JP3639992B2 - Temperature measuring method and apparatus for high temperature and high pressure loop - Google Patents

Temperature measuring method and apparatus for high temperature and high pressure loop Download PDF

Info

Publication number
JP3639992B2
JP3639992B2 JP2002306080A JP2002306080A JP3639992B2 JP 3639992 B2 JP3639992 B2 JP 3639992B2 JP 2002306080 A JP2002306080 A JP 2002306080A JP 2002306080 A JP2002306080 A JP 2002306080A JP 3639992 B2 JP3639992 B2 JP 3639992B2
Authority
JP
Japan
Prior art keywords
temperature
differential pressure
signal
cooling water
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002306080A
Other languages
Japanese (ja)
Other versions
JP2004144483A (en
Inventor
憲介 毛利
慎吾 平田
勝 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2002306080A priority Critical patent/JP3639992B2/en
Publication of JP2004144483A publication Critical patent/JP2004144483A/en
Application granted granted Critical
Publication of JP3639992B2 publication Critical patent/JP3639992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、数度の限られた温度範囲において密度が大きく変化するような特殊な冷却水を用いたループ、例えば超臨界圧水を用いたループに適用する高温高圧ループの温度測定方法及びその装置に関する。
【0002】
【従来の技術】
従来より高温流体を循環させるループでは、一般に熱電対により流体の温度測定を行い、その出力を基に流体温度の温度制御を行っている。先行技術として、特開平7−12302号に記載されている貫流ボイラに適用されている温度制御装置がある。
【0003】
熱電対の温度精度は、温度域により異なるが、400℃近辺の温度範囲では0.4%(±1.6℃)程度と考えられる。しかし、高温高圧で使用する超臨界圧水のような冷却水は、図1のグラフに示すように360℃〜400℃の温度範囲において微小な温度差により密度が大きく変化する。従って、測定温度の1℃の誤差により制御温度の条件(加熱量、流速)が適正値と大幅に異なるようになり、安定した制御の実施が難しい状況となることが予想されるため、熱電対に比べてより高い精度で温度測定が可能な手段が強く望まれていた。
【0004】
【発明が解決しようとする課題】
そこで本発明は、高温高圧ループの冷却水に密度温度計の基本原理を適用し、超臨界圧水が有するような25MPaの圧力条件下で360〜400℃の温度範囲において密度が図1のグラフに示すように600kg/m3 〜200kg/m3 と大きく変化する物理的性質を利用して、この温度域の密度を計測することにより逆に温度を高い精度で測定できる方法及び装置を提供し、もって、高温高圧ループにおける温度制御の高精度化を図ろうとするものである。
【0005】
【課題を解決するための手段】
上記課題を解決するための本発明による高温高圧ループの温度測定方法は、高温高圧ループより360℃〜400℃の冷却水を引き出し、この冷却水を360℃〜400℃の高温側及び室温〜50℃の低温側の2本の配管に導き、両配管に夫々垂直に連設した同じ標準高さを有する差圧計測管に通して差圧発信器により2本の標準高さ分の冷却材の比重差に伴う差圧を計測して差圧信号を発し、その差圧信号を密度−温度特性に基いて信号変換器により360℃〜400℃の温度信号に変換することを特徴とするものである。
【0006】
上記の高温高圧ループの温度測定方法を実施するための本発明による温度測定装置は、高温高圧ループの等温域の配管から分岐され冷却水を引き出すバルブを備えた冷却水導入管と、該冷却水導入管から2本に分岐され等温域と同じ保温材に囲まれた高温側の配管及び長く細く引き回して自然放熱により室温近くまで下げた低温側の配管と、両配管に夫々連なり同じ標準高さを有する差圧計測管と、両差圧計測管の間に設けられ夫々の冷却水の比重差に伴う差圧を計測し差圧信号を発する差圧発信器と、該差圧発信器が発する差圧信号を密度−温度特性に基いて温度信号に変換する演算機能を備えた信号変換器とより成るものである。
【0007】
【発明の実施の形態】
本発明による高温高圧ループの温度測定方法及びその装置の実施形態を、25MPaの圧力条件下及び360℃〜400℃の限られた温度範囲内で長期間運転を行う必要のある超臨界圧水の冷却水を用いた図2に示すような高温高圧ループ試験装置1に適用した場合について説明する。この高温高圧ループ試験装置1は、加熱器2から試験体の試験部3の入口部までの領域を一定温度に保つようにした等温域4を有するループで、試験部3に供給する冷却水の温度を等温域4で制御している。本発明の温度測定装置は、この高温高圧ループ試験装置1の等温域4に設けられる。以下、その詳細を図3によって説明する。図3において、試験部3の入口部までの等温域4における高温高圧ループ配管5の途中から冷却水を引き出すバルブ6を備えた冷却水導入管7が分岐され、この冷却水導入管7から2本の高温側の配管8と低温側の配管9が分岐されている。この両配管8、9には夫々垂直な同じ標準高さ(例えば1m)を有する差圧計測管10、11が連設されている。上記の高温側の配管8とこれに連設された差圧計測管10は、保温材12に囲まれた等温域4に配置されて、高温高圧ループ配管5を流れる冷却材の温度の同等の温度に保持されるようになっている。上記の低温側の配管9とこれに連設された差圧計測管11は、保温材で囲まず、配管9を長く細く引き回して、自然放熱により室温近くの温度域まで下げるようになっている。上記差圧計測管10、11の間には、各々の差圧計測管10、11に導入された冷却材の比重(重量)差に伴う差圧を計測した差圧信号を発する差圧発信器13が設けられ、この差圧発信器13には信号変換器14が電気的に接続されている。信号変換器14は、差圧発信器13が発する差圧信号を図1のグラフに示す密度−温度特性に基いて温度信号に変換する演算機能を有する。尚、上記の差圧計測管10、11には、水質管理等の必要性があるため、開閉可能なドレン弁15、16を設けてあり、またその下流で両差圧計測管10、11を連絡した管17に均圧弁18を設けてある。
【0008】
上記のように構成された本発明の温度測定装置19と一緒に等温域4における高温高圧ループ配管5の途中には従来の熱電対温度計20が設けられ、等温域4の上流で高温高圧ループ配管5の途中に設けられた加熱器2の温度制御は、温度域により本発明の温度測定装置19と従来の熱電対温度計20とを切り替えて使用することにより後述のように行われる。図3において、21は加熱器2の温度制御装置で、この温度制御装置21は温度測定装置19から温度信号と熱電対温度計20からの温度信号を切り替える温度信号切替スイッチを備えた温度調節器(TIC)22と、該温度調節器(TIC)22に入った温度信号と設定温度(SV)との差が入力される加熱器2のサイリスタ23とよりなる。
【0009】
さて、上記構成の温度測定装置19による本発明の温度測定方法について説明する。高温高圧ループ配管5を流れる25MPaの超臨界圧水である冷却材が360℃〜400℃の時、等温域4における高温高圧ループ配管5から分岐された冷却水導入管7のバルブ6を開いて冷却材を導入管7に引き出し、この導入管7から冷却材を高温側の配管8と低温側の配管9に分け、これから垂直な同じ標準高さを有する差圧計測管10、11に通す。360℃〜400℃の温度域における設定温度までの冷却材の昇温には加熱器2による1℃の温度上昇を数分かけてゆっくり実施するため、等温域4においては熱容量的に温度の均一性が十分保たれている。従って、保温材12に囲まれた等温域4に配置されている上記高温側の配管8及び差圧計測管10は、高温高圧ループ配管5を流れる360℃〜400℃の冷却材の温度と同等と温度が保持される。低温側の配管9及び差圧計測管11は保温材で囲まれておらず、配管9は長く細く引き回して、自然放熱により室温近くの温度域まで下げており、またこの温度域では厳密な温度管理は必要なく、20℃の差があっても5kg/m3 程度(10℃で比重ν=1011kg/m3 、30℃で比重ν=1006kg/m3 )であるため、高温側の380℃で比重ν=451kg/m3 、400℃で比重ν=167kg/m3 と比較すると、十分無視可能な値である。このため、一定温度に保つべき特別の冷却装置及び機構は不要である。然して、上記高温側の差圧計測管10に通された冷却材が例えば温度390℃、圧力P+215mmHg(215kg/m3 ×1m)、低温側の差圧計測管11に通された冷却材が例えば温度20℃、圧力P+1009mmHg(1009kg/m3 ×1m)とすると、この2本の標準高さ分の冷却材の比重(重量)差に伴う差圧ΔPが、差圧発信器13によりΔP=794mmHgと計測され、その差圧信号が発せられて信号変換器14に送られる。信号変換器14に送られた差圧信号は、信号変換器14に備わっている演算機能により図1に示される密度−温度特性に基いて温度信号に変換されることになる。かくして等温域4における高温高圧ループ配管5を流れる冷却材の温度は390℃と正確に測定される。尚、差圧信号を温度信号への変換は、パソコンでの処理も十分可能である。また、前記差圧発信器13の測定誤差は±0.25%程度で、温度測定に殆んど影響を与えることはない。
【0010】
上記のように本発明の温度測定方法により正確に測定した等温域4における高温高圧ループ配管5を流れる390℃の冷却材の温度は、温度制御装置21の温度調節器(TIC)22に送られ、ここで予め設定された設定温度(SV)との差が演算されて出力され、これが加熱器2のサイリスタ23に入力され、加熱器2が駆動されて、高温高圧ループ配管5を流れる冷却材の温度は、試験部3が必要とする温度に高精度に制御される。
【0011】
等温域4における高温高圧ループ配管5を流れる冷却材の温度が、360℃未満及び400℃を超える時は、温度調節計(TIC)22に備わっている温度信号切替スイッチが働いて温度調節計(TIC)22には熱電対温度計20からの温度信号が入力し、この温度信号と予め設定された設定温度(SV)との差が演算されて出力され、これが加熱器2のサイリスタ23に入力され、加熱器2が駆動されて、高温高圧ループ配管5を流れる冷却材の温度は、試験部3が必要とする温度に制御される。
【0012】
【発明の効果】
以上の説明で判るように本発明によれば、高温高圧ループを流れる超臨界圧水のような冷却水を、360℃〜400℃の温度範囲において密度が大きく変化する性質を利用し、この温度域の密度を差圧により計測し、差圧信号を温度信号に変換することにより、高精度に温度測定できる。従って、本発明の温度測定手段を高温高圧ループを流れる超臨界圧水のような冷却水の温度制御に利用すれば、高精度の温度制御を実現できる。
【図面の簡単な説明】
【図1】圧力25MPaの水の密度−温度特性を示すグラフである。
【図2】超臨界圧水の冷却水を用いた高温高圧ループ試験装置を示す概略系統図である。
【図3】本発明による高温高圧ループの温度測定装置を、図2の高温高圧ループ試験装置に適用した系統図である。
【符号の説明】
1 高温高圧ループ試験装置
2 加熱部
3 試験部
4 等温域
5 高温高圧ループ配管
6 バルブ
7 冷却水導入管
8 高温側の配管
9 低温側の配管
10 高温側の差圧計測管
11 低温側の差圧計測管
12 保温材
13 差圧発信器
14 信号変換器
15 ドレン弁
16 ドレン弁
17 連絡管
18 均圧弁
19 温度測定装置
20 熱電対温度計
21 温度制御装置
22 温度調節器(TIC)
23 サイリスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature measurement method for a high-temperature and high-pressure loop applied to a loop using a special cooling water whose density changes greatly in a temperature range limited to several degrees, for example, a loop using supercritical pressure water, and its Relates to the device.
[0002]
[Prior art]
Conventionally, in a loop that circulates a high-temperature fluid, the temperature of the fluid is generally measured by a thermocouple, and the temperature control of the fluid temperature is performed based on the output. As a prior art, there is a temperature control device applied to a once-through boiler described in JP-A-7-12302.
[0003]
The temperature accuracy of the thermocouple varies depending on the temperature range, but is considered to be about 0.4% (± 1.6 ° C.) in the temperature range near 400 ° C. However, the density of cooling water such as supercritical pressure water used at high temperature and high pressure varies greatly due to a small temperature difference in the temperature range of 360 ° C. to 400 ° C. as shown in the graph of FIG. Therefore, it is expected that the control temperature conditions (heating amount, flow rate) will be significantly different from the appropriate values due to an error of 1 ° C in the measured temperature, making it difficult to implement stable control. There has been a strong demand for means capable of measuring temperature with higher accuracy than the above.
[0004]
[Problems to be solved by the invention]
Therefore, the present invention applies the basic principle of the density thermometer to the cooling water of the high-temperature and high-pressure loop, and the density is a graph of FIG. 1 in the temperature range of 360 to 400 ° C. under the pressure condition of 25 MPa as the supercritical pressure water has. the physical properties vary significantly with 600kg / m 3 ~200kg / m 3 as shown in using, to provide a method and apparatus capable of measuring the temperature with high accuracy reversed by measuring the density of this temperature range Therefore, it is intended to improve the accuracy of temperature control in the high-temperature and high-pressure loop.
[0005]
[Means for Solving the Problems]
The temperature measurement method of the high-temperature and high-pressure loop according to the present invention for solving the above problems draws cooling water of 360 to 400 ° C. from the high-temperature and high-pressure loop, and draws this cooling water on the high temperature side of 360 to 400 ° C. Lead to two pipes on the low temperature side of ℃, and pass through two differential pressure measuring pipes with the same standard height connected vertically to both pipes. A differential pressure signal is generated by measuring a differential pressure associated with a specific gravity difference, and the differential pressure signal is converted into a temperature signal of 360 ° C. to 400 ° C. by a signal converter based on density-temperature characteristics. is there.
[0006]
A temperature measuring device according to the present invention for carrying out the above temperature measuring method for a high-temperature and high-pressure loop includes a cooling water introduction pipe having a valve branched from an isothermal pipe of the high-temperature and high-pressure loop and withdrawing cooling water, and the cooling water High temperature side piping branched into two from the introduction pipe and surrounded by the same heat insulating material as the isothermal region, low temperature side piping drawn thinly and lowered to near room temperature by natural heat radiation, and both pipes connected to the same standard height A differential pressure measuring pipe having a pressure difference, a differential pressure transmitter provided between the two differential pressure measuring pipes for measuring a differential pressure due to a difference in specific gravity of each cooling water, and generating a differential pressure signal, and the differential pressure transmitter This comprises a signal converter having a calculation function for converting a differential pressure signal into a temperature signal based on density-temperature characteristics.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a method and apparatus for measuring a temperature of a high-temperature and high-pressure loop according to the present invention include supercritical pressure water that needs to be operated for a long time under a pressure condition of 25 MPa and a limited temperature range of 360 ° C to 400 ° C. The case where it applies to the high temperature / high pressure loop test apparatus 1 as shown in FIG. 2 using cooling water is demonstrated. The high-temperature and high-pressure loop test apparatus 1 is a loop having an isothermal region 4 in which the region from the heater 2 to the entrance of the test unit 3 of the specimen is kept at a constant temperature, and the cooling water supplied to the test unit 3 The temperature is controlled in the isothermal region 4. The temperature measuring device of the present invention is provided in the isothermal region 4 of the high-temperature / high-pressure loop test device 1. The details will be described below with reference to FIG. In FIG. 3, a cooling water introduction pipe 7 provided with a valve 6 for branching out the cooling water from the middle of the high-temperature and high-pressure loop pipe 5 in the isothermal region 4 to the entrance of the test section 3 is branched. A high temperature side pipe 8 and a low temperature side pipe 9 are branched. Both pipes 8 and 9 are connected to differential pressure measuring pipes 10 and 11 having the same vertical standard height (for example, 1 m). The high-temperature side pipe 8 and the differential pressure measuring pipe 10 connected to the high-temperature side pipe 8 are arranged in the isothermal region 4 surrounded by the heat insulating material 12 and have the same temperature of the coolant flowing through the high-temperature and high-pressure loop pipe 5. It is designed to be held at temperature. The low-temperature side pipe 9 and the differential pressure measuring pipe 11 connected to the low-temperature side pipe 9 are not surrounded by a heat insulating material, and the pipe 9 is drawn long and thin, and is lowered to a temperature range near room temperature by natural heat radiation. . Between the differential pressure measuring tubes 10 and 11, a differential pressure transmitter that generates a differential pressure signal that measures the differential pressure associated with the specific gravity (weight) difference of the coolant introduced into the differential pressure measuring tubes 10 and 11. 13 is provided, and a signal converter 14 is electrically connected to the differential pressure transmitter 13. The signal converter 14 has a calculation function for converting the differential pressure signal generated by the differential pressure transmitter 13 into a temperature signal based on the density-temperature characteristics shown in the graph of FIG. The differential pressure measuring pipes 10 and 11 are provided with drain valves 15 and 16 that can be opened and closed because of the necessity of water quality management and the like, and both the differential pressure measuring pipes 10 and 11 are provided downstream thereof. A pressure equalizing valve 18 is provided in the connected pipe 17.
[0008]
A conventional thermocouple thermometer 20 is provided in the middle of the high-temperature and high-pressure loop piping 5 in the isothermal region 4 together with the temperature measuring device 19 of the present invention configured as described above, and the high-temperature and high-pressure loop upstream of the isothermal region 4. The temperature control of the heater 2 provided in the middle of the pipe 5 is performed as described below by switching between the temperature measuring device 19 of the present invention and the conventional thermocouple thermometer 20 depending on the temperature range. In FIG. 3, reference numeral 21 denotes a temperature control device for the heater 2, and the temperature control device 21 includes a temperature signal changeover switch that switches a temperature signal from the temperature measurement device 19 and a temperature signal from the thermocouple thermometer 20. (TIC) 22 and a thyristor 23 of the heater 2 to which a difference between a temperature signal input to the temperature controller (TIC) 22 and a set temperature (SV) is input.
[0009]
Now, the temperature measuring method of the present invention by the temperature measuring device 19 having the above configuration will be described. When the coolant which is 25 MPa supercritical pressure water flowing through the high-temperature high-pressure loop pipe 5 is 360 ° C. to 400 ° C., the valve 6 of the cooling water introduction pipe 7 branched from the high-temperature high-pressure loop pipe 5 in the isothermal region 4 is opened. The coolant is drawn out to the introduction pipe 7, and the coolant is divided into a high-temperature side pipe 8 and a low-temperature side pipe 9 from this introduction pipe 7, and is then passed through vertical differential pressure measurement pipes 10 and 11 having the same standard height. In order to raise the temperature of the coolant up to the set temperature in the temperature range of 360 ° C. to 400 ° C., the temperature rise of 1 ° C. by the heater 2 is slowly performed over several minutes. Sex is well maintained. Therefore, the high temperature side pipe 8 and the differential pressure measuring pipe 10 arranged in the isothermal region 4 surrounded by the heat insulating material 12 are equivalent to the temperature of the coolant of 360 ° C. to 400 ° C. flowing through the high temperature high pressure loop pipe 5. And the temperature is maintained. The low temperature side pipe 9 and the differential pressure measuring pipe 11 are not surrounded by a heat insulating material, and the pipe 9 is drawn thin and long and is lowered to a temperature range close to room temperature by natural heat dissipation. management is not required, because it is even if there is a difference of 20 ° C. of about 5 kg / m 3 (specific gravity at 10 ℃ ν = 1011kg / m 3 , density ν = 1006kg / m 3 at 30 ° C.), the high temperature side 380 ° C. in compared to gravity ν = 167kg / m 3 in density ν = 451kg / m 3, 400 ℃, is sufficient negligible values. For this reason, the special cooling device and mechanism which should be kept at a fixed temperature are unnecessary. However, the coolant passed through the high temperature side differential pressure measuring tube 10 is, for example, a temperature of 390 ° C., the pressure P + 215 mmHg (215 kg / m 3 × 1 m), and the coolant passed through the low temperature side differential pressure measuring tube 11 is, for example, If the temperature is 20 ° C. and the pressure is P + 1009 mmHg (1009 kg / m 3 × 1 m), the differential pressure ΔP associated with the difference in specific gravity (weight) of the coolant for the two standard heights is expressed by the differential pressure transmitter 13 as ΔP = 794 mmHg The differential pressure signal is generated and sent to the signal converter 14. The differential pressure signal sent to the signal converter 14 is converted into a temperature signal based on the density-temperature characteristics shown in FIG. 1 by an arithmetic function provided in the signal converter 14. Thus, the temperature of the coolant flowing through the high-temperature and high-pressure loop pipe 5 in the isothermal region 4 is accurately measured as 390 ° C. Note that the conversion from the differential pressure signal to the temperature signal can be sufficiently performed by a personal computer. Further, the measurement error of the differential pressure transmitter 13 is about ± 0.25%, and hardly affects the temperature measurement.
[0010]
As described above, the temperature of the coolant of 390 ° C. flowing through the high-temperature and high-pressure loop pipe 5 in the isothermal region 4 accurately measured by the temperature measuring method of the present invention is sent to the temperature controller (TIC) 22 of the temperature controller 21. Here, the difference from the preset temperature (SV) set in advance is calculated and output, and this is input to the thyristor 23 of the heater 2, and the heater 2 is driven to flow through the high-temperature and high-pressure loop pipe 5. Is controlled with high accuracy to a temperature required by the test section 3.
[0011]
When the temperature of the coolant flowing through the high-temperature and high-pressure loop pipe 5 in the isothermal region 4 is less than 360 ° C. or more than 400 ° C., the temperature signal changeover switch provided in the temperature controller (TIC) 22 is activated and the temperature controller ( The temperature signal from the thermocouple thermometer 20 is input to the TIC) 22, and the difference between this temperature signal and a preset set temperature (SV) is calculated and output, and this is input to the thyristor 23 of the heater 2. Then, the heater 2 is driven, and the temperature of the coolant flowing through the high-temperature and high-pressure loop pipe 5 is controlled to a temperature required by the test unit 3.
[0012]
【The invention's effect】
As can be seen from the above description, according to the present invention, the cooling water such as supercritical pressure water flowing in the high-temperature and high-pressure loop is utilized at the temperature by utilizing the property that the density greatly changes in the temperature range of 360 ° C to 400 ° C. By measuring the density of the area by the differential pressure and converting the differential pressure signal into a temperature signal, the temperature can be measured with high accuracy. Therefore, if the temperature measuring means of the present invention is used for temperature control of cooling water such as supercritical pressure water flowing in a high-temperature and high-pressure loop, highly accurate temperature control can be realized.
[Brief description of the drawings]
FIG. 1 is a graph showing density-temperature characteristics of water having a pressure of 25 MPa.
FIG. 2 is a schematic system diagram showing a high-temperature and high-pressure loop test apparatus using supercritical pressure water cooling water.
FIG. 3 is a system diagram in which a temperature measuring apparatus for a high-temperature and high-pressure loop according to the present invention is applied to the high-temperature and high-pressure loop test apparatus of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature high pressure loop test apparatus 2 Heating part 3 Test part 4 Isothermal region 5 High temperature high pressure loop piping 6 Valve 7 Cooling water introduction pipe 8 High temperature side pipe 9 Low temperature side pipe 10 High temperature side differential pressure measurement pipe 11 Low temperature side difference Pressure measuring pipe 12 Insulating material 13 Differential pressure transmitter 14 Signal converter 15 Drain valve 16 Drain valve 17 Connecting pipe 18 Pressure equalizing valve 19 Temperature measuring device 20 Thermocouple thermometer 21 Temperature control device 22 Temperature controller (TIC)
23 Thyristor

Claims (2)

高温高圧ループより360℃〜400℃の冷却水を引き出し、この冷却水を360℃〜400℃の高温側及び室温〜50℃の低温側の2本の配管に導き、両配管に夫々垂直に連設した同じ標準高さを有する差圧計測管に通して差圧発信器により2本の標準高さ分の冷却材の比重差に伴う差圧を計測して差圧信号を発し、その差圧信号を密度−温度特性に基いて信号変換器により360℃〜400℃の温度信号に変換する高温高圧ループの温度測定方法。Cooling water of 360 ° C to 400 ° C is drawn from the high temperature and high pressure loop, and this cooling water is led to two pipes on the high temperature side of 360 ° C to 400 ° C and the low temperature side of room temperature to 50 ° C. The differential pressure signal is generated by measuring the differential pressure due to the difference in specific gravity of the coolant for the two standard heights with a differential pressure transmitter through the differential pressure measuring tube having the same standard height. A temperature measurement method for a high-temperature and high-pressure loop in which a signal is converted into a temperature signal of 360 ° C. to 400 ° C. by a signal converter based on density-temperature characteristics. 高温高圧ループの等温域の配管から分岐され冷却水を引き出すバルブを備えた冷却水導入管と、該冷却水導入管から2本に分岐され等温域と同じ保温材に囲まれた高温側の配管及び長く細く引き回して自然放熱により室温近くまで下げた低温側の配管と、両配管に夫々連なり同じ標準高さを有する差圧計測管と、両差圧計測管の間に設けられ夫々の冷却水の比重差に伴う差圧を計測し差圧信号を発する差圧発信器と、該差圧発信器が発する差圧信号を密度−温度特性に基いて温度信号に変換する演算機能を備えた信号変換器とより成る高温高圧ループの温度測定装置。A cooling water introduction pipe provided with a valve branched from the isothermal area piping of the high temperature and high pressure loop and with a valve for drawing cooling water, and a high temperature side pipe branched from the cooling water introduction pipe and surrounded by the same heat insulating material as the isothermal area Also, the piping on the low temperature side that has been drawn thinly and lowered to near room temperature by natural heat radiation, the differential pressure measuring pipe that has the same standard height connected to both pipes, and the cooling water provided between both differential pressure measuring pipes A differential pressure transmitter that measures the differential pressure associated with the specific gravity difference and generates a differential pressure signal, and a signal that has a calculation function that converts the differential pressure signal generated by the differential pressure transmitter into a temperature signal based on density-temperature characteristics A high-temperature high-pressure loop temperature measuring device that consists of a converter.
JP2002306080A 2002-10-21 2002-10-21 Temperature measuring method and apparatus for high temperature and high pressure loop Expired - Fee Related JP3639992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306080A JP3639992B2 (en) 2002-10-21 2002-10-21 Temperature measuring method and apparatus for high temperature and high pressure loop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306080A JP3639992B2 (en) 2002-10-21 2002-10-21 Temperature measuring method and apparatus for high temperature and high pressure loop

Publications (2)

Publication Number Publication Date
JP2004144483A JP2004144483A (en) 2004-05-20
JP3639992B2 true JP3639992B2 (en) 2005-04-20

Family

ID=32452980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306080A Expired - Fee Related JP3639992B2 (en) 2002-10-21 2002-10-21 Temperature measuring method and apparatus for high temperature and high pressure loop

Country Status (1)

Country Link
JP (1) JP3639992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206142A (en) * 2015-04-28 2016-12-08 株式会社東芝 Auxiliary system of immersion-type water level measurement device, auxiliary method of the same, auxiliary program of the same and immersion-type water level measurement device with auxiliary function

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065940A (en) * 2004-08-26 2006-03-09 Ricoh Co Ltd Electric cooling apparatus and image forming apparatus
CN105841664B (en) * 2016-03-25 2018-07-13 合肥工业大学 Small-sized phased-array radar thermal deformation and temperature synchronized measurement system and its measurement method
CN106872059A (en) * 2017-04-12 2017-06-20 山东电力设备有限公司 A kind of oil-filled transformer measurement device of oil tempera and measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206142A (en) * 2015-04-28 2016-12-08 株式会社東芝 Auxiliary system of immersion-type water level measurement device, auxiliary method of the same, auxiliary program of the same and immersion-type water level measurement device with auxiliary function

Also Published As

Publication number Publication date
JP2004144483A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
Bergles et al. The determination of forced-convection surface-boiling heat transfer
CN105301047B (en) A kind of overcritical freon local heat transfer system and its experimental method
CN110057863A (en) A kind of high-temperature high-flow rate gas fluid interchange experimental provision and experimental method
CN104966536A (en) High-temperature working medium heat exchange test system using heat conducting oil as hot fluid and test method
Lu et al. Experimental investigation on heat transfer characteristics of water flow in a narrow annulus
CN104181195A (en) Steady-state method-based heat conductivity coefficient measurement device
CN109520915B (en) Low-pressure low-altitude difference natural circulation test device
JP3639992B2 (en) Temperature measuring method and apparatus for high temperature and high pressure loop
CN108072100B (en) Floor heating pipeline leakage detection device and detection method
CN108279187A (en) The test device and test method of fluid viscosity
CN109580427A (en) A kind of experimental method of simulation microchannel obstruction
CN114113215A (en) Supercritical carbon dioxide heat exchange experimental system and experimental method
CN102830730A (en) System and method for intelligent water supply temperature control test
CN107238450A (en) A kind of cryogenic fluid transfer pipeline leakage heat test device and method
Zhang et al. Experimental study on leak flow rate characteristics of high pressure subcooled water through axial and circumferential microcracks of steam generator tubes under high back pressure conditions
Lezzi et al. Experimental data on CHF for forced convection water boiling in long horizontal capillary tubes
Tian et al. Experimental research on subcooled boiling heat transfer for natural circulation flow in a vertical 3× 3 rod bundle
CN205826573U (en) A kind of assay device for analyzing organic working medium HEAT TRANSFER LAW
Hilgert et al. Flow through calorimeter to measure fluid heat capacity in CSP applications
CN206772355U (en) One kind is used for generating set efficiency test water-carrying capacity and temperature measuring equipment
CN206876310U (en) A kind of cryogenic fluid transfer pipeline leaks heat test device
EP3280986A1 (en) System and method for monitoring hydrogen flux
Li et al. Characteristics of pressure drop for single-phase and two-phase flow across sudden contraction in microtubes
Schlinger et al. Temperature Gradients in Turbulent Gas Streams. Measurement of Temperature, Energy, and Pressure Gradients.
Yang et al. Experimental study on convective heat transfer of water flow in a heated tube under natural circulation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050105

R150 Certificate of patent or registration of utility model

Ref document number: 3639992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees