / mm 2.
[0025]
When a minute defect is included in the coaxial flexible piezoelectric member 2 and the portion is disposed on the block-like conductor 6, the block-like conductor 6 and the core are caused by a minute discharge generated at the defect portion. A short circuit occurs between the electrodes 1. As a result, polarization cannot be performed. However, if this defective portion is detached from the block-shaped conductor 6 and there is no defect in the coaxial flexible piezoelectric body 2 disposed in the block-shaped conductor 6 at that time, the block-shaped conductor 6 and the core are removed. Since the insulation between the electrodes 1 is restored again, polarization becomes possible. As described above, according to the polarization device of the present invention, polarization cannot be performed only when the portion including the defect is disposed on the surface of the block-like conductor 6, but in other cases, polarization is possible. Therefore, the piezoelectric tube 3 cannot be polarized throughout due to the presence of the defect. In addition, it is clear that a defect exists in the coaxial flexible piezoelectric body 2 at the time when the discharge occurs. Therefore, since it can be detected that a defect exists in the piezoelectric tube 3 having a certain length before the outer electrode 4 is formed, the defect portion can be easily removed after the piezoelectric cable is completed. As a result, the production can be stabilized and the yield can be improved.
[0026]
(Example 2)
FIG. 2 is an outline sketch showing the configuration of the coaxial flexible piezoelectric polarization device in the second embodiment of the present invention. The difference from the first embodiment is that a cover 10 is provided. The cover 10 is provided with a space so that the piezoelectric tube 3 can move, and has a concave shape. The piezoelectric tube 3 is indirectly heated from below the piezoelectric tube 3 by being disposed on the upper surface of the block-like conductor 6. Furthermore, since the piezoelectric tube 3 is covered with the cover 10, the temperature of the piezoelectric tube 3 can be kept more uniform, and the coaxial flexible piezoelectric body 2 can be polarized at a necessary temperature. As the cover 10, a general heat insulating material (glass wool, ceramic fiber, etc.), heat resistant resin, metal (iron, stainless steel, copper, brass, aluminum, etc.), etc. are used. In this embodiment, an aluminum extruded material was used as the cover 10.
[0027]
(Example 3)
FIG. 3 is an outline sketch showing the configuration of the coaxial flexible piezoelectric polarization device in the third embodiment of the present invention. In the present embodiment, in addition to the configuration of the first or second embodiment, the resistor 11 is provided in series with the piezoelectric tube 3. When the coaxial flexible piezoelectric member 2 in a portion including a minute defect becomes the polarized coaxial flexible piezoelectric member 2, the voltage applied to the coaxial flexible piezoelectric member 2 is lowered and cannot be polarized. However, since the current can be controlled by the resistor 11, the DC voltage generating means is not damaged, and the polarization of the coaxial flexible piezoelectric body 2 after the defect is removed from the block-shaped conductor is allowed. The flexible piezoelectric body 2 can be normally polarized again. Therefore, even if there is a defect portion, the entire coaxial flexible piezoelectric body 2 will not be polarized. In addition, this indicates that a minute defect exists in a portion of the polarized coaxial flexible piezoelectric body 2 having a certain length, so that the minute defect has a certain length before the outer electrode 4 is formed. It can be detected that it exists within the range.
[0028]
【The invention's effect】
According to the onset bright As described above, if it contains very small defects in the portion of the flexible piezoelectric member arranged in the block-shaped conductor, a certain length of the polarization flexible piezoelectric having defects The body cannot be polarized, but the remaining piezoelectric tubes can be polarized. In addition, before the outer electrode 4 is formed, it can be detected that a defect exists in the polarized flexible piezoelectric body having a certain length.
[0029]
Further, according to this onset Ming methods, can be continuously polarize the piezoelectric tube.
[Brief description of the drawings]
FIG. 1 is an outline sketch showing the configuration of a polarization device in Embodiment 1 of the present invention. FIG. 2 is an outline sketch showing the configuration of a polarization device in Embodiment 2 of the present invention. Fig. 4 is an external perspective view showing the configuration of a conventional coaxial flexible piezoelectric element.
DESCRIPTION OF SYMBOLS 1 Core electrode 2 Coaxial flexible piezoelectric body 3 Piezoelectric tube 4 Outer electrode 6 Conductor block 7 Heater 71 Heating block 10 Cover 11 Resistance

Claims (6)

芯電極周囲に同軸状可撓性圧電体を形成した圧電体チューブと、前記圧電体チューブを移動させる移動手段と、前記圧電体チューブ停止と移動時間、又は、移動速度を制御する制御手段と、ブロック状導電体と前記芯電極に接続された直流電圧発生手段を有し、前記圧電体チューブは前記ブロック状導電体の面上に配設されることを特徴とした同軸状可撓性圧電ケーブルの分極装置。 A piezoelectric tube formed with coaxial flexible piezoelectric member surrounding the core electrode, moving means for moving the piezoelectric tube is stopped and the movement time of the piezoelectric tube or a control means for controlling the moving speed A coaxial flexible piezoelectric device having a DC voltage generating means connected to a block-shaped conductor and the core electrode , wherein the piezoelectric tube is disposed on a surface of the block-shaped conductor. Cable polarization device. ブロック状導電体を加熱する加熱手段を設け、圧電体チューブの下側を加熱することを特徴とした請求項1に記載の同軸状可撓性圧電ケーブルの分極装置。2. The coaxial flexible piezoelectric cable polarization device according to claim 1 , wherein a heating means for heating the block-like conductor is provided to heat the lower side of the piezoelectric tube . 圧電体チューブと直列に抵抗を設けた請求項1または2に記載の同軸状可撓性圧電ケーブルの分極装置。Claim is provided a resistance to the piezoelectric tube series 1 or coaxial flexible piezoelectric cable of the polarization device according to 2. 芯電極周囲に同軸状可撓性圧電体を形成した圧電体チューブを、ブロック状導電体の面上を停止または移動させると共に、制御手段により前記圧電体チューブ停止と移動時間、又は、移動速度を制御し、前記ブロック状導電体と前記芯電極の間に直流電圧を印加することを特徴とする同軸状可撓性圧電ケーブルの分極方法。 A piezoelectric tube in which a coaxial flexible piezoelectric body is formed around the core electrode is stopped or moved on the surface of the block-shaped conductor, and the stop and moving time or moving speed of the piezoelectric tube is controlled by the control means. And a direct current voltage is applied between the block-like conductor and the core electrode. 圧電体チューブの芯線をアース電位にして、芯線とブロック状導電体の間に直流電圧を印加する請求項記載の同軸状可撓性圧電ケーブルの分極方法。5. The method for polarizing a coaxial flexible piezoelectric cable according to claim 4 , wherein the core wire of the piezoelectric tube is set to ground potential, and a DC voltage is applied between the core wire and the block-shaped conductor. ブロック状導電体を加熱する加熱手段を設け、圧電体チューブの下側を加熱する請求項4または5記載の同軸状可撓性圧電ケーブルの分極方法。 6. The method for polarizing a coaxial flexible piezoelectric cable according to claim 4, wherein a heating means for heating the block-shaped conductor is provided to heat the lower side of the piezoelectric tube .
JP2001077883A 2000-12-15 2001-03-19 Coaxial flexible piezoelectric cable polarization apparatus and polarization method Expired - Fee Related JP3642288B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001077883A JP3642288B2 (en) 2001-03-19 2001-03-19 Coaxial flexible piezoelectric cable polarization apparatus and polarization method
US10/020,474 US6593681B2 (en) 2000-12-15 2001-12-12 Polarization apparatus and polarization method of coaxial flexible piezoelectric cable
EP01129761A EP1215737A3 (en) 2000-12-15 2001-12-13 Polarization apparatus and polarization method of coaxial flexible piezoelectric cable
CNB011381647A CN1323442C (en) 2000-12-15 2001-12-15 Polarizing device and method for coaxial flexible piezoelectric cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001077883A JP3642288B2 (en) 2001-03-19 2001-03-19 Coaxial flexible piezoelectric cable polarization apparatus and polarization method

Publications (2)

Publication Number Publication Date
JP2002280632A JP2002280632A (en) 2002-09-27
JP3642288B2 true JP3642288B2 (en) 2005-04-27

Family

ID=18934570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001077883A Expired - Fee Related JP3642288B2 (en) 2000-12-15 2001-03-19 Coaxial flexible piezoelectric cable polarization apparatus and polarization method

Country Status (1)

Country Link
JP (1) JP3642288B2 (en)

Also Published As

Publication number Publication date
JP2002280632A (en) 2002-09-27

Similar Documents

Publication Publication Date Title
EP1215737A2 (en) Polarization apparatus and polarization method of coaxial flexible piezoelectric cable
JPS6151437B2 (en)
JP3642288B2 (en) Coaxial flexible piezoelectric cable polarization apparatus and polarization method
JP3642289B2 (en) Coaxial flexible piezoelectric cable polarization apparatus and polarization method
KR100594499B1 (en) Coaxial flexible piezoelectric cable defect detector and defect detecting method
EP0146272A2 (en) Coaxial cable
JP6265623B2 (en) Ionizer
JP3613212B2 (en) Coaxial flexible piezoelectric cable polarization apparatus and polarization method thereof
JP2006284265A (en) Polarization system for cable-like pressure sensor, and its polarization method
JP3642315B2 (en) Coaxial flexible piezoelectric cable polarization device
JP2006184064A (en) Polarizing device for cable-like pressure sensor, and its polarizing method
JP2005351664A (en) Cable-like piezoelectric sensor
CN218938415U (en) Experimental platform for evaluating insulation residual life of bypass flexible high-voltage power cable
JP2005175043A (en) Polarization device and polarization method of cable-like pressure sensor
JPH06296314A (en) Method for removing insulating coating of insulated conductor and its device
JPH01222923A (en) Manufacture of thermoplastic resin sheet
JP2005291773A (en) Polarization method for cable-like pressure sensor and its polarization apparatus
JP2006284264A (en) Polarization system for cable-like pressure sensor, and its polarization method
JP3664075B2 (en) Coaxial flexible piezoelectric tube defect detection apparatus, defect detection method thereof, and coaxial flexible piezoelectric cable manufacturing method
JP2008041677A (en) Polarizing apparatus of pressure sensor, and polarizing method thereof
JPS5944756B2 (en) How to insulate the wiring part
JP2009150682A (en) Polarizing apparatus for pressure sensor and polarization method therefor
JP2009008399A (en) Polarization device of pressure sensor, and polarization method of pressure sensor
JP2008153264A (en) Polarizing apparatus for pressure sensor and polarizing method thereof
JP3642303B2 (en) Coaxial flexible piezoelectric cable defect detection apparatus and defect detection method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees