JP3640789B2 - Cylindrical filter member, manufacturing method thereof, and cylindrical filter - Google Patents

Cylindrical filter member, manufacturing method thereof, and cylindrical filter Download PDF

Info

Publication number
JP3640789B2
JP3640789B2 JP06775998A JP6775998A JP3640789B2 JP 3640789 B2 JP3640789 B2 JP 3640789B2 JP 06775998 A JP06775998 A JP 06775998A JP 6775998 A JP6775998 A JP 6775998A JP 3640789 B2 JP3640789 B2 JP 3640789B2
Authority
JP
Japan
Prior art keywords
cylindrical
cell
cylindrical filter
filter member
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06775998A
Other languages
Japanese (ja)
Other versions
JPH11244631A (en
Inventor
貴 常盤
均 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP06775998A priority Critical patent/JP3640789B2/en
Publication of JPH11244631A publication Critical patent/JPH11244631A/en
Application granted granted Critical
Publication of JP3640789B2 publication Critical patent/JP3640789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、筒状フィルタ部材及びその製造方法、並びに前記の筒状フィルタ部材を含む筒状フィルタに関する。
【0002】
【従来の技術】
液体や気体などの被処理流体に含まれるダスト(塵埃)を捕集して流体を浄化することのできるフィルタの1種として、垂直流式円筒状フィルタが知られている。この垂直流式円筒状フィルタは、一般に、多数の流体通過用細孔を側壁に有する中空パイプを中心部に設け、その中空パイプの周囲に濾材を巻き付けた構造からなり、被処理流体を、円筒状フィルタの外側側面から中空パイプの方向(又は、その逆方向、すなわち、中空パイプの内側から円筒状フィルタの外側側面の方向)へ、濾材層に対して実質的に垂直に通過させて濾過処理を行う。しかしながら、このような垂直流式円筒状フィルタは、一般的に濾過面積に限界があるため、処理流量が少なく、フィルタ寿命が短い。
【0003】
一方、垂直流式平板状フィルタとして、互いに平行に配置された複数の筒状セルの集合体からなるフィルタが知られている。例えば、特開平6−71128号公報には、図8に示すようなハニカム構造体からなるフィルタ100が開示されている。図8に示すフィルタ100は、通気性又は透水性を有する濾材シートから構成された筒状セル400を複数個集合させたハニカム構造体からなる。このフィルタでは、前記筒状セル400のセル濾材壁600が作用面となり、被処理流体は、前記フィルタ100の一方の側面から前記セル濾材壁600に対して垂直な方向(矢印Aで示す方向)で流入し、セル濾材壁600を通過する際に濾過処理を受け、前記フィルタ100のもう一方の反対側側面からセル濾材壁600に対して垂直な方向(矢印Bで示す方向)に流出する。図8に示すフィルタは、ハニカム構造体からなるため、剛性が高く(すなわち、形状保持性に優れ)、しかも、濾過面積が広いなどの優れた種々の特性を示す。
【0004】
このようなハニカム構造体に由来する優れた特性を垂直流式円筒状フィルタに付与することを意図して、前記ハニカム構造体からなる長尺シート(濾材)を作成し、その長尺シート状ハニカム構造体を前記のような中空パイプに巻回することにより、垂直流式円筒状フィルタを構成することが考えられる。しかしながら、こうしたハニカム構造体の円筒状フィルタでは、
(1)巻回した濾材の層間に形成される螺旋状(巻回状)の流路を通る被処理流体のリークが生じやすい;
(2)巻回を維持するための保形材を最外層濾材に接触させて設ける必要があり、濾過面積が減少すると共に、製造工程において保形材の装着工程が余分に必要になり、製造工程が複雑になる;及び
(3)巻回によって加わる力のために個々のハニカム構造が変形し、所望の特性(例えば、形状保持性又は優れた濾過性能)を充分に得ることができない
等の問題点が生じる。
【0005】
【発明が解決しようとする課題】
従って、本発明の課題は、従来技術の前記の欠点を解消して、被処理流体のリークが起こらず、所望の濾過性能が得られ、しかも、形状保持性に優れ、濾過面積が広い筒状フィルタ部材、及びその製造方法、並びに前記筒状フィルタ部材を含む筒状フィルタを提供することにある。
【0006】
【課題を解決するための手段】
前記の課題は、本発明による、(1)微小筒状セルの複数個を、それらの長さ方向を実質的に平行な状態で集合してなる濾過部と、(2)上面又は下面の少なくとも一方が開口し、全側面を前記濾過部に囲まれて、前記微小筒状セルの内径よりも大きな内径を有する筒状縦孔とからなり、
前記微小筒状セルのセル空間の少なくとも全側面が筒状濾材壁によって覆われ、しかも被処理流体が、前記筒状縦孔に接する前記濾過部の内側側面から前記濾過部の外側側面への方向、又はその逆方向へ、前記微小筒状セルを横切って濾過処理される筒状フィルタ用の部材であって;
前記の被処理流体が、前記微小筒状セルの筒状濾材壁を少なくとも1回は通過しないと、前記濾過部の内側側面から外側側面へ、又は前記濾過部の外側側面から内側側面へ到達することができない構造を有すること、及び
前記濾過部の上面及び下面が封止手段によって閉鎖されていること
を特徴とする、
筒状フィルタ部材によって解決することができる。
また、本発明は、前記筒状フィルタ部材を含む筒状フィルタ、又は前記筒状フィルタ部材の製造方法に関する。
【0007】
本発明の筒状フィルタにより処理することのできる「流体」には、液体と気体の両方が含まれる。本明細書においては、筒状フィルタ部材で濾過処理を行なう前(すなわち、筒状フィルタ部材を構成する濾過体の流入面を通過する前)の未処理の流体、及び濾過処理中(すなわち、前記濾過体を通過中)の流体を「被処理流体」と称し、筒状フィルタ部材で濾過処理を行なった後(すなわち、前記濾過体の流出面を通過した後)の流体を「処理流体」と称する。
【0008】
本明細書において、「筒状縦孔」とは、典型的な機能として、例えば、筒状フィルタ部材の上面及び/又は下面に連結している適当な被処理流体供給手段から供給される被処理流体を通過させ、筒状縦孔の内側壁面から微小筒状セルを経由して筒状フィルタ部材の外側側面へ被処理流体を送るか、あるいは逆に、筒状フィルタ部材の外側側面から供給される被処理流体を、微小筒状セルを経由して筒状縦孔へ送り、筒状フィルタ部材の上面及び/又は下面に連結している適当な処理流体回収手段へ送ることのできる筒状空間を意味する。
【0009】
また、本明細書において、「微小筒状セル」とは、「筒状濾材壁」(すなわち、セル濾材壁)と、その筒状濾材壁に囲まれた中空の「セル空間」とからなり、筒状の中空セル空間の少なくとも全側面を筒状濾材壁(セル濾材壁)によって囲まれた濾過単位(すなわち、被処理流体を筒状濾材壁に通過させることによって濾過処理を行う最小単位)を意味し、好ましくは、幅方向の断面形状が、上面から下面の長さ方向に実質的に一定である筒状形状を有する。
なお、本明細書における、筒状形状を有する構造体(例えば、微小筒状セル、筒状縦孔、筒状フィルタ部材、又は筒状フィルタなど)においては、「長さ方向」とは、構造体の中心軸に沿った(平行な)方向を意味し、「幅方向」とは、前記「長さ方向」に垂直な方向を意味する。なお、前記中心軸が存在しないか、あるいは、不明瞭な場合には、概ね、上面の中心(中心が存在しないか、あるいは、不明瞭な場合には、中心に相当する点)と下面の中心(中心が存在しないか、あるいは、不明瞭な場合には、中心に相当する点)とを結ぶ方向を意味する。
また、本明細書において、「非セル空間」とは、前記「セル空間」以外の空間を意味し、前記非セル空間には、前記の「筒状縦孔」、又は筒状フィルタ部材の周りの空間(以下、周囲空間と称する)などが含まれる。
【0010】
本明細書において、「セル集合体」とは、微小筒状セルの複数個を、それらの長さ方向が実質的に平行な状態で配列し、その内部に「筒状縦孔」を設けていない集合体である。「セル集合体」は、好ましくは、実質的にほぼ同じ長さの微小筒状セルを、その長さを実質的に揃えて集合させる。
従って「濾過部」は、前記の「セル集合体」の内部(好ましくは中央部)に筒状縦孔を設け、更に場合により外周部の打ち抜き加工を行って製造する。
【0011】
【発明の実施の形態】
以下、本発明の筒状フィルタ部材を、その1実施態様を示す図1及び図2に沿って主に説明する。図1は、本発明の筒状フィルタ部材1を上面側から見た斜視図であり、図2は、その筒状フィルタ部材1の一部1a(図1の破線部)を切り取って、上面側から見た拡大部分平面図である。
【0012】
図1及び図2に示す筒状フィルタ部材1は、平面状濾材板61と波形濾材板62とが交互に積層されたコルゲート構造の微小筒状セル群から構成される濾過部2と、その濾過部2の中央部付近に設けられ、筒状フィルタ部材1の上面11から下面12まで貫通する中央貫通孔3からなる。
前記筒状フィルタ部材1では、被処理流体を、濾過部2の外側側面21から中央貫通孔3の方向に向かって(以下、求心方向と称することがある)、あるいは、その逆方向、すなわち、中央貫通孔3から濾過部2の外側側面21の方向に向かって(以下、遠心方向と称することがある)、濾過部2中を通過させる際に濾過処理を行ない、処理流体を得ることができる。被処理流体を求心方向に通過させる場合には、濾過部2の外側側面21が被処理流体流入面となり、濾過部2の中央貫通孔3に露出する面(以下、内側露出面と称する)22が処理流体流出面となる。一方、被処理流体を遠心方向に通過させる場合には、濾過部2の内側露出面22が被処理流体流入面となり、濾過部2の外側側面21が処理流体流出面となる。
【0013】
筒状フィルタ部材1における前記濾過部2のコルゲート構造は、隣接する平面状濾材板61と波形濾材板62との各接触面64を、適当な手段(例えば、接着又は熱融着若しくは超音波融着など)により固定することにより保持されている。コルゲート構造からなる濾過部2においては、平面状濾材板61とそれに隣接する波形濾材板62とにより多数のセル空間5が形成されており、このセル空間5を囲む濾材板(平面状濾材板61及び波形濾材板62)が、本発明の筒状フィルタ部材におけるセル濾材壁6として機能する。
【0014】
例えば、波形濾材板62を介して隣接する2個の微小筒状セル4a,4bでは、図2に示すように、一方の微小筒状セル4aは、平面状濾材板61の領域f、波形濾材板62の領域p、及び波形濾材板62の領域qとからなるセル濾材壁と、それらの3つの濾材板領域に囲まれたセル空間5xとからなり、もう一方の微小筒状セル4bは、平面状濾材板61の領域g、波形濾材板62の領域q、及び波形濾材板62の領域rとからなるセル濾材壁と、それらの3つの濾材板領域に囲まれたセル空間5yとからなる。本発明の筒状フィルタ部材においては、通常、隣接する2つのセル空間(例えば、セル空間5x,5y)に挟まれている濾材板(例えば、波形濾材板62の領域q)は、そのセル空間を含む2個の微小筒状セル(例えば、微小筒状セル4a,4b)それぞれのセル濾材壁として機能することができる。
【0015】
図1及び図2に示す筒状フィルタ部材1においては、前記濾過部2がコルゲート構造からなっており、微小筒状セル4は、筒状フィルタ部材1の上面11から下面12まで貫通し、それぞれの微小筒状セル4は、相互に実質的に平行である。更には、各微小筒状セル4は、中央貫通孔3に対しても実質的に平行である。
【0016】
先に説明したように、図1及び図2に示す筒状フィルタ部材1において、被処理流体を求心方向又は遠心方向へ通過させる。その際、本発明による筒状フィルタ部材においては、被処理流体に、少なくとも1つの筒状濾材壁を通過させる。すなわち、本発明による筒状フィルタ部材は、被処理流体が、前記微小筒状セルの筒状濾材壁を少なくとも1回は通過しないと、前記濾過部の内側側面から外側側面へ、又は前記濾過部の外側側面から内側側面へ到達することができない構造を有する。一方、微小筒状セル群からなる長尺シートを作成し、その長尺シートを巻回して筒状フィルタ部材を製造した場合には、巻回した長尺シートの層間によって螺旋状(巻回状)の流路が形成され、その螺旋状の流路を通過すると、筒状濾材壁を通過せずに、被処理流体を求心方向又は遠心方向へ通過させることができる。これに対して、本発明による筒状フィルタ部材においては、前記のような、螺旋状の流路は存在しないので、被処理流体の濾過方向がいずれの方向であっても、被処理流体流入面と処理流体流出面とは、セル濾材壁によって互いに隔離されている。
【0017】
コルゲート構造とは別の構造の微小筒状セル群からなる濾過部を含む本発明の筒状フィルタ部材を、図3に示す。図3は、本発明の筒状フィルタ部材の一部を上面側から見た拡大部分平面図である。
図3に示す濾過部2は、折り曲げ濾材板(すなわち、山部と谷部とが周期的に繰り返すように平板状濾材板を折り曲げた構造からなる濾材板)63を積層して微小筒状セル群を形成する。
微小筒状セル4の断面形状(幅方向における)は菱形であり、図1に示した筒状フィルタ部材1と同様に、これらの微小筒状セル4は、筒状フィルタ部材の上面から下面まで貫通し、それぞれの微小筒状セル4は、相互に実質的に平行である。更には、各微小筒状セル4は、中央貫通孔に対しても実質的に平行である。微小筒状セル4の断面形状は、隣接する折り曲げ濾材板63の各山部において各接触面64を、適当な手段(例えば、接着又は熱融着若しくは超音波融着など)で固定することにより保持されている。
【0018】
図1及び図2に示す筒状フィルタ部材1の場合と同様に、図3に示す濾過部2においても、被処理流体に、少なくとも1つの筒状濾材壁を通過させる。すなわち、本発明による筒状フィルタ部材は、被処理流体が、前記微小筒状セルの筒状濾材壁を少なくとも1回は通過しないと、前記濾過部の内側側面から外側側面へ、又は前記濾過部の外側側面から内側側面へ到達することができない構造を有する。換言すれば、被処理流体の濾過方向がいずれの方向であっても、被処理流体流入面と処理流体流出面とは、セル濾材壁によって互いに隔離されている。
【0019】
本発明の筒状フィルタ部材においては、微小筒状セルの断面形状(幅方向における)は特に限定されるものではなく、種々の形状であることができる。図1〜図3に示す断面形状以外にも、微小筒状セルの断面形状として、多角形、例えば、三角形、平行四辺形(例えば、正方形、長方形、又は台形)、若しくは六角形、又は円形、楕円形、半円形、半楕円形、若しくは扇形などを例示することができる。
また、本発明の筒状フィルタ部材においては、濾過体に含まれる各微小筒状セルは、すべて同一の形状及び大きさの微小筒状セルであることもできるし、形状及び/又は大きさの異なる2種類以上の微小筒状セルであることもできる。
【0020】
本発明による筒状フィルタ部材の濾過部を構成する個々の微小筒状セルは、それらのセル空間の少なくとも全側面が筒状濾材壁によって覆われている必要があり、上面及び下面が、前記の筒状濾材壁と同様の濾材用材料によって、あるいは適当な封止手段によって閉鎖されている。例えば、前記のように濾過部の長さ方向に上面から下面まで延びる1つの微小筒状セルのセル空間の上面及び下面(濾過部の上面及び下面と一致する)が閉鎖されている。
更に、濾過部の長さ方向の上面から下面までに、2つ以上の微小筒状セルを連続的に配置することもできる。この場合は、長さ方向に隣接する微小筒状セル間に閉鎖面が存在し、濾過部の上面又は下面と一致する上面又は下面を有する微小筒状セルの上面又は下面は、閉鎖面である。
【0021】
本発明による筒状フィルタ部材の濾過部の長さ方向に配置する微小筒状セルの数について、それらを一致させる必要はない。また、個々の微小筒状セルの断面形状(幅方向における)がすべて同一である必要はなく、あるいは、セル濾材壁を構成する濾材用材料についても、それらを一致させる必要はない。すなわち、それらの点が異なる各種の微小筒状セルを組合せて濾過部を構成しても濾過効率の点では実質的な差異はないが、製法上の観点からは、それらの点で全てが同じ態様の微小筒状セルから濾過部を構成するのが好ましい。
【0022】
本発明の筒状フィルタ部材においては、微小筒状セルを形成するために、隣接する濾材シートを相互に固定させる手段は、特に限定されるものではなく、濾過部を形成する濾材用材料の種類に応じて、適宜、公知の固定手段(例えば、接着又は熱融着若しくは超音波融着など)を用いることができる。例えば、濾材シートとして熱可塑性繊維を含むシートを用いる場合には、不純物が濾過部中に残らず、融着面積が小さい(有効濾過面積の減少が少ない)点で、超音波により融着することが好ましい。
【0023】
本発明の筒状フィルタ部材の濾材壁は、従来公知の任意の濾材用材料、例えば、繊維質材料(例えば、編物、織物、不織布、紙、又はこれらの複合体など)、ネット、有孔フィルム、又はメンブレンなどから形成することができる。
【0024】
本発明の筒状フィルタ部材においては、前記の濾材壁を通常の濾材用材料から形成することができるだけでなく、機能性物質を保持する濾材用材料から形成することもできる。前記の機能性物質としては、例えば、ガス浄化物質、色素浄化物質、抗菌剤、防黴剤、帯電防止剤、金属イオン吸着物質、微生物吸着物質、又は脱臭剤などを挙げることができる。このような機能性物質を濾材用材料に、例えば、吸着又は含浸させることによって、機能性物質を保持する濾材用材料を調製することができる。
【0025】
本発明の筒状フィルタ部材においては、筒状縦孔の断面形状(幅方向における)も特に限定されるものではなく、種々の形状であることができ、例えば、円形、楕円形、又は多角形、例えば、三角形、平行四辺形(例えば、正方形、長方形、菱形、又は台形)、若しくは六角形などを挙げることができる。なお、本発明の筒状フィルタ部材には、濾過部それ自体によって筒状縦孔の形状が保持されている筒状フィルタ部材(例えば、図1及び図2に示す筒状フィルタ部材)が含まれることはもちろんのこと、後述するように、濾過部の外側側面の外側、又は濾過部の筒状縦孔の内部の少なくともいずれか一方に設けることのできる形状保持具によって筒状縦孔の形状が保持されている筒状フィルタ部材[例えば、図7(e)に示す筒状フィルタ部材]も含まれる。
【0026】
本発明の筒状フィルタ部材においては、筒状縦孔を設ける位置は、筒状縦孔の全側面が濾過部に囲まれており、筒状フィルタ部材の上面又は下面の少なくとも一方に開口部を有する限り、特に限定されるものではないが、濾過部の中央部に設けることが好ましい。また、濾過部に設けることのできる筒状縦孔の数も、特に限定されるものではなく、1個又は複数個の筒状縦孔を設けることができるが、筒状縦孔1個を(より好ましくは濾過部の中央部に)設けることが好ましい。更に、筒状縦孔の長さ方向と、各微小筒状セルの長さ方向との関係も、特に限定されるものではないが、筒状縦孔の長さ方向が各微小筒状セルの長さ方向と実質的に平行であることが好ましい。
【0027】
本発明による筒状フィルタ部材において、筒状縦孔は、少なくともその全側面が濾過部によって覆われている必要があるが、上面及び下面の両方を開口面とすることもできるし、あるいは、上面又は下面のいずれか一方のみを開口面とし、残る一方を前記の筒状濾材壁と同様又は異なる濾材用材料によって、あるいは適当な封止手段によって閉鎖することができる。例えば、前記の筒状縦孔の上面及び下面の両方が開口面となる場合は、その筒状縦孔は筒状フィルタ部材の長さ方向(上面から下面への方向)に上面から下面まで延びる貫通孔となる。
また、前記のように筒状フィルタ部材の長さ方向に上面から下面まで延びる筒状縦孔の上面又は下面(筒状フィルタ部材の上面又は下面と一致する)のいずれか一方が閉鎖されていることもできる。
更に、筒状フィルタ部材の長さ方向の上面から下面までに、2つ以上の筒状縦孔を連続的に配置することもできる。この場合は、長さ方向に隣接する筒状縦孔間に閉鎖面が存在し、筒状フィルタ部材の上面又は下面と一致する上面又は下面を有する筒状縦孔の上面又は下面の少なくとも一方は、開口面である。
更にまた、筒状縦孔は、筒状フィルタ部材の長さ方向において、開口上面(又は開口下面)から下面(又は上面)まで到達しない凹部状の縦孔であることもできる。
また、場合により、多数の流体通過用細孔を側壁に有する硬質管(中空パイプ)を、筒状フィルタ部材の筒状縦孔に挿入し、筒状フィルタ部材における濾過材の内側壁面と、前記硬質管の外側側面とを接触させて設けることもできる。
【0028】
以上の説明から明らかなように、本発明の筒状フィルタ部材においては、濾過部が、微小筒状セル群層を1層以上有しており、しかも、微小筒状セルの筒状濾材壁を少なくとも1回は被処理流体が通過する構造を有するので、濾過処理中に被処理流体のリーク、すなわち、筒状濾材壁を一度も通過することなく、濾過体の被処理流体流入面から処理流体流出面に到達してしまう被処理流体が生じることはない。本発明の筒状フィルタ部材においては、被処理流体が、濾過部の被処理流体流入面から処理流体流出面へ送出される際の濾過面積が非常に広いため、処理流量が大きく、しかも、筒状濾材壁との接触機会が著しく多いので、使用寿命に優れている。
【0029】
また、本発明の筒状フィルタ部材においては、濾過部が所望の形状の微小筒状セル群(例えば、コルゲート構造セル群又はハニカム構造セル群など)からなるので、形状保持性に優れており、設計形状に応じた所望の濾過性能を得ることができる。更には、保形材を設ける必要もないので、製造工程における保形材装着作業を省略することができるだけでなく、その分だけ濾過面積を増加させることができ、使用寿命に優れている。
【0030】
本発明の筒状フィルタ部材は、それを単独で用いて筒状フィルタとすることもできるし、筒状フィルタ部材を複数個組合せて筒状フィルタとすることもできるし、あるいは、他の公知の筒状フィルタ部材(例えば、折り加工した濾過材)と組合せて筒状フィルタとすることもできる。
本発明の筒状フィルタ部材を複数個組合せて使用する場合には、濾過特性が等しい筒状フィルタ部材のみを組合せることもできるし、濾過特性が異なる2種類以上の筒状フィルタ部材を組合せて用いることもできる。例えば、微小筒状セル群が異なる濾材用材料からなる複数の筒状フィルタ部材、微小筒状セル群が異なる断面形状を有する複数の筒状フィルタ部材、微小筒状セル群が異なる濾過抵抗を有する複数の筒状フィルタ部材、微小筒状セル群が異なる繊維径を有する繊維質材料からなる複数の筒状フィルタ部材、及び/又は微小筒状セル群が異なる孔径を有する濾材用材料からなる複数の筒状フィルタ部材などを適宜組合せることができる。例えば、被処理流体流入面に近い領域に、目の粗い濾材用材料からなる濾過部を含む筒状フィルタ部材を配置し、処理流体流出面に近い領域に、前記濾材用材料よりも目の細かい濾材用材料からなる濾過部を含む筒状フィルタ部材を配置すると、被処理流体を段階的に濾過することができるので、より広範囲の粒径分布を有する被処理流体の濾過が可能となり、更には、筒状フィルタの使用寿命も延びる。
【0031】
このような本発明の筒状フィルタの一態様を、図4に模式的に示す。図4は、本発明の筒状フィルタ10をその上面11から見た模式的平面図である。なお、図4は、筒状フィルタ10を構成する各筒状フィルタ部材の配置関係を示すことが目的であるので、濾過部に含まれている微小筒状セルを図示せずに省略した。図4に示す筒状フィルタ10は、濾過特性の異なる2個の筒状フィルタ部材、すなわち、外側に位置する筒状フィルタ部材1aと、内側に位置する筒状フィルタ部材1bとからなる。前記の内側筒状フィルタ部材1bは、濾過部2bと中央貫通孔(筒状縦孔)3とからなり、前記の外側筒状フィルタ部材1aは、濾過部2aとその内側にある中央貫通孔(筒状縦孔)とからなる。前記の外側筒状フィルタ部材1aの濾過部2aの内径と、前記の内側筒状フィルタ部材1bの濾過部2bの外径とは、実質的に一致し、濾過部2aの内側側面22aと、濾過部2bの外側側面21bとが密着するように、筒状フィルタ部材1aの中央貫通孔(筒状縦孔)に、筒状フィルタ部材1bがはめ込まれている。
【0032】
図4に示す筒状フィルタ10において、例えば、目の粗い濾材用材料を用いて外側筒状フィルタ部材1aの濾過部2aを形成し、外側筒状フィルタ部材1aよりも目の細かい濾材用材料を用いて内側筒状フィルタ部材1bの濾過部2bを形成し、求心方向に被処理流体を通過させるように使用する場合には、まず、外側濾過部2aを被処理流体が通過する際に、捕集対象粒子の内、粒径の大きな粒子が捕集され、次に、内側濾過部2bを通過する際に、粒径の小さな粒子が捕集される。内側濾過部2bを通過する被処理流体は、粒径の大きな粒子のほとんどが既に除去されているので、粒径の大きな粒子による内側濾過部2bの目詰まりを顕著に減少させることができ、筒状フィルタ10の寿命を延長させることができる。
遠心方向に被処理流体を通過させる場合には、目の粗い濾材用材料を用いて内側筒状フィルタ部材1bの濾過部2bを形成し、内側筒状フィルタ部材1bよりも目の細かい濾材用材料を用いて外側筒状フィルタ部材1aの濾過部2aを形成することにより、同様の効果を得ることができる。
図4に示す筒状フィルタ10は、本発明の筒状フィルタ部材2個を組合わせて使用する一態様であるが、本発明の筒状フィルタにおいては、本発明の筒状フィルタ部材のみを複数個組合わせて使用することもできるし、あるいは、本発明の筒状フィルタ部材を少なくとも1個含む限り、本発明の筒状フィルタ部材と従来公知の筒状フィルタ部材とを複数個組合わせて使用することもできる。
【0033】
本発明の筒状フィルタ部材を複数個組合せて使用する別の態様として、本発明の筒状フィルタ部材の複数個を長さ方向に重ねた筒状フィルタを挙げることができる。後述する製造方法の説明から明らかなように、筒状フィルタ部材の高さ(長さ方向の長さ)が長くなると、その製造が困難となる場合もあるので、高さの高い筒状フィルタが必要な場合には、高さの低い筒状フィルタ部材の複数個を長さ方向に重ねて使用することにより、同様の効果を得ることができる。なお、筒状フィルタ部材の複数個を長さ方向に重ねて使用する場合には、筒状濾材壁を通過せずに被処理流体が通過することがないように、各筒状フィルタ部材間を完全に密封することが必要である。前記密封手段として種々の公知手段を用いることができ、例えば、各筒状フィルタ部材間を接着させる方法、あるいは、適当なシール部材(例えば、ガスケット、パッキン、又は凹凸部材など)を用いて接合し、密閉する方法などを挙げることができる。
【0034】
本発明の筒状フィルタにおいては、本発明の筒状フィルタ部材に、公知フィルタ(例えば、微小筒状セルを含まない公知フィルタ)を構成することのできる濾過部材及び/又は公知の補助部材を更に組合せることもできる。
例えば、微小筒状セルを含まない公知フィルタを構成することのできる濾過部材であるシート状濾材を、本発明の筒状フィルタ部材に組合わせた態様を図5に示す。図5は、本発明の筒状フィルタ10をその上面11から見た模式的平面図である。なお、図5は、筒状フィルタ10を構成する各筒状フィルタ部材の配置関係を示すことが目的であるので、濾過部に含まれている微小筒状セルを図示せずに省略した。図5に示す筒状フィルタ10では、筒状フィルタ部材1における濾過部2の周囲に、シート状濾材8を巻回して設けている。前記シート状濾材8を設けることにより、保形性を向上させることができると共に、使用寿命を延ばすことができる。
【0035】
本発明の筒状フィルタにおいて組合せることのできる前記の公知の補助部材としては、例えば、筒状縦孔の内部に密着させて設けることのできる、多数の流体通過用細孔を側壁に有する硬質管(中空パイプ)、濾過部の外側側面の外側に密着させて設けることのできる保形材、又は筒状フィルタ部材若しくは筒状フィルタの上面及び/若しくは下面を封止することのできるエンドキャップなどを挙げることができる。
【0036】
本発明の筒状フィルタ部材は、種々の方法によって製造することができるが、例えば、以下に説明する本発明による筒状フィルタ部材の製造方法によって製造することが好ましい。
本発明による第1の製造方法においては、始めに、微小筒状セルの複数個(多数個)を、それらの長さ方向を実質的に平行な状態で実質的に隙間なく(好ましくは、実質的にほぼ同じ長さの微小筒状セルを、その長さを実質的に揃えて)配列したセル集合体を製造する。このセル集合体は、公知の手段、例えば、コルゲート加工機などによって製造することができる。セル集合体は、本発明による所望の筒状フィルタ部材を、穴開け加工(更に必要であれば打ち抜き加工)によって製造することができる大きさを有する必要がある。
【0037】
本発明の1実施態様である図1及び図2に示す筒状フィルタ部材1を製造するのに用いることのできる前記の微小筒状セル集合体を、図6に示す。図6は、前記の微小筒状セル集合体9を上面側から見た斜視図である。図6に示す微小筒状セル集合体9は、平面状濾材板61と波形濾材板62とが交互に積層されたコルゲート構造からなり、微小筒状セル4は、微小筒状セル集合体9の上面91から下面92まで貫通し、それぞれの微小筒状セル4は、長さ方向において相互に実質的に平行である。
【0038】
続いて、前記微小筒状セル集合体9を、微小筒状セル4の長さ方向に沿って、あるいは、微小筒状セルの長さ方向から所望の角度だけ偏向した方向に沿って、2種の打抜具によって、打ち抜き加工する。すなわち、一方の打抜具は、目的とする筒状フィルタ部材1における濾過部2の外側側面21の幅方向断面形状(図6の破線a)に相当する切断刃を有し、もう一方の打抜具は、目的とする筒状フィルタ部材1における濾過部2の内側露出面22の幅方向断面形状(図6の破線b)に相当する切断刃を有する。従って、破線aに沿って打ち抜くことにより形成される面は、筒状フィルタ部材1における濾過部2の外側側面21となり、一方、破線bに従って穴開けにより形成される面は、筒状フィルタ部材1における濾過部2の内側露出面22となる。
前記の打ち抜き及び穴開け工程においては、破線aで示す形状又は破線bで示す形状のいずれか一方を先に打ち抜き、その後に、残る一方を打ち抜くこともできるし、あるいは、破線a及び破線bで示す形状を同時に打ち抜くこともできる。
【0039】
図6に示す微小筒状セル集合体9の代わりに、折り曲げ濾材板が積層された構造からなる微小筒状セル集合体を用いること以外は、前記操作を繰り返すことにより、図3に示す濾過部を有する筒状フィルタ部材を製造することができる。以上の説明から明らかなように、本発明の筒状フィルタ部材の製造方法においては、製造しようとする筒状フィルタ部材を構成する微小筒状セルと同じ形状の微小筒状セルが、目的とする筒状フィルタ部材における各微小筒状セルの配列パターンと同じパターンで配列している微小筒状セル集合体を予め作成しておき、その筒状セル集合体を前記微小筒状セルの長さ方向、あるいは、微小筒状セルの長さ方向から所望の角度だけ偏向した方向に沿って打ち抜くことによって、所望の筒状フィルタ部材を製造することができる。本発明の筒状フィルタ部材の第1の製造方法においては、セル集合体の微小筒状セルの形状がそのまま保持されるので、微小筒状セルの形状に由来する所望の特性(例えば、形状保持性又は優れた濾過性能)を容易に得ることができる。
【0040】
本発明による第2の製造方法を、図7に沿って以下に説明する。
図7は、本発明の製造方法を模式的に示す説明図であり、図7(a)〜(e)の各々は、変形可能セル集合体90、押圧変形セル集合体97、又は筒状フィルタ部材1をその上面11から見た模式的平面図である。なお、図7は、製造工程を示すことが目的であるので、変形可能セル集合体90、押圧変形セル集合体97、又は筒状フィルタ部材1に含まれている微小筒状セルを図示せずに省略した。
【0041】
本発明による第2の製造方法においては、始めに、微小筒状セルの複数個(多数個)を、それらの各セル空間の少なくとも全側面が筒状濾材壁によって覆われ、しかもそれらの長さ方向が実質的に平行な状態で集合してなり、更に前記の長さ方向に対して実質的に垂直な方向に側面から押圧すると変形可能なセル集合体90を製造する。本発明の製造方法に用いることのできる変形可能セル集合体90を、図7(b)に示す。本発明の製造方法においては、公知の手段(例えば、コルゲート加工機など)によって、所望の形状を有する変形可能セル集合体を直接製造することができる。
あるいは、図7(a)に示すように、所望の形状よりも大きな形状を有する変形可能セル集合体90を始めに製造し、続いて、例えば、所望の断面形状[図7(a)の破線c]に相当する切断刃を有する打抜具によって、破線cに沿ってその外周部を切断除去することにより、図7(b)に示すような所望形状の変形可能セル集合体90を得ることもできる。
【0042】
図7(c)に示すように、変形可能セル集合体90の上面11又は下面に、変形可能セル集合体の長さ方向に沿って、あるいは、微小筒状セルの長さ方向から所望の角度だけ偏向した方向に沿って、筒状縦孔形成用スリット93を入れる。変形可能セル集合体90の上面11又は下面に設ける前記の筒状縦孔形成用スリット93は、変形可能セル集合体のいずれの側面94にも到達することなく、しかも、変形可能セル集合体90の側面から前記スリット93の長さ方向に押圧することにより開口可能であることが必要である。
本発明の製造方法においては、前記筒状縦孔形成用スリットは、上面又は下面のいずれか一方にのみ開口していることもできるし、上面から下面まで貫通していることもできるが、貫通していることが好ましい。また、筒状縦孔形成用スリットを設ける位置は、変形可能セル集合体のいずれの側面にも到達していない限り、特に限定されるものではないが、変形可能セル集合体の中央部に設けることが好ましい。
【0043】
図7(d)に示すように、筒状縦孔形成用スリット93を設けた変形可能セル集合体90の側面から前記スリット93の長さ方向(矢印C及び矢印Dで示す方向)に押圧すると、押圧変形したセル集合体97の上面及び/又は下面に、セル集合体の長さ方向に沿って、あるいは、微小筒状セルの長さ方向から所望の角度だけ偏向した方向に沿って、押圧開口孔96が形成される。この押圧開口孔96の内部に、筒状縦孔3の所定形状を付与して保持することができる形状付与保持具95を挿入することにより、図7(e)に示す筒状フィルタ部材1を製造することができる。本発明の製造方法において使用することのできる形状付与保持具は、押圧開口孔96に挿入した場合に濾過部2と筒状縦孔3との間の流体の通過を妨げない限り、特に限定されるものではなく、例えば、側壁に多数の流体通過用細孔を有する硬質管(中空パイプ)、又は保形用リングなどを挙げることができる。
【0044】
図7に示す態様は、筒状フィルタ部材1における濾過部2の外側側面21を予め形成した後に、筒状縦孔形成用スリット93及び筒状縦孔3を形成する態様であるが、本発明の第2の製造方法においては、これ以外にも、筒状縦孔形成用スリット又は筒状縦孔を予め形成した後に、前記所定形状の筒状縦孔の外径よりも大きい内径を有する打抜具によって、筒状フィルタ部材における所定の外側側面を形成することもできるし、あるいは、筒状フィルタ部材における外側側面と、筒状縦孔形成用スリットとを同時に形成することもできる。
【0045】
本発明による第3の製造方法においては、始めに、微小筒状セルの複数個(多数個)を、それらの各セル空間の少なくとも全側面が筒状濾材壁によって覆われ、しかもそれらの長さ方向が実質的に平行な状態で集合してなり、更に前記の長さ方向に対して実質的に垂直な方向に側面から押圧すると変形可能なセル集合体を製造する。この変形可能セル集合体は、例えば、本発明による第2の製造方法において説明した方法によって製造することができる。
この変形可能セル集合体の上面又は下面に、変形可能セル集合体の長さ方向に沿って、あるいは、微小筒状セルの長さ方向から所望の角度だけ偏向した方向に沿って、適当なスリットを入れる。前記スリットは、変形可能セル集合体のいずれの側面にも到達することなく、しかも、変形可能セル集合体の側面から前記スリットの長さ方向に押圧することにより、所定形状の筒状縦孔に変形可能であることが必要である。
本発明の製造方法においては、前記スリットは、上面又は下面のいずれか一面にのみ開口していることもできるし、上面から下面まで貫通していることもできるが、貫通していることが好ましい。また、スリットを設ける位置は、変形可能セル集合体のいずれの側面にも到達していない限り、特に限定されるものではないが、変形可能セル集合体の中央部に設けることが好ましい。
【0046】
次に、スリットを設けた変形可能セル集合体の側面からスリットの長さ方向に押圧すると、押圧変形したセル集合体の上面及び/又は下面に、セル集合体の長さ方向に沿って、あるいは、微小筒状セルの長さ方向から所望の角度だけ偏向した方向に沿って、所定形状の筒状縦孔が形成されると共に、所定形状の押圧変形セル集合体が形成される。得られた所定形状の押圧変形セル集合体の外側側面に、セル集合体及び筒状縦孔の各所定形状を保持することのできる形状保持具を設けることにより、本発明の筒状フィルタ部材を製造することができる。本発明の製造方法において使用することのできる形状保持具は、セル集合体の外側側面に設けた場合に、濾過部と周囲空間との間の流体の通過を妨げない限り、特に限定されるものではなく、例えば、側壁に多数の流体通過用細孔を有する硬質管、又は保形用リングなどを挙げることができる。
【0047】
図4に示す筒状フィルタ10も、種々の方法によって製造することができるが、例えば、以下の製造方法によって製造することが好ましい。すなわち、互いに異なる濾過特性を有する濾材用材料からなる2種類のセル集合体を予め作成しておき、一方のセル集合体を打ち抜くことにより筒状フィルタ部材1aを形成し、もう一方のセル集合体を打ち抜くことにより筒状フィルタ部材1bを形成する。別々に得られた筒状フィルタ部材1aと筒状フィルタ部材1bとを、筒状フィルタ部材1aの濾過部2aの内側側面22aと、筒状フィルタ部材1bの濾過部2bの外側側面21bとが接触するように組み合わせることにより、図4に示す筒状フィルタ10を製造することができる。
【0048】
【発明の効果】
本発明の筒状フィルタ部材を用いると、濾過処理中に被処理流体のリークが生じることがないので、濾材層を一度も通過することなく、濾過体の被処理流体流入面から処理流体流出面に到達してしまう被処理流体が生じることを回避することができる。
また、本発明の筒状フィルタ部材の製造方法によれば、微小筒状セルの形状がそのまま保持されるので、微小筒状セルの形状に由来する特性を有する筒状フィルタ(例えば、形状保持性及び/又は濾過性能に優れた筒状フィルタ)を製造することができる。また、濾過材の種類及び/又は筒状フィルタ部材の種類を適宜組合せることにより、高精度で長寿命の筒状フィルタを製造することができる。
【図面の簡単な説明】
【図1】本発明の1態様の筒状フィルタ部材を上面側から見た斜視図である。
【図2】図1の筒状フィルタ部材の一部を上面側から見た拡大部分平面図である。
【図3】本発明の別の態様の濾過部の一部を上面側から見た拡大部分平面図である。
【図4】本発明による更に別の態様の筒状フィルタを上面側から見た模式的平面図である。
【図5】本発明による更に別の態様の筒状フィルタを上面側から見た模式的平面図である。
【図6】本発明の筒状フィルタ部材の製造方法に用いることのできるセル集合体を上面側から見た斜視図である。
【図7】本発明の筒状フィルタ部材の製造方法を模式的に示す説明図である。
【図8】従来公知のフィルタを上面側から見た斜視図である。
【符号の説明】
1・・筒状フィルタ部材;2・・濾過部;3・・中央貫通孔;
4・・微小筒状セル;5・・セル空間;6・・セル濾材壁;
8・・シート状濾材;9・・セル集合体;10・・筒状フィルタ;
11・・上面;12・・下面;21・・外側側面;22・・内側露出面;
61・・平面状濾材板;62・・波形濾材板;63・・折り曲げ濾材板;
64・・接触面;
90・・変形可能セル集合体;91・・上面;92・・下面;
93・・筒状縦孔形成用スリット;94・・側面;95・・形状付与保持具;
96・・押圧開口孔;97・・押圧変形セル集合体;
100・・フィルタ;400・・筒状セル;600・・セル濾材壁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical filter member, a manufacturing method thereof, and a cylindrical filter including the cylindrical filter member.
[0002]
[Prior art]
A vertical flow cylindrical filter is known as one type of filter that can collect dust (dust) contained in a fluid to be treated such as liquid or gas and purify the fluid. This vertical flow type cylindrical filter generally has a structure in which a hollow pipe having a large number of fluid passage pores in the side wall is provided at the center, and a filter medium is wound around the hollow pipe. From the outer side of the filter to the direction of the hollow pipe (or the opposite direction, ie, from the inside of the hollow pipe to the outer side of the cylindrical filter) by passing it substantially perpendicular to the filter medium layer I do. However, such a vertical flow type cylindrical filter generally has a limited filtration area, and therefore has a small processing flow rate and a short filter life.
[0003]
On the other hand, a filter composed of an assembly of a plurality of cylindrical cells arranged in parallel to each other is known as a vertical flow type flat filter. For example, JP-A-6-71128 discloses a filter 100 made of a honeycomb structure as shown in FIG. A filter 100 shown in FIG. 8 is formed of a honeycomb structure in which a plurality of cylindrical cells 400 made of a filter medium sheet having air permeability or water permeability are assembled. In this filter, the cell filter medium wall 600 of the cylindrical cell 400 serves as an active surface, and the fluid to be treated is in a direction perpendicular to the cell filter medium wall 600 from one side surface of the filter 100 (direction indicated by arrow A). And flows through the cell filter medium wall 600 and flows out from the other opposite side surface of the filter 100 in a direction perpendicular to the cell filter medium wall 600 (direction indicated by arrow B). Since the filter shown in FIG. 8 is formed of a honeycomb structure, the filter has high rigidity (that is, excellent shape retention) and exhibits various excellent characteristics such as a wide filtration area.
[0004]
A long sheet (filter material) made of the honeycomb structure was prepared with the intention of imparting excellent characteristics derived from such a honeycomb structure to the vertical flow cylindrical filter. It is conceivable to form a vertical flow cylindrical filter by winding the structure around the hollow pipe as described above. However, in such a honeycomb structure cylindrical filter,
(1) Leakage of a fluid to be processed that passes through a spiral (coiled) flow path formed between layers of a wound filter medium;
(2) It is necessary to provide a shape-retaining material for maintaining the winding in contact with the outermost layer filter material, which reduces the filtration area and requires an additional shape-retaining material mounting process in the production process. The process is complicated; and
(3) The individual honeycomb structure is deformed due to the force applied by winding, and the desired characteristics (for example, shape retention or excellent filtration performance) cannot be obtained sufficiently.
This causes problems.
[0005]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to solve the above-mentioned disadvantages of the prior art, the leakage of the fluid to be processed does not occur, the desired filtration performance is obtained, and the shape retention is excellent, and the tubular shape has a wide filtration area. It is providing the filter member, its manufacturing method, and the cylindrical filter containing the said cylindrical filter member.
[0006]
[Means for Solving the Problems]
  According to the present invention, (1) a filtration unit formed by assembling a plurality of micro cylindrical cells in a state in which their length directions are substantially parallel, and (2) at least an upper surface or a lower surface. One side is open, the entire side surface is surrounded by the filtration part, and consists of a cylindrical vertical hole having an inner diameter larger than the inner diameter of the micro cylindrical cell,
A direction from the inner side surface of the filtration unit in contact with the cylindrical vertical hole to the outer side surface of the filtration unit, wherein at least all side surfaces of the cell space of the micro cylindrical cell are covered with a cylindrical filter medium wall. A member for a cylindrical filter that is filtered across the micro cylindrical cell in the opposite direction;
If the fluid to be treated does not pass through the cylindrical filter medium wall of the micro cylindrical cell at least once, it reaches the outer side surface from the inner side surface of the filtering unit or the inner side surface from the outer side surface of the filtering unit. Have a structure that can notAnd
The upper and lower surfaces of the filtration part are closed by a sealing means.about
Characterized by the
This can be solved by the tubular filter member.
  Moreover, this invention relates to the manufacturing method of the cylindrical filter containing the said cylindrical filter member, or the said cylindrical filter member.
[0007]
The “fluid” that can be processed by the cylindrical filter of the present invention includes both liquid and gas. In the present specification, the untreated fluid before the filtration process with the cylindrical filter member (that is, before passing through the inflow surface of the filter body constituting the cylindrical filter member) and the filtration process (that is, the above-described process) The fluid that is passing through the filter body is referred to as a “processed fluid”, and the fluid that has been filtered by the cylindrical filter member (that is, after passing through the outflow surface of the filter body) is referred to as “process fluid”. Called.
[0008]
In this specification, the “cylindrical vertical hole” has a typical function, for example, to-be-treated supplied from a suitable to-be-treated fluid supply means connected to the upper surface and / or the lower surface of the tubular filter member. Pass the fluid and send the fluid to be processed from the inner wall surface of the cylindrical vertical hole to the outer side surface of the cylindrical filter member via the micro cylindrical cell, or conversely, it is supplied from the outer side surface of the cylindrical filter member. A cylindrical space in which a fluid to be processed can be sent to a cylindrical vertical hole via a micro cylindrical cell and sent to an appropriate processing fluid recovery means connected to the upper surface and / or the lower surface of the cylindrical filter member Means.
[0009]
  Further, in this specification, the “micro cylindrical cell” includes a “tubular filter medium wall” (that is, a cell filter medium wall) and a hollow “cell space” surrounded by the cylindrical filter medium wall, A filtration unit in which at least all side surfaces of the cylindrical hollow cell space are surrounded by a cylindrical filter medium wall (cell filter medium wall) (that is, a minimum unit for performing filtration by allowing the fluid to be treated to pass through the cylindrical filter medium wall) This means that the cross-sectional shape in the width direction preferably has a cylindrical shape that is substantially constant in the length direction from the upper surface to the lower surface.
  Note that in this specification, a structure having a cylindrical shape (for example, a micro cylindrical cell), TubeIn the case of a vertical hole, a cylindrical filter member, or a cylindrical filter), the “length direction” means a direction along (parallel) the central axis of the structure, and the “width direction” It means a direction perpendicular to the “length direction”. When the central axis does not exist or is unclear, the center of the upper surface (a point corresponding to the center when the center does not exist or is unclear) and the center of the lower surface. It means the direction connecting with the center (the point corresponding to the center when the center does not exist or is unclear).
  In addition, in this specification, “non-cell space” means a space other than the “cell space”, and the non-cell space includes the “cylindrical vertical hole” or the area around the cylindrical filter member. Space (hereinafter referred to as ambient space) and the like.
[0010]
In this specification, the “cell aggregate” means that a plurality of micro cylindrical cells are arranged in a state in which their length directions are substantially parallel, and a “cylindrical vertical hole” is provided in the inside. There is no aggregate. The “cell aggregate” is preferably a collection of micro-cylindrical cells having substantially the same length and substantially the same length.
Therefore, the “filtration part” is manufactured by providing a cylindrical vertical hole in the above “cell assembly” (preferably the central part) and further punching the outer peripheral part in some cases.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the cylindrical filter member of the present invention will be mainly described with reference to FIGS. 1 and 2 showing one embodiment thereof. FIG. 1 is a perspective view of the tubular filter member 1 according to the present invention as viewed from the upper surface side. FIG. 2 is a top view of a portion 1a (dashed line portion in FIG. 1) of the tubular filter member 1 cut out. It is the expansion partial top view seen from.
[0012]
The cylindrical filter member 1 shown in FIGS. 1 and 2 includes a filtration unit 2 composed of a group of minute cylindrical cells having a corrugated structure in which planar filter media plates 61 and corrugated filter media plates 62 are alternately laminated, and the filtration thereof. The central through hole 3 is provided near the center of the portion 2 and penetrates from the upper surface 11 to the lower surface 12 of the tubular filter member 1.
In the tubular filter member 1, the fluid to be treated is directed from the outer side surface 21 of the filtration unit 2 toward the central through hole 3 (hereinafter, sometimes referred to as a centripetal direction), or in the opposite direction, that is, From the central through hole 3 toward the outer side surface 21 of the filtration unit 2 (hereinafter sometimes referred to as a centrifugal direction), a filtration process is performed when passing through the filtration unit 2 to obtain a treatment fluid. . When the fluid to be treated is passed in the centripetal direction, the outer side surface 21 of the filtration unit 2 serves as the fluid to be treated inflow surface, and is a surface exposed to the central through hole 3 of the filtration unit 2 (hereinafter referred to as an inner exposed surface) 22. Becomes the processing fluid outflow surface. On the other hand, when the fluid to be treated is passed in the centrifugal direction, the inner exposed surface 22 of the filtration unit 2 serves as the fluid to be treated inflow surface, and the outer side surface 21 of the filtration unit 2 serves as the treatment fluid outflow surface.
[0013]
In the corrugated structure of the filtration part 2 in the tubular filter member 1, each contact surface 64 between the adjacent flat filter medium plate 61 and the corrugated filter medium plate 62 is connected to an appropriate means (for example, adhesion, heat fusion or ultrasonic fusion). It is held by fixing by wearing. In the filtration unit 2 having a corrugated structure, a large number of cell spaces 5 are formed by the planar filter medium plate 61 and the corrugated filter medium plate 62 adjacent thereto, and a filter medium plate (planar filter medium plate 61 surrounding the cell space 5). The corrugated filter medium plate 62) functions as the cell filter medium wall 6 in the cylindrical filter member of the present invention.
[0014]
For example, in the two micro cylindrical cells 4a and 4b adjacent via the corrugated filter medium plate 62, as shown in FIG. 2, one micro cylindrical cell 4a includes the region f of the flat filter medium plate 61, the corrugated filter medium. It consists of a cell filter medium wall consisting of a region p of the plate 62 and a region q of the corrugated filter medium plate 62, and a cell space 5x surrounded by these three filter medium plate regions. A cell filter medium wall composed of a region g of the planar filter medium plate 61, a region q of the corrugated filter medium plate 62, and a region r of the corrugated filter medium plate 62, and a cell space 5y surrounded by those three filter medium plate regions. . In the cylindrical filter member of the present invention, the filter medium plate (for example, the region q of the corrugated filter medium plate 62) sandwiched between two adjacent cell spaces (for example, the cell spaces 5x and 5y) is usually the cell space. It can function as a cell filter medium wall of each of two micro cylindrical cells (for example, micro cylindrical cells 4a and 4b).
[0015]
In the cylindrical filter member 1 shown in FIG.1 and FIG.2, the said filtration part 2 consists of a corrugated structure, The micro cylindrical cell 4 penetrates from the upper surface 11 of the cylindrical filter member 1, and the lower surface 12, respectively. The micro cylindrical cells 4 are substantially parallel to each other. Further, each micro cylindrical cell 4 is substantially parallel to the central through hole 3.
[0016]
As described above, in the cylindrical filter member 1 shown in FIGS. 1 and 2, the fluid to be processed is passed in the centripetal direction or the centrifugal direction. At that time, in the cylindrical filter member according to the present invention, the fluid to be treated is allowed to pass through at least one cylindrical filter medium wall. That is, the tubular filter member according to the present invention is configured so that the fluid to be treated does not pass through the tubular filter medium wall of the micro tubular cell at least once, from the inner side surface to the outer side surface of the filtration unit or the filtration unit. It has a structure that cannot reach the inner side surface from the outer side surface. On the other hand, when a long sheet composed of a group of minute cylindrical cells is created and the long sheet is wound to produce a tubular filter member, the sheet is spirally wound (wrapped) between layers of the wound long sheet. ) Is formed, and the fluid to be treated can be passed in the centripetal direction or the centrifugal direction without passing through the cylindrical filter medium wall. On the other hand, in the cylindrical filter member according to the present invention, since the spiral flow path as described above does not exist, the treatment fluid inflow surface regardless of the filtration direction of the treatment fluid. And the processing fluid outflow surface are separated from each other by a cell filter medium wall.
[0017]
FIG. 3 shows a cylindrical filter member of the present invention that includes a filtration part composed of a group of micro cylindrical cells having a structure different from the corrugated structure. FIG. 3 is an enlarged partial plan view of a part of the cylindrical filter member of the present invention as viewed from the upper surface side.
The filtration unit 2 shown in FIG. 3 is a micro cylindrical cell formed by laminating a folded filter medium plate 63 (that is, a filter medium plate having a structure in which a flat filter medium plate is bent so that crests and troughs are periodically repeated). Form a group.
The cross-sectional shape (in the width direction) of the micro cylindrical cell 4 is a rhombus, and like the cylindrical filter member 1 shown in FIG. 1, these micro cylindrical cells 4 are arranged from the upper surface to the lower surface of the cylindrical filter member. The micro cylindrical cells 4 that pass through are substantially parallel to each other. Furthermore, each micro cylindrical cell 4 is substantially parallel to the central through hole. The cross-sectional shape of the micro-cylindrical cell 4 is determined by fixing each contact surface 64 at each peak portion of the adjacent folded filter medium plate 63 by an appropriate means (for example, adhesion, heat fusion, ultrasonic fusion, etc.). Is retained.
[0018]
As in the case of the cylindrical filter member 1 shown in FIGS. 1 and 2, also in the filtration unit 2 shown in FIG. 3, at least one cylindrical filter medium wall is passed through the fluid to be treated. That is, the tubular filter member according to the present invention is configured so that the fluid to be treated does not pass through the tubular filter medium wall of the micro tubular cell at least once, from the inner side surface to the outer side surface of the filtration unit or the filtration unit. It has a structure that cannot reach the inner side surface from the outer side surface. In other words, regardless of the filtration direction of the fluid to be treated, the fluid inflow surface to be treated and the fluid outflow surface are separated from each other by the cell filter medium wall.
[0019]
In the cylindrical filter member of the present invention, the cross-sectional shape (in the width direction) of the minute cylindrical cell is not particularly limited, and can be various shapes. In addition to the cross-sectional shape shown in FIG. 1 to FIG. 3, as the cross-sectional shape of the micro cylindrical cell, a polygon, for example, a triangle, a parallelogram (for example, a square, a rectangle, or a trapezoid), a hexagon, or a circle, An elliptical shape, a semicircular shape, a semielliptical shape, a sector shape, or the like can be exemplified.
Moreover, in the cylindrical filter member of the present invention, each micro cylindrical cell included in the filter body may be a micro cylindrical cell having the same shape and size, or may have a shape and / or size. Two or more different types of micro cylindrical cells can also be used.
[0020]
  The individual micro cylindrical cells constituting the filtration part of the cylindrical filter member according to the present invention must have at least all side surfaces of the cell space covered with the cylindrical filter medium wall.AboveInterviewUnderThe surface is closed by a filter medium similar to the cylindrical filter medium wall or by suitable sealing means.TheFor example,PreviousAs described above, the upper surface of the cell space of one micro cylindrical cell extending from the upper surface to the lower surface in the length direction of the filtration portion andUnderSurface (upper surface of filtration part andUnderMatch the surface) is closedThe
  Furthermore, two or more micro cylindrical cells can be continuously arranged from the upper surface to the lower surface in the length direction of the filtration unit. In this case, there is a closed surface between the micro cylindrical cells adjacent in the length direction, and the upper surface or the lower surface of the micro cylindrical cell having the upper surface or the lower surface coinciding with the upper surface or the lower surface of the filtration part isClosedAt the chainThe
[0021]
  Cylindrical filter member according to the present inventionNo filtrationOn the number of micro-cylindrical cells placed in the length direction of the excessIsThere is no need to match them. Further, it is not necessary that the cross-sectional shapes (in the width direction) of the individual microcylindrical cells are all the same, or it is not necessary to match the filter medium materials constituting the cell filter medium wall. That is, there is no substantial difference in the filtration efficiency even if the filtration unit is configured by combining various micro cylindrical cells having different points, but from the viewpoint of the manufacturing method, all are the same in these points. It is preferable that the filtration part is constituted by the micro cylindrical cell of the aspect.
[0022]
In the tubular filter member of the present invention, the means for mutually fixing the adjacent filter medium sheets to form the micro-cylindrical cell is not particularly limited, and the type of filter medium material that forms the filtration part Depending on the case, known fixing means (for example, adhesion, thermal fusion, ultrasonic fusion, etc.) can be used as appropriate. For example, when a sheet containing thermoplastic fibers is used as the filter medium sheet, impurities are not left in the filtration part, and fusion is performed by ultrasonic waves in that the fusion area is small (the effective filtration area is small). Is preferred.
[0023]
The filter medium wall of the cylindrical filter member of the present invention is made of any conventionally known filter medium material, for example, a fibrous material (for example, knitted fabric, woven fabric, non-woven fabric, paper, or a composite thereof), a net, and a perforated film. Or a membrane or the like.
[0024]
In the cylindrical filter member of the present invention, the filter medium wall can be formed not only from a normal filter medium material but also from a filter medium material that holds a functional substance. Examples of the functional substance include gas purification substances, dye purification substances, antibacterial agents, antifungal agents, antistatic agents, metal ion adsorption materials, microorganism adsorption materials, and deodorizing agents. Such a functional substance can be adsorbed or impregnated in the filter medium material, for example, to prepare a filter medium material holding the functional substance.
[0025]
In the cylindrical filter member of the present invention, the cross-sectional shape (in the width direction) of the cylindrical vertical hole is not particularly limited, and can be various shapes, for example, a circle, an ellipse, or a polygon For example, a triangle, a parallelogram (for example, a square, a rectangle, a rhombus, or a trapezoid), a hexagon, and the like can be given. The cylindrical filter member of the present invention includes a cylindrical filter member (for example, the cylindrical filter member shown in FIGS. 1 and 2) in which the shape of the cylindrical vertical hole is held by the filtering portion itself. Of course, as will be described later, the shape of the cylindrical vertical hole is formed by a shape holder that can be provided on the outside of the outer side surface of the filtration part or at least one of the inside of the cylindrical vertical hole of the filtration part. The cylindrical filter member [for example, the cylindrical filter member shown in Drawing 7 (e)] currently held is also contained.
[0026]
In the cylindrical filter member of the present invention, the cylindrical vertical hole is provided at a position where the entire side surface of the cylindrical vertical hole is surrounded by the filtering portion, and an opening is provided on at least one of the upper surface or the lower surface of the cylindrical filter member. Although it does not specifically limit as long as it has, It is preferable to provide in the center part of the filtration part. Further, the number of cylindrical vertical holes that can be provided in the filtration part is not particularly limited, and one or a plurality of cylindrical vertical holes can be provided. More preferably, it is preferably provided in the central part of the filtration part. Furthermore, the relationship between the length direction of the cylindrical vertical holes and the length direction of each micro cylindrical cell is not particularly limited, but the length direction of the cylindrical vertical holes is not limited to each micro cylindrical cell. It is preferably substantially parallel to the length direction.
[0027]
In the cylindrical filter member according to the present invention, at least the entire side surface of the cylindrical vertical hole needs to be covered with the filtering portion, but both the upper surface and the lower surface can be open surfaces, or the upper surface Alternatively, only one of the lower surfaces may be an open surface, and the remaining one may be closed with a filter medium material that is the same as or different from the cylindrical filter medium wall, or with a suitable sealing means. For example, when both the upper surface and the lower surface of the cylindrical vertical hole are open surfaces, the cylindrical vertical hole extends from the upper surface to the lower surface in the length direction of the cylindrical filter member (the direction from the upper surface to the lower surface). It becomes a through hole.
Further, as described above, either the upper surface or the lower surface of the cylindrical vertical hole extending from the upper surface to the lower surface in the length direction of the cylindrical filter member (corresponding to the upper surface or the lower surface of the cylindrical filter member) is closed. You can also.
Furthermore, two or more cylindrical vertical holes can be continuously arranged from the upper surface to the lower surface in the length direction of the cylindrical filter member. In this case, there is a closed surface between the cylindrical vertical holes adjacent in the length direction, and at least one of the upper surface or the lower surface of the cylindrical vertical hole having the upper surface or the lower surface coinciding with the upper surface or the lower surface of the cylindrical filter member is It is an opening surface.
Furthermore, the cylindrical vertical hole may be a concave vertical hole that does not reach from the upper surface (or lower surface of the opening) to the lower surface (or upper surface) in the length direction of the cylindrical filter member.
Further, in some cases, a rigid tube (hollow pipe) having a large number of fluid passage pores on the side wall is inserted into the cylindrical vertical hole of the cylindrical filter member, and the inner wall surface of the filtering material in the cylindrical filter member; It can also be provided in contact with the outer side surface of the rigid tube.
[0028]
As is clear from the above description, in the cylindrical filter member of the present invention, the filtration part has one or more micro cylindrical cell group layers, and the cylindrical filter medium wall of the micro cylindrical cell is provided. Since the fluid to be treated passes through at least one time, the fluid to be treated is leaked during the filtration treatment, that is, the fluid to be treated from the fluid inflow surface of the filter body without passing through the cylindrical filter medium wall. There is no occurrence of fluid to be processed that reaches the outflow surface. In the cylindrical filter member of the present invention, the processing flow rate is large because the processing fluid flows out from the processing fluid inflow surface of the filtering portion to the processing fluid outflow surface, and the processing flow rate is large. The contact life with the filter media wall is remarkably high, so the service life is excellent.
[0029]
Further, in the cylindrical filter member of the present invention, since the filtration part is composed of a micro cylindrical cell group of a desired shape (for example, a corrugated structure cell group or a honeycomb structure cell group), it has excellent shape retention. Desired filtration performance according to the design shape can be obtained. Furthermore, since it is not necessary to provide a shape-retaining material, not only the shape-retaining material mounting operation in the manufacturing process can be omitted, but also the filtration area can be increased correspondingly, and the service life is excellent.
[0030]
The cylindrical filter member of the present invention can be used alone to form a cylindrical filter, a plurality of cylindrical filter members can be combined to form a cylindrical filter, or other known filters A cylindrical filter may be combined with a cylindrical filter member (for example, a folded filter material).
When using a plurality of cylindrical filter members of the present invention in combination, it is possible to combine only cylindrical filter members having the same filtration characteristics, or combining two or more types of cylindrical filter members having different filtration characteristics. It can also be used. For example, a plurality of cylindrical filter members made of materials for filter media having different micro cylindrical cell groups, a plurality of cylindrical filter members having different cross-sectional shapes, and a micro cylindrical cell group having different filtration resistances A plurality of cylindrical filter members, a plurality of cylindrical filter members made of fibrous materials having different fiber diameters, and / or a plurality of filter medium materials made of micro cylindrical cells having different pore diameters A cylindrical filter member etc. can be combined suitably. For example, a cylindrical filter member including a filtering part made of a coarse filter medium material is disposed in a region close to the treatment fluid inflow surface, and finer than the filter medium material in a region close to the treatment fluid outflow surface. If a cylindrical filter member including a filtering part made of a material for filter media is arranged, the fluid to be treated can be filtered in stages, so that the fluid to be treated having a wider range of particle size distribution can be filtered. The service life of the cylindrical filter is also extended.
[0031]
One embodiment of the cylindrical filter of the present invention is schematically shown in FIG. FIG. 4 is a schematic plan view of the tubular filter 10 of the present invention viewed from the upper surface 11 thereof. In addition, since FIG. 4 aims at showing the arrangement | positioning relationship of each cylindrical filter member which comprises the cylindrical filter 10, the micro cylindrical cell contained in the filtration part was abbreviate | omitted without illustration. The cylindrical filter 10 shown in FIG. 4 includes two cylindrical filter members having different filtration characteristics, that is, a cylindrical filter member 1a positioned on the outer side and a cylindrical filter member 1b positioned on the inner side. The inner cylindrical filter member 1b includes a filtering portion 2b and a central through hole (cylindrical vertical hole) 3. The outer cylindrical filter member 1a includes a filtering portion 2a and a central through hole (inside thereof). Cylindrical vertical hole). The inner diameter of the filtering portion 2a of the outer cylindrical filter member 1a and the outer diameter of the filtering portion 2b of the inner cylindrical filter member 1b substantially coincide with each other, and the inner side surface 22a of the filtering portion 2a is filtered. The tubular filter member 1b is fitted into the central through hole (cylindrical vertical hole) of the tubular filter member 1a so that the outer side surface 21b of the portion 2b is in close contact.
[0032]
In the cylindrical filter 10 shown in FIG. 4, for example, the filtering part 2 a of the outer cylindrical filter member 1 a is formed using a coarse filter medium material, and a finer filter medium material than the outer cylindrical filter member 1 a is used. When the filtration part 2b of the inner cylindrical filter member 1b is used to pass the fluid to be treated in the centripetal direction, first, the fluid to be treated passes through the outer filtration part 2a. Among particles to be collected, particles having a large particle size are collected, and then particles having a small particle size are collected when passing through the inner filtration part 2b. Since most of the particles having a large particle size have already been removed from the fluid to be processed that passes through the inner filtration portion 2b, clogging of the inner filtration portion 2b due to the particles having a large particle size can be significantly reduced. The lifetime of the filter 10 can be extended.
When the fluid to be treated is passed in the centrifugal direction, the filtering part 2b of the inner cylindrical filter member 1b is formed using a coarse filter medium material, and the filter medium material is finer than the inner cylindrical filter member 1b. The same effect can be acquired by forming the filtration part 2a of the outer cylindrical filter member 1a using.
The cylindrical filter 10 shown in FIG. 4 is an embodiment in which two cylindrical filter members of the present invention are used in combination. However, in the cylindrical filter of the present invention, only a plurality of the cylindrical filter members of the present invention are used. It can also be used in combination, or as long as it contains at least one cylindrical filter member of the present invention, a plurality of cylindrical filter members of the present invention and conventionally known cylindrical filter members are used in combination. You can also
[0033]
As another aspect in which a plurality of cylindrical filter members of the present invention are used in combination, a cylindrical filter in which a plurality of cylindrical filter members of the present invention are stacked in the length direction can be exemplified. As will be apparent from the description of the manufacturing method to be described later, when the height (length in the length direction) of the cylindrical filter member is increased, it may be difficult to manufacture the cylindrical filter member. If necessary, the same effect can be obtained by using a plurality of low-profile cylindrical filter members in the longitudinal direction. When a plurality of cylindrical filter members are used in the longitudinal direction, the fluid to be treated does not pass through the cylindrical filter media wall so that the fluid to be processed does not pass between them. It is necessary to seal completely. Various known means can be used as the sealing means. For example, bonding is performed using a method of bonding the tubular filter members or an appropriate seal member (for example, gasket, packing, or uneven member). And a sealing method.
[0034]
In the tubular filter of the present invention, the tubular filter member of the present invention is further provided with a filtering member and / or a known auxiliary member that can constitute a known filter (for example, a known filter that does not include a minute tubular cell). They can also be combined.
For example, the aspect which combined the sheet-like filter medium which is a filtration member which can comprise the well-known filter which does not contain a micro cylindrical cell with the cylindrical filter member of this invention is shown in FIG. FIG. 5 is a schematic plan view of the tubular filter 10 of the present invention as viewed from the upper surface 11 thereof. In addition, since FIG. 5 aims at showing the arrangement | positioning relationship of each cylindrical filter member which comprises the cylindrical filter 10, the micro cylindrical cell contained in the filtration part was abbreviate | omitted without illustration. In the cylindrical filter 10 shown in FIG. 5, a sheet-like filter medium 8 is wound around the filtration unit 2 in the cylindrical filter member 1. By providing the sheet-like filter medium 8, shape retention can be improved and the service life can be extended.
[0035]
As the known auxiliary member that can be combined in the cylindrical filter of the present invention, for example, a hard member having a large number of fluid passage pores on the side wall that can be provided in close contact with the inside of the cylindrical vertical hole. A tube (hollow pipe), a shape retaining material that can be provided in close contact with the outside of the outer side surface of the filtration part, or an end cap that can seal the upper and / or lower surface of the cylindrical filter member or the cylindrical filter, etc. Can be mentioned.
[0036]
The cylindrical filter member of the present invention can be manufactured by various methods. For example, it is preferable to manufacture the cylindrical filter member by the method of manufacturing the cylindrical filter member according to the present invention described below.
In the first manufacturing method according to the present invention, first, a plurality (a large number) of the micro cylindrical cells are substantially free of gaps in a state in which their length directions are substantially parallel (preferably substantially In other words, a cell assembly in which micro cylindrical cells having substantially the same length are arranged in substantially the same length is manufactured. This cell assembly can be manufactured by a known means such as a corrugating machine. The cell assembly needs to have a size that allows the desired cylindrical filter member according to the present invention to be manufactured by drilling (and punching if necessary).
[0037]
FIG. 6 shows the micro cylindrical cell aggregate that can be used to manufacture the cylindrical filter member 1 shown in FIGS. 1 and 2 which is one embodiment of the present invention. FIG. 6 is a perspective view of the micro cylindrical cell assembly 9 as viewed from the upper surface side. 6 has a corrugated structure in which planar filter media plates 61 and corrugated filter media plates 62 are alternately stacked, and the micro cylindrical cells 4 are the same as those of the micro cylindrical cell assemblies 9. The micro cylindrical cells 4 penetrate from the upper surface 91 to the lower surface 92, and are substantially parallel to each other in the length direction.
[0038]
Subsequently, the micro cylindrical cell assembly 9 is divided into two types along the length direction of the micro cylindrical cell 4 or along a direction deflected by a desired angle from the length direction of the micro cylindrical cell. Punching with a punching tool. That is, one punching tool has a cutting blade corresponding to the cross-sectional shape in the width direction (dashed line a in FIG. 6) of the outer side surface 21 of the filtering portion 2 in the target tubular filter member 1, and the other punching tool. The cutting tool has a cutting blade corresponding to the cross-sectional shape in the width direction of the inner exposed surface 22 of the filtering part 2 in the target tubular filter member 1 (broken line b in FIG. 6). Therefore, the surface formed by punching along the broken line a becomes the outer side surface 21 of the filtration part 2 in the tubular filter member 1, while the surface formed by drilling according to the broken line b is the tubular filter member 1. The inner exposed surface 22 of the filtration part 2 in FIG.
In the punching and punching process, either the shape indicated by the broken line a or the shape indicated by the broken line b can be punched first, and then the remaining one can be punched, or the broken line a and the broken line b The shape shown can also be punched at the same time.
[0039]
The filtration section shown in FIG. 3 can be obtained by repeating the above operation except that a micro cylindrical cell assembly having a structure in which bent filter medium plates are laminated instead of the micro cylindrical cell assembly 9 shown in FIG. 6 is used. The cylindrical filter member which has can be manufactured. As is apparent from the above description, in the method for manufacturing a cylindrical filter member of the present invention, the target is a micro cylindrical cell having the same shape as the micro cylindrical cell constituting the cylindrical filter member to be manufactured. A micro cylindrical cell aggregate arranged in the same pattern as the array pattern of each micro cylindrical cell in the cylindrical filter member is prepared in advance, and the cylindrical cell aggregate is formed in the length direction of the micro cylindrical cell. Alternatively, a desired cylindrical filter member can be manufactured by punching along a direction deflected by a desired angle from the length direction of the minute cylindrical cell. In the first manufacturing method of the cylindrical filter member of the present invention, since the shape of the micro cylindrical cell of the cell assembly is maintained as it is, desired characteristics derived from the shape of the micro cylindrical cell (for example, shape holding) Or excellent filtration performance) can be easily obtained.
[0040]
A second manufacturing method according to the present invention will be described below with reference to FIG.
FIG. 7 is an explanatory view schematically showing the manufacturing method of the present invention. Each of FIGS. 7A to 7E is a deformable cell assembly 90, a press-deformed cell assembly 97, or a cylindrical filter. FIG. 3 is a schematic plan view of the member 1 as viewed from the upper surface 11 thereof. Note that FIG. 7 is intended to show the manufacturing process, and therefore the deformable cell assembly 90, the press-deformed cell assembly 97, or the minute cylindrical cells included in the cylindrical filter member 1 are not shown. Omitted.
[0041]
In the second manufacturing method according to the present invention, first, a plurality (a large number) of micro cylindrical cells are covered with a cylindrical filter medium wall at least on all sides of each cell space, and their lengths are also determined. A cell assembly 90 is manufactured which is assembled in a state in which the directions are substantially parallel and is deformable when pressed from the side in a direction substantially perpendicular to the length direction. A deformable cell assembly 90 that can be used in the manufacturing method of the present invention is shown in FIG. In the production method of the present invention, a deformable cell assembly having a desired shape can be directly produced by a known means (for example, a corrugating machine).
Alternatively, as shown in FIG. 7A, a deformable cell assembly 90 having a shape larger than the desired shape is first manufactured, and then, for example, a desired cross-sectional shape [broken line in FIG. 7], a deformable cell assembly 90 having a desired shape as shown in FIG. 7B is obtained by cutting and removing the outer peripheral portion along the broken line c with a punching tool having a cutting blade corresponding to c]. You can also.
[0042]
As shown in FIG. 7C, a desired angle is formed on the upper surface 11 or the lower surface of the deformable cell assembly 90 along the length direction of the deformable cell assembly or from the length direction of the microtubular cell. A slit 93 for forming a cylindrical vertical hole is inserted along the deflected direction. The cylindrical longitudinal hole forming slits 93 provided on the upper surface 11 or the lower surface of the deformable cell assembly 90 do not reach any side surface 94 of the deformable cell assembly, and the deformable cell assembly 90. It is necessary to be able to open by pressing in the length direction of the slit 93 from the side surface.
In the manufacturing method of the present invention, the cylindrical vertical hole forming slit can be opened only on either the upper surface or the lower surface, or can be penetrated from the upper surface to the lower surface. It is preferable. Further, the position where the cylindrical vertical hole forming slit is provided is not particularly limited as long as it does not reach any side surface of the deformable cell assembly, but is provided at the center of the deformable cell assembly. It is preferable.
[0043]
As shown in FIG. 7D, when the deformable cell assembly 90 provided with the cylindrical longitudinal hole forming slit 93 is pressed in the length direction of the slit 93 (directions indicated by arrows C and D). , Pressed on the upper surface and / or lower surface of the pressed cell assembly 97 along the length direction of the cell assembly, or along the direction deflected by a desired angle from the length direction of the micro cylindrical cell. An opening hole 96 is formed. The cylindrical filter member 1 shown in FIG. 7 (e) is inserted into the pressing opening 96 by inserting a shape imparting holder 95 that can impart and retain a predetermined shape of the cylindrical vertical hole 3. Can be manufactured. The shape-imparting holder that can be used in the manufacturing method of the present invention is not particularly limited as long as it does not hinder the passage of fluid between the filtration part 2 and the cylindrical vertical hole 3 when inserted into the pressing opening hole 96. For example, a hard pipe (hollow pipe) having a large number of fluid passage pores on the side wall or a shape retaining ring can be used.
[0044]
The mode shown in FIG. 7 is a mode in which the cylindrical vertical hole forming slit 93 and the cylindrical vertical hole 3 are formed after the outer side surface 21 of the filtration part 2 in the cylindrical filter member 1 is formed in advance. In the second manufacturing method, in addition to this, after forming the cylindrical vertical hole forming slit or the cylindrical vertical hole in advance, the punch having an inner diameter larger than the outer diameter of the cylindrical vertical hole of the predetermined shape. The predetermined outer side surface of the tubular filter member can be formed by the punching tool, or the outer side surface of the tubular filter member and the cylindrical vertical hole forming slit can be formed simultaneously.
[0045]
In the third manufacturing method according to the present invention, first, a plurality (a large number) of micro cylindrical cells are covered with a cylindrical filter medium wall at least all side surfaces of each cell space, and their lengths are also determined. A cell assembly is produced which is assembled in a state in which the directions are substantially parallel and further deformable when pressed from the side in a direction substantially perpendicular to the length direction. This deformable cell assembly can be manufactured, for example, by the method described in the second manufacturing method according to the present invention.
Appropriate slits on the upper or lower surface of the deformable cell assembly along the length direction of the deformable cell assembly or along the direction deflected by a desired angle from the length direction of the microtubular cell. Insert. The slit does not reach any side surface of the deformable cell assembly, and is pressed into the longitudinal direction of the slit from the side surface of the deformable cell assembly to form a cylindrical vertical hole having a predetermined shape. It must be deformable.
In the manufacturing method of the present invention, the slit can be opened only on one surface of the upper surface or the lower surface, or can be penetrated from the upper surface to the lower surface, but is preferably penetrated. . Further, the position where the slit is provided is not particularly limited as long as it does not reach any side surface of the deformable cell assembly, but it is preferably provided at the center of the deformable cell assembly.
[0046]
Next, when pressing in the length direction of the slit from the side surface of the deformable cell assembly provided with the slit, along the length direction of the cell assembly on the upper surface and / or the lower surface of the pressed cell assembly, or A cylindrical vertical hole having a predetermined shape is formed along a direction deflected by a desired angle from the length direction of the micro cylindrical cell, and a press-deformed cell assembly having a predetermined shape is formed. The cylindrical filter member of the present invention is provided by providing a shape holder capable of holding each predetermined shape of the cell aggregate and the cylindrical vertical hole on the outer side surface of the obtained press-deformed cell aggregate having a predetermined shape. Can be manufactured. The shape holder that can be used in the manufacturing method of the present invention is particularly limited as long as it is provided on the outer side surface of the cell assembly, as long as it does not hinder the passage of fluid between the filtration part and the surrounding space. Instead, for example, a rigid tube having a large number of pores for fluid passage on the side wall or a shape retaining ring can be used.
[0047]
Although the cylindrical filter 10 shown in FIG. 4 can also be manufactured by various methods, for example, it is preferable to manufacture it by the following manufacturing method. That is, two types of cell aggregates made of filter medium materials having different filtration characteristics are prepared in advance, and the tubular filter member 1a is formed by punching out one cell aggregate, and the other cell aggregate is formed. The cylindrical filter member 1b is formed by punching out. The tubular filter member 1a and the tubular filter member 1b obtained separately are brought into contact with the inner side surface 22a of the filtration part 2a of the tubular filter member 1a and the outer side face 21b of the filtration part 2b of the tubular filter member 1b. By combining in such a manner, the cylindrical filter 10 shown in FIG. 4 can be manufactured.
[0048]
【The invention's effect】
When the cylindrical filter member of the present invention is used, there is no leakage of the fluid to be treated during the filtration treatment, so that the fluid to be treated from the fluid inflow surface of the filter body does not pass through the filter medium layer even once. It is possible to avoid the occurrence of a fluid to be processed that reaches
In addition, according to the method for manufacturing a cylindrical filter member of the present invention, the shape of the minute cylindrical cell is maintained as it is, so that the cylindrical filter having characteristics derived from the shape of the minute cylindrical cell (for example, shape retaining property) And / or a cylindrical filter excellent in filtration performance). Moreover, a highly accurate and long-life cylindrical filter can be manufactured by combining suitably the kind of filter medium and / or the kind of cylindrical filter member.
[Brief description of the drawings]
FIG. 1 is a perspective view of a tubular filter member according to an aspect of the present invention as viewed from the upper surface side.
2 is an enlarged partial plan view of a part of the cylindrical filter member of FIG. 1 as viewed from the upper surface side.
FIG. 3 is an enlarged partial plan view of a part of a filtration unit according to another aspect of the present invention as viewed from the upper surface side.
FIG. 4 is a schematic plan view of a tubular filter according to still another embodiment of the present invention as viewed from the upper surface side.
FIG. 5 is a schematic plan view of a tubular filter according to still another embodiment of the present invention as viewed from the upper surface side.
FIG. 6 is a perspective view of a cell assembly that can be used in the method for producing a cylindrical filter member of the present invention as viewed from the upper surface side.
FIG. 7 is an explanatory view schematically showing a method for manufacturing the cylindrical filter member of the present invention.
FIG. 8 is a perspective view of a conventionally known filter as viewed from the upper surface side.
[Explanation of symbols]
1. ・ Tubular filter member; 2. ・ Filtering part; 3. ・ Central through hole;
4 .... Micro cylindrical cell; 5 .... Cell space; 6 .... Cell filter medium wall;
8. Sheet filter medium; 9. Cell aggregate; 10. Tube filter;
11 .. Upper surface; 12 .. Lower surface; 21 .. Outer side surface; 22 .. Inside exposed surface;
61 .. Flat filter medium plate; 62 .. Corrugated filter medium plate; 63.
64 .. Contact surface;
90 .. Deformable cell assembly; 91 .. Upper surface; 92 .. Lower surface;
93 ..Slit for forming cylindrical longitudinal hole; 94 ..Side; 95.
96 .. Press opening hole; 97 .. Press deformation cell assembly;
100 ... Filter; 400 ... Cylindrical cell; 600 ... Cell filter medium wall.

Claims (10)

(1)微小筒状セルの複数個を、それらの長さ方向を実質的に平行な状態で集合してなる濾過部と、(2)上面又は下面の少なくとも一方が開口し、全側面を前記濾過部に囲まれて、前記微小筒状セルの内径よりも大きな内径を有する筒状縦孔とからなり、
前記微小筒状セルのセル空間の少なくとも全側面が筒状濾材壁によって覆われ、しかも被処理流体が、前記筒状縦孔に接する前記濾過部の内側側面から前記濾過部の外側側面への方向、又はその逆方向へ、前記微小筒状セルを横切って濾過処理される筒状フィルタ用の部材であって;
前記の被処理流体が、前記微小筒状セルの筒状濾材壁を少なくとも1回は通過しないと、前記濾過部の内側側面から外側側面へ、又は前記濾過部の外側側面から内側側面へ到達することができない構造を有すること、及び
前記濾過部の上面及び下面が封止手段によって閉鎖されていること
を特徴とする、筒状フィルタ部材。
(1) a filtration part formed by assembling a plurality of micro cylindrical cells in a state in which their length directions are substantially parallel; (2) at least one of an upper surface or a lower surface is opened, Surrounded by the filtration part, and comprising a cylindrical vertical hole having an inner diameter larger than the inner diameter of the micro cylindrical cell,
A direction from the inner side surface of the filtration unit in contact with the cylindrical vertical hole to the outer side surface of the filtration unit, wherein at least all side surfaces of the cell space of the micro cylindrical cell are covered with a cylindrical filter medium wall. A member for a cylindrical filter that is filtered across the micro cylindrical cell in the opposite direction;
If the fluid to be treated does not pass through the cylindrical filter medium wall of the micro cylindrical cell at least once, it reaches the outer side surface from the inner side surface of the filtering unit or the inner side surface from the outer side surface of the filtering unit. that it has a structure that can not, and
The tubular filter member, wherein the upper and lower surfaces of the filtration part are closed by a sealing means .
請求項1に記載の筒状フィルタ部材を含む筒状フィルタ。A cylindrical filter comprising the cylindrical filter member according to claim 1. (1)微小筒状セルの複数個を、それらの長さ方向を実質的に平行な状態で集合してなる濾過部と、(2)上面又は下面の少なくとも一方が開口し、全側面を前記濾過部に囲まれて、前記微小筒状セルの内径よりも大きな内径を有する筒状縦孔とからなり、前記微小筒状セルのセル空間の少なくとも全側面が筒状濾材壁によって覆われ、しかも被処理流体が、前記筒状縦孔に接する前記濾過部の内側側面から前記濾過部の外側側面への方向、又はその逆方向へ、前記微小筒状セルを横切って濾過処理される筒状フィルタ用の部材の複数個を、それらの各筒状フィルタ部材のそれぞれの中心軸を実質的に共通にする態様で配置してなり、
相互に隣接する各筒状フィルタ部材において、前記の中心軸側に配置する筒状フィルタ部材における濾過部の外側側面と、その中心軸側筒状フィルタ部材の外層側に配置する筒状フィルタ部材における筒状縦孔に接する前記濾過部の内側側面とが実質的に接触する構造を有する筒状フィルタであって、
前記複数個の筒状フィルタ部材の少なくとも1個が、請求項1に記載の筒状フィルタ部材である、請求項2に記載の筒状フィルタ。
(1) a filtration part formed by assembling a plurality of micro cylindrical cells in a state in which their length directions are substantially parallel; (2) at least one of an upper surface or a lower surface is opened, A cylindrical vertical hole surrounded by a filtration portion and having an inner diameter larger than the inner diameter of the micro cylindrical cell, and at least all side surfaces of the cell space of the micro cylindrical cell are covered with a cylindrical filter medium wall; A cylindrical filter in which a fluid to be treated is filtered across the micro cylindrical cell in the direction from the inner side surface of the filtering unit in contact with the cylindrical vertical hole to the outer side surface of the filtering unit or in the opposite direction. A plurality of members are arranged in such a manner that the respective central axes of the respective cylindrical filter members are substantially common,
In each cylindrical filter member adjacent to each other, in the cylindrical filter member disposed on the outer side of the filtration portion of the tubular filter member disposed on the central axis side and on the outer layer side of the central shaft side tubular filter member A cylindrical filter having a structure in which the inner side surface of the filtration part in contact with the cylindrical vertical hole substantially contacts,
The cylindrical filter according to claim 2, wherein at least one of the plurality of cylindrical filter members is the cylindrical filter member according to claim 1.
最外層の濾過部の外側側面の周囲に、更にシート状濾材が巻回されている、請求項2又は3に記載の筒状フィルタ。The cylindrical filter according to claim 2 or 3, wherein a sheet-like filter medium is further wound around the outer side surface of the outermost layer filtration portion. 微小筒状セルの複数個を、それらの各セル空間の少なくとも全側面が筒状濾材壁によって覆われ、しかもそれらの長さ方向を実質的に平行な状態で集合してなるセル集合体を用意し、
前記微小筒状セルの内径よりも大きな内径を有する所定の筒状縦孔を穴開け加工することのできる穴開け具によって、前記のセル集合体の一部を切断除去することにより、上面又は下面の少なくとも一方が開口し、全側面を前記微小筒状セルに囲まれ、前記微小筒状セルの内径よりも大きな内径を有する所定の筒状縦孔を、前記のセル集合体に設ける
ことを特徴とする、請求項1に記載の筒状フィルタ部材の製造方法。
A cell assembly is prepared by assembling a plurality of micro cylindrical cells, with at least all sides of each cell space being covered with a cylindrical filter medium wall, and with their length directions being substantially parallel. And
By cutting and removing a part of the cell assembly with a drilling tool capable of drilling a predetermined cylindrical vertical hole having an inner diameter larger than the inner diameter of the micro cylindrical cell, the upper surface or the lower surface At least one of them is opened, all side surfaces are surrounded by the micro cylindrical cell, and a predetermined cylindrical vertical hole having an inner diameter larger than the inner diameter of the micro cylindrical cell is provided in the cell assembly. The manufacturing method of the cylindrical filter member of Claim 1.
請求項5に記載の穴開け具の内径よりも大きい内径を有し、前記のセル集合体を打ち抜き加工することのできる打抜具によって、前記のセル集合体の外周部を切断除去することにより、筒状フィルタ部材の所定の外側側面を更に形成する、請求項5に記載の方法。By cutting and removing the outer peripheral portion of the cell assembly with a punching tool having an inner diameter larger than the inner diameter of the punching device according to claim 5 and capable of punching the cell assembly. 6. The method of claim 5, further comprising forming a predetermined outer side surface of the tubular filter member. 微小筒状セルの複数個を、それらの各セル空間の少なくとも全側面が筒状濾材壁によって覆われ、しかもそれらの長さ方向を実質的に平行な状態で集合してなり、更に前記の長さ方向に対して実質的に垂直な方向に側面から押圧すると変形可能なセル集合体を用意し、
前記の変形可能セル集合体の側面からの押圧により開口可能な、筒状縦孔形成用のスリットを、前記の変形可能セル集合体の上面又は下面から設け、
変形可能セル集合体を側面から押圧して、前記の筒状縦孔形成用スリットから押圧開口孔を形成し、そして
その押圧開口孔の内部に、筒状縦孔の所定形状を付与して保持することができる形状付与保持具を設ける
ことを特徴とする、請求項1に記載の筒状フィルタ部材の製造方法。
A plurality of micro cylindrical cells are formed such that at least all side surfaces of each cell space are covered with a cylindrical filter medium wall and their length directions are gathered in a substantially parallel state. Prepare a cell assembly that can be deformed when pressed from the side in a direction substantially perpendicular to the vertical direction,
A slit for forming a cylindrical vertical hole that can be opened by pressing from the side surface of the deformable cell assembly is provided from the upper surface or the lower surface of the deformable cell assembly,
The deformable cell assembly is pressed from the side surface to form a pressing opening hole from the cylindrical vertical hole forming slit, and a predetermined shape of the cylindrical vertical hole is given and held inside the pressing opening hole. The manufacturing method of the cylindrical filter member of Claim 1 characterized by providing the shape provision holder which can do.
請求項7に記載の押圧工程の前に、変形可能セル集合体の外周部を打抜具によって打ち抜き加工して切断除去し、更に前記の押圧工程において、所定形状の押圧開口孔を形成するのと同時に、筒状フィルタ部材の所定形状の外側側面を形成する、請求項7に記載の方法。Prior to the pressing step according to claim 7, the outer peripheral portion of the deformable cell assembly is punched and removed by a punching tool, and in the pressing step, a press opening hole having a predetermined shape is formed. At the same time, the method according to claim 7, wherein the outer side surface of the predetermined shape of the tubular filter member is formed. 請求項7に記載の押圧工程の後に、請求項7に記載の押圧開口孔の外径よりも大きい内径を有し、前記の押圧変形したセル集合体を打ち抜き加工することのできる打抜具によって、前記の押圧変形したセル集合体の外周部を切断除去することにより、筒状フィルタ部材の所定の外側側面を更に形成する、請求項7に記載の方法。After the pressing step according to claim 7, by a punching tool having an inner diameter larger than the outer diameter of the pressing opening hole according to claim 7, and capable of punching the pressed and deformed cell assembly The method according to claim 7, wherein a predetermined outer side surface of the tubular filter member is further formed by cutting and removing an outer peripheral portion of the pressed and deformed cell assembly. 微小筒状セルの複数個を、それらの各セル空間の少なくとも全側面が筒状濾材壁によって覆われ、しかもそれらの長さ方向を実質的に平行な状態で集合してなり、更に前記の長さ方向に対して実質的に垂直な方向に側面から押圧すると変形可能なセル集合体を用意し、
前記の変形可能セル集合体の側面からの押圧により開口可能な、筒状縦孔形成用のスリットを、前記の変形可能セル集合体の上面又は下面から設け、
変形可能セル集合体を側面から押圧して、前記の筒状縦孔形成用スリットから押圧開口孔を形成し、そして
得られた所定形状のセル集合体の外側側面の外側に、セル集合体及び筒状縦孔の前記の各所定形状を保持することのできる形状保持具を設けること
を特徴とする、請求項1に記載の筒状フィルタ部材の製造方法。
A plurality of micro cylindrical cells are formed such that at least all side surfaces of each cell space are covered with a cylindrical filter medium wall and their length directions are gathered in a substantially parallel state. Prepare a cell assembly that can be deformed when pressed from the side in a direction substantially perpendicular to the vertical direction,
A slit for forming a cylindrical vertical hole that can be opened by pressing from the side surface of the deformable cell assembly is provided from the upper surface or the lower surface of the deformable cell assembly,
The deformable cell assembly is pressed from the side surface to form a pressing opening hole from the cylindrical longitudinal hole forming slit, and the cell assembly and the outside of the outer side surface of the obtained predetermined shaped cell assembly, 2. The method for manufacturing a cylindrical filter member according to claim 1, further comprising a shape holder that can hold the predetermined shapes of the cylindrical vertical holes.
JP06775998A 1998-03-03 1998-03-03 Cylindrical filter member, manufacturing method thereof, and cylindrical filter Expired - Fee Related JP3640789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06775998A JP3640789B2 (en) 1998-03-03 1998-03-03 Cylindrical filter member, manufacturing method thereof, and cylindrical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06775998A JP3640789B2 (en) 1998-03-03 1998-03-03 Cylindrical filter member, manufacturing method thereof, and cylindrical filter

Publications (2)

Publication Number Publication Date
JPH11244631A JPH11244631A (en) 1999-09-14
JP3640789B2 true JP3640789B2 (en) 2005-04-20

Family

ID=13354200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06775998A Expired - Fee Related JP3640789B2 (en) 1998-03-03 1998-03-03 Cylindrical filter member, manufacturing method thereof, and cylindrical filter

Country Status (1)

Country Link
JP (1) JP3640789B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023095B2 (en) * 2009-03-13 2012-09-12 パナソニック株式会社 Water purification cartridge

Also Published As

Publication number Publication date
JPH11244631A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
US4615804A (en) High density pleat spacing and scoring tool and filter made therewith
US5252207A (en) Wrap member having openings
KR102331811B1 (en) Filtration media, pleated media pack, filter cartridge, and methods for manufacturing
EP1554028B1 (en) Filterelement including filtration media with multi-layer pleat support
JP5042408B2 (en) Pleated filter element
GB2070974A (en) Supported semipermeable membrane
US4358371A (en) Backwashable filter
CA2385319A1 (en) Filter elements and filtering methods
JP2004519319A (en) Filter cartridge with pleated filter media
JP4261359B2 (en) Filter module and manufacturing method thereof
JPH03221105A (en) Manufacture of filter element
JP2011529782A (en) Filter module and system having a spirally wound membrane filter and method for manufacturing the same
US8640884B2 (en) Fluid treatment elements and fluid treatment arrangements with spaces between fluid treatment elements and methods for making and using them
JP3640789B2 (en) Cylindrical filter member, manufacturing method thereof, and cylindrical filter
CN111085024B (en) Support and drainage material, filter and method of use
EP2489420B1 (en) Separatorless pleated fluid filter
US20100219139A1 (en) Fluid treatment arrangements with fluid treatment elements and methods for making and using them
CN111085025B (en) Support and drainage material, filter and method of use
JP3688477B2 (en) Cylindrical filter member, manufacturing method thereof, and cylindrical filter
JP2002102845A (en) Water purifier
JP5285443B2 (en) Filter element manufacturing method and filter element manufacturing jig
US8911633B2 (en) Fluid treatment elements and fluid treatment arrangements with posts and/or bands between fluid treatment elements and methods for making and using them
JPH0747093B2 (en) Filter member
JP5165328B2 (en) Filter manufacturing method
JP2010522071A (en) Fluid treatment device comprising a set of fluid treatment elements and method for making and using a fluid treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees