JP3639928B2 - Cleaning water manufacturing apparatus and manufacturing method thereof - Google Patents

Cleaning water manufacturing apparatus and manufacturing method thereof Download PDF

Info

Publication number
JP3639928B2
JP3639928B2 JP24816094A JP24816094A JP3639928B2 JP 3639928 B2 JP3639928 B2 JP 3639928B2 JP 24816094 A JP24816094 A JP 24816094A JP 24816094 A JP24816094 A JP 24816094A JP 3639928 B2 JP3639928 B2 JP 3639928B2
Authority
JP
Japan
Prior art keywords
electrolysis
active oxygen
water
cleaning water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24816094A
Other languages
Japanese (ja)
Other versions
JPH08108182A (en
Inventor
信一 中村
Original Assignee
株式会社オメガ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オメガ filed Critical 株式会社オメガ
Priority to JP24816094A priority Critical patent/JP3639928B2/en
Publication of JPH08108182A publication Critical patent/JPH08108182A/en
Application granted granted Critical
Publication of JP3639928B2 publication Critical patent/JP3639928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、細菌汚染された医療器具、トイレの便器、その他の各種の洗浄対象物を洗浄するための洗浄用水の製造装置、及び洗浄用水の製造方法に関するものである。
【0002】
【従来の技術】
従来、細菌汚染された医療器具などの洗浄対象物を浄化するための洗浄用水として、次亜塩素酸ナトリウム(NaClO)水溶液が知られている。
【0003】
この水溶液として12%程度の濃度のアルカリ性水溶液(120,000ppm程度)が市販されており、これを水で約100〜500ppm程度の濃度に希釈して使用する。さらに、前記のようにして希釈した水溶液を、塩酸でpHが4〜6程度になるように調整(NaClO+HCl→NaCl+HClO)することにより、その洗浄力を向上させることができる。
【0004】
しかし、次亜塩素酸ナトリウム水溶液のpHを調整することは難しいので、洗浄用水の製造に手間がかかるという問題があった。
【0005】
また、調整した後には手早く使用しないと、次亜塩素酸(HClO)が分解して活性酸素を放出しその洗浄力が大幅に低下してしまうので、洗浄用水としての使用がしにくいという問題があった。
【0006】
【発明が解決しようとする課題】
そこで、この発明は、従来よりも製造に手間がかからない洗浄用水の製造方法を提供しようとするものである。
【0007】
また、この発明は、従来よりも洗浄用水の使用がし易い洗浄用水の製造装置を提供しようとするものである。
【0008】
【課題を解決するための手段】
前記課題を解決するためこの発明では次のような技術的手段を講じている。
【0009】
この発明の洗浄用水の製造装置は、陰極板と陽極板との間に電解通路を有し、この電解通路に電解質水溶液を供給しながら活性酸素を生成させるように電気分解することにより、洗浄対象物に活性酸素の酸化分解作用を及ぼせしめる洗浄用水を連続的に得るようにし、臭化ナトリウムの共存下でpHが約6から約8.5以下のほぼ中性領域に調整して電気分解することにより、電解質水溶液中に次亜臭素酸と活性酸素とを生成せしめるようにしたことを特徴とする。
【0010】
この発明の洗浄用水の製造方法は、電解質水溶液中に活性酸素を生成させるように電気分解することにより洗浄対象物に活性酸素の酸化分解作用を及ぼせしめる洗浄用水を得るようにし、臭化ナトリウムの共存下でpHが約6から約8.5以下のほぼ中性領域に調整して電気分解することにより、電解質水溶液中に次亜臭素酸と活性酸素とを生成せしめるようにしたことを特徴とする。
【0011】
【作用】
この発明は、以下のような作用を有する。
【0012】
この発明の洗浄用水の製造方法によると、電解質水溶液中に活性酸素を生成させるように電気分解することにより、洗浄対象物に活性酸素の酸化分解作用を及ぼせしめる洗浄用水を容易に得ることができる。
【0013】
また、この発明の洗浄用水の製造装置によると、陰極板と陽極板との間に電解通路を有し、この電解通路に電解質水溶液を供給しながら活性酸素を生成させるように電気分解することにより、洗浄対象物に活性酸素の酸化分解作用を及ぼせしめる洗浄用水を連続的に得ることができる。
【0014】
塩化ナトリウムの共存下で電気分解することにより、次亜塩素酸と活性酸素とを生成せしめるようにする場合、陽極電極において次の反応が起こる。
【0015】

Figure 0003639928
(O)は活性酸素である。(2)、(3)で生じたHClは、陰極電極で生じたNaOHで中和されてNaClに戻る。
【0016】
また、臭化ナトリウムの共存下で電気分解することにより、次亜臭素酸と活性酸素とを生成せしめるようにする場合には、次のような反応となる。
【0017】
Figure 0003639928
次亜塩素酸や次亜臭素酸は経時的に分解して活性酸素を生成し、洗浄対象物に対して酸化分解作用を及ぼす。
【0018】
なお、pHが高くなると、次亜塩素酸や次亜臭素酸は、次のように、ClO- 、BrO- に変化する。
【0019】
HClO⇔H+ClO-
HBrO⇔H+BrO-
次亜塩素酸や次亜臭素酸はClO- 、BrO- に変化すると、次亜塩素酸や次亜臭素酸としての状態に比べて酸化分解作用が数十分の一程度に低減してしまう。そこで、次亜塩素酸を生成させるようにする場合には、塩酸などの酸の存在下でpHが約7以下の弱酸性領域に調整して電気分解を行うことが好ましく、次亜臭素酸を生成させるようにする場合には、pHが約6から約8.5以下のほぼ中性領域に調整して電気分解を行うことが好ましい。
【0020】
【実施例】
以下、この発明の構成を実施例として示した図面を参照して説明する。
(実施例1)
図1及び図2に示すように、この実施例では、電解装置1内の陰極板2と陽極板3(図2参照)との間に後述する電解通路4を形成し、この電解通路4に電解質水溶液を供給しながら活性酸素を生成させるように電気分解することにより、洗浄対象物に活性酸素の酸化分解作用を及ぼせしめる洗浄用水を連続的に製造するようにしている。
【0021】
表1の(1)では6リットル/分の流量の水道水を供給し、そのうちの100cc/分をフィルターFを通過させ、後述の添加液10cc/分とポンプPにより混合して電解質水溶液とし、これを電解装置1の電解通路4に送って直流電流を流し電気分解することにより活性酸素を生成させ、その後に電気分解していない経路の水道水と合流させ、約6リットル/分の吐出量で洗浄用水を製造するようにしている。なお、水道水(上水)の他に、井水、河川水、天水などを用いてもよい。
【0022】
この表の(1)では添加液として、食塩水80gと35%塩酸40ccとの混合物に水を加えて1リットルとしたものを添加液供給タンクに貯留した。手添加液の電気伝導度は、300〜330(×1000μs/cm)であった。なお、条件をかえて実施した(2)〜(4)についても表1に示す。(3)及び(4)のものでは、食塩水の代わりに臭化ソーダ水を用いている。
【0023】
図2に示すように、電解装置1は、電解通路4とこの電解通路4に電流を供給するための公知の整流器(図示せず)とを具備せしめている。電解通路4は、陽極板3の両側に陰極板2を配設してこれら相互の間に形成されており、このような電解通路4を連設(図示せず)している。陽極板3と陰極板2との間の間隔は好適には約1〜10mm程度の範囲内で設定可能であるが、この実施例では3mmに設定しており、連設した電解通路4の全長は500mmに設定している。両電極の間には短絡防止のためにパッキン5を介装しており、このパッキン5は外組み部分を残して内部をくり抜いた枠形状としている。くり抜いた内部の部分が電解通路4を形成する。両陰極板2の外側には、パッキン6及び塩化ビニール板7を介してステンレス板8を外装している。
【0024】
上水道から供給される水道水は、ポンプPにより一方のステンレス板8の下方に貫通する孔Hから流入させ、塩化ビニール板7、陰極板2のそれぞれを貫通する孔Hを通り、陽極板3と接触し、陰極板2と陽極板3との間の電解通路4(パッキン5の内部の部分)を通り、陽極板3の上方を貫通する孔Hを通り、陽極板3の逆面に至る。この逆面側の陰極板2と陽極板3との間の電解通路4(パッキン5の内部の部分)を通り、前記と同様に陰極板2、塩化ビニール板7、ステンレス板8のそれぞれの下方を貫通する孔(図示せず)を通り流出する。
【0025】
なお、以下の参考例2〜4、実施例2においても同様の構造の電解装置1を用いている。
【0026】
なお、電解通路4を画定する陽極板3と陰極板2との電極極性は公知の電気的方法で可変とし、一定時間毎(約10分間隔に設定した)に転換した。こうすることにより電解通路4の流水中にある荷電物質が、対応する反対荷電電極に析出成長することを防止し、活性酸素の生成の低下を防止し、継続的に一定の浄化力を有する洗浄用水を供給することができる。また、両電極板の極性を固定とした場合は陽極側に選定した電極板ばかりが溶滅していく片減り現象が生じるが、電極極性を可変としたことにより交互に陽極となった側が溶滅していく。したがって両電極の経時的な消耗の割合いをほぼ均等にすることができる。
【0027】
表1に示すように(1)では、電解分解の際10Aの定電流を流すために3.1〜3.2Vの電圧を印加した。この表の(1)(2)のように食塩を用いた場合に電気分解の際に生成する次亜塩素酸、この表の実施例である(3)(4)のように臭化ソーダを用いた場合に電気分解の際に生成する次亜臭素酸は、共に経時的に分解して活性酸素を生成する。
【0028】
なお、従来の次亜塩素酸ナトリウム水溶液は調整した後に手早く使用しないと次亜塩素酸が分解して活性酸素を放出してしまい、その洗浄力が大幅に低下してしまうという問題があったが、この実施例のものによると、安定した洗浄用水を連続的に得ることができるという利点がある。
【0029】
(参考例1)
図2及び図3に示すように、この参考例では、食塩水を定量ポンプPにより10〜25cc/分の流量で電解装置1の電解通路4(実施例1参照)に供給し、この電解質水溶液を電気分解して次亜塩素酸と活性酸素とを含む洗浄用水を連続的に製造し、この洗浄用水を上水道(最大4Kg/cm)に合流させている。こうして、その遊離残留塩素濃度が20ppm、40ppm、50ppmに希釈された洗浄用水を連続的に得た。
【0030】
前記洗浄用水を、食品工場(大型魚などの水産物、家畜、家禽などの解体加工処理を行う)の解体加工機や、作業場の床面に付着した血液などの汚れに対しスプレー噴霧して、その殺菌、浄化、漂白を行った。なお、スプレー噴霧ではなく直接ホースでかけてもよい。
【0031】
スプレー噴霧はスプレー・ノズルを用い、(1)原料解体通路1、(2)原料解体通路2、(3)原料内の金属の検知器の前、(4)ミンチ用の混和器のミキサーの羽棒、(5)ミンチ用の混和器のミキサーの側面に、洗浄用水をスプレー噴霧(遊離残留塩素濃度、40ppm)した。解体加工機(前記(3)〜(5))については均一に一回だけ、通路(前記(1)、(2))等の汚染のひどいところは2〜3回繰り返してスプレー噴霧を行った。
【0032】
各種菌(一般細菌、大腸菌群、大腸菌、ブドウ球菌、サルモネラ菌)に関するスプレー噴霧前からスプレー噴霧後にわたる殺菌効果の試験結果を、表2に示す。なお、表中の括弧内の数値は、100cm当たりの菌数を示す。
【0033】
電気分解によって得られた次亜塩素酸と活性酸素とに富む洗浄用水をスプレー噴霧すると、活性酸素の強力な酸化作用により、洗浄対象物の表面に付着した汚れ成分(有機物など)が酸化分解され、洗浄用水に溶解させ除去・浄化することができる。また、この有機物の汚れの中に存在する細菌、真菌、藻類等の微生物、病原微生物を滅菌、除去することができる。
【0034】
活性酸素の強い酸化作用は悪臭成分にも直接働いて脱臭すると共に、悪臭成分を生成する有機窒素化合物、有機硫黄化合物、アンモニア、尿素、尿酸などを酸化分解する。悪臭の発生源である腐敗した有機物の汚れが除去され、悪臭成分も酸化分解されるため悪臭もまた除かれる。そして、最終的にはCO、HO、N、または硝酸塩、硫酸ソーダなどの無臭な化合物に変えてしまう。
【0035】
この参考例のものによると、洗浄用水を及ぼすだけで悪臭を絶えず生ずる作業場等を浄化・殺菌することができ、作業場の脱臭・消毒に極めて効果があるという利点がある。
【0036】
なお、不潔で悪臭の生じ易い場所(台所、調理場、水産物加工場、屠殺場、犬小屋、厩舎、鶏舎、家畜飼育場、廃棄物置場、廃棄物取扱い又は処理場、下水処理場、実験室)、前記に関連するトラック運搬車、コンテナー、機械装置、用具、車両、物品、動物などの洗浄用水としても好適に適用することができる。
【0037】
(参考例2)
図2及び図4に示すように、この参考例では、添加液供給タンク9から食塩水(電解質水溶液)を電解装置1内の電解通路4に供給することによって、次亜塩素酸と活性酸素が生成した洗浄用水を製造して、トイレの水洗水に合流させるようにしている。すなわち、活性酸素を生成させた洗浄用水をトイレの水洗水に混合することにより、トイレの便器11の浄化・殺菌・漂白・脱臭を行うようにしている。
【0038】
水洗水貯留タンク10の水洗レバーを操作すると弁が開き、洗浄用水が混合された水洗水が便器11へフラッシュされる。水洗水が減少すると、フロート12の変位により水道水の弁が開き給水される。フロー・センサー13で給水が完了したことを検知すると、循環ポンプ14が5分間作動すると同時に定量ポンプ15が作動して、添加液供給タンク9から食塩水が電解質水溶液として電解通路4へと供給される。食塩水の電気分解により生じた次亜塩素酸と活性酸素とを含む洗浄用水は、水洗水の循環経路16に供給されて合流する。電気分解は、整流器から定電流14A(約3V電圧印加)を供給して行った。
【0039】
水洗水貯留タンク10中の水洗水(9リットル)は、洗浄用水を混合する5分間の循環により、活性酸素が供給され強い酸化力と殺菌力を有するようになる。この参考例の水洗水は、pHが5.5から6.5で残留塩素濃度は25〜30ppmであった。
【0040】
この水洗水は次亜塩素酸と活性酸素を含み、トイレの便器11にフラッシュされると活性酸素の強力な酸化作用によって、トイレの便器11の表面に付着した汚れ成分(有機物など)を酸化分解し、これを水洗水に溶解させ除去・浄化することができた。
【0041】
なお、次亜塩素酸と活性酸素とを含む洗浄用水を製造して水洗水と混合する代わりに、水道水に予め食塩水を加えて電解通路4に流して電気分解することにより、次亜塩素酸と活性酸素とを含む水洗水を得るようにすることもできる。
【0042】
建築作業現場に付設の洋式トイレ(1日に於ける大便の使用が5〜6回程度、小便の使用が14〜15回程度)を用い、次のような評価試験を行った。
【0043】
試験に用いた洋式トイレは既に便器に暗褐色のスケール状の汚れが付着して、換気扇による換気に係わらず常に悪臭を放っていた。
【0044】
この洋式トイレに上述の機構を組み込んで試験を開始し、第1日目には便器の汚れの約3分の1が除去された。残っていた約3分の2の汚れも第2日目に急速に酸化・漂白され、トイレの室内の臭いも全く無臭となった。そして、第4日目には便器は全ての汚れが除去され、全面にきれいなツヤのある状態となった。また、pHの範囲は約5.0から7.5のほぼ中性に近い領域でも汚れの除去効果があった。
【0045】
次に、汚れのない新設トイレを用い、同様にして試験を行った。この場合、水洗水の遊離残留塩素濃度を3〜5ppm程度の低濃度とすることでも、経時的な汚れの堆積は見られず、十分な浄化効果があった。
【0046】
なお、この参考例の洗浄用水は、トイレの便器に付着した排泄物などの汚れを浄化するために用いられるのみならず、便器の周辺機器の浄化・殺菌・脱臭にも極めて有効である。また、ビデなどによるお尻の洗浄殺菌にも好適に適用することができる。
【0047】
ところで、従来はトイレの使用後に単に水洗水を流すだけであり、汚れは十分には除去できなかった。特に、公共のトイレのように使用頻度の高い場所では汚れの付着が著しかった。室内の悪臭も激しく、その悪臭対策も換気扇や消臭剤によって行われているだけであり十分ではなかった。一方、この参考例のものによると極めて浄化効果に優れるという利点がある。
【0048】
(参考例3)
図2及び図5に示すように、添加液供給タンク9から定量ポンプ15により食塩水を20cc/分の流量で、10リットル/分の水道水に合流させて電解質水溶液とする。そして、この電解質水溶液から、電解装置1内の電解通路4での電気分解により次亜塩素酸と活性酸素とを生成させた洗浄用水を製造し、バッファー・タンク17に送る。得られた洗浄用水の遊離残留塩素濃度は、約20ppmであった。
【0049】
この洗浄用水をポンプにより鶏卵18の洗浄ラインへと送り、コンベア上を移動する鶏卵18へとスプレーする。スプレーには3個のノズルを設けており、3個の卵を同時に約5秒間スプレー洗浄するようにしている。洗浄後の排水は、下水19に排出した。洗浄後の鶏卵18からは鶏糞等の汚れがきれいにとれると共に、活性酸素を含む洗浄用水の強い洗浄力により漂白され白くなっていた。
【0050】
洗浄後、乾燥させた鶏卵18の表面を滅菌水を含ませた滅菌ガーゼで十分に拭い、この滅菌ガーゼを滅菌食塩水中で十分振盪した。ここから1ccを採取してTryptic soyagar(TSA,Difco)に添加して24時間培養した後、大腸菌のコロニー数を測定した。鶏卵18表面の大腸菌の除菌率を、表3に示す。
【0051】
一方、次亜塩素酸ナトリウム水溶液(遊離残留塩素100ppm)及び水道水を用いて同条件で洗卵を行った。結果を、洗浄前の鶏卵18のものとともに表3に示す。
【0052】
ところで、鶏卵18は大腸菌の他にサルモネラ菌(食中毒の原因となる)によっても汚染されることがあるが、ここ数年来世界各国で食中毒の発生が急増しており、その原因食品として鶏卵18、特に卵殻内汚染が関与していることが指摘されているが、この参考例の洗浄用水により鶏卵18を殺菌・洗浄すると非常に除菌効果が高く安全性が高いという利点がある。
【0053】
(参考例4)
参考例3で製造した洗浄用水により、被検菌11種19株(エルシニアエンティロコリティカ、枯草菌、黄色ブドウ球菌、緑膿菌、エロモナスヒドロフィラ、コレラ菌、毒素原生大腸菌、サルモネラ菌、メチシリン耐性黄色ブドウ球菌、メチシリン感受性黄色ブドウ球菌、E,cloacae、A,calcoaceticus、S,marcescens)の病原菌をTryptic soyagar(TSA,Difco)で一夜培養したものを用い、その殺菌効果を試験した。
【0054】
洗浄用水の遊離残留塩素濃度を5ppmに調整したものを用い、菌との接触時間をそれぞれ5秒、15秒、30秒に設定して行った試験の結果を、表4に示す。なお、表中(−)は菌が死滅したことを表す。
【0055】
表4により、サルモネラ菌や毒素原生大腸菌など13種の菌全てに対してこの洗浄用水は強力な殺菌作用を有することが分かる。
【0056】
次に、洗浄用水の遊離残留塩素濃度を更に低濃度(0.25ppm、0.57ppm、0.81ppm)として、接触時間を1分、5分、(30分)に設定して行った殺菌効果(エルシニアエンティロコリティカ、枯草菌、黄色ブドウ球菌、緑膿菌、エロモナスヒドロフィラ、コレラ菌、毒素原生大腸菌、サルモネラ菌)の試験(n数=2)を行った。結果を、表5に示す。
【0057】
(実施例2)
図2及び図6に示すように、6リットル/分の水道水に、(食塩(NaCl)水又は)臭化ソーダ(NaBr)水を添加液供給タンクから定量ポンプ15により20cc/分の割合で添加して電解質水溶液とし、この電解質水溶液から、電解装置1の電解通路4内の電気分解により(次亜塩素酸又は)次亜臭素酸と活性酸素とを含む洗浄用水を製造した。
【0058】
そして、表6に示すように、この洗浄用水の水素イオン濃度(pH)と濃度を調整し、次のような殺菌試験を行った。
【0059】
滅菌済みのアルミニウム容器(500ml)に滅菌純水400mlを入れ、これに対象菌(MRSA、黄色ブドウ球菌、緑膿菌、毒素原生大腸菌)の各菌液(10cell/mlに希釈調整)を加え、10cell/mlとなるように濃度調整した。そして、このアルミニウム容器の各菌液の中へ殺菌しようとする洗浄対象物たる対象器具20(はさみ、ピンセット、歯科用リーマー各1本で計3本)を充分に浸漬した。その後、対象器具20を取り出して、滅菌済みのペーパータオルの上で自然乾燥させた。
【0060】
この対象器具20を超音波洗浄器21(本多エレクトロニクス社製、商品名W230R)のステンレス製の網カゴに入れ、この超音波洗浄器21にフィルターFを介して洗浄用水を6リットル/分の割合で供給してオーバーフローさせながら一定時間(1分、3分、6分)殺菌・洗浄を行った。
【0061】
洗浄後、超音波洗浄器21から対象器具20を取り出して滅菌済みのアルミニウム容器に入れ、これに対象器具20が浸漬されるまで感受性ブイヨン培地300mlを添加し、24時間37℃で培養した。菌の増殖をもって判定した評価結果を、表6に示す。
【0062】
一方、逆性石鹸液(濃度40ppm)、ベンズアルコニウム・クロライド(濃度80ppm)、クレゾール石鹸液(濃度400ppm、1000ppm)、次亜塩素酸ソーダ液(濃度200ppm、400ppm)を用い、これに殺菌すべき対象器具20を一定時間(1分、3分、6分)浸漬して殺菌・洗浄した後、同様にして培養・判定した比較試験の評価結果を、表7に示す。
【0063】
なお、この実施例では対象器具20として、はさみ、ピンセット、歯科用リーマーの殺菌・洗浄を行ったが、その他の各種医療用具の洗浄殺菌を行うことができる。
【0064】
ところで、食塩水の電気分解によって生ずる次亜塩素酸(HClO)の殺菌力は、次亜塩素酸イオン(OCl- )の約10〜80倍と言われている。
【0065】
HClO⇔H+ClO-
pHが5.5の時には殺菌力が強いHClOがほぼ100%となっているが、pHが7.2になるとHClOが約70%でClO- が約30%となる。つまり、次亜塩素酸はpHが7.2となるとHClOが減少するので、殺菌力が若干低下する。さらにpHが8.2となるとHClOが約20%でClO- が約80%となり、その殺菌力は著しく低下して次亜塩素酸ソーダと同程度の殺菌力となる。
【0066】
一方、次亜塩素酸(HClO)と比べて、次亜臭素酸(HBrO)は解離してイオンになりにくいため、pHが5.5の時と7.2の時との殺菌力は同程度である。つまり食塩水を添加して電気分解する場合よりも、臭化ソーダ水を添加して電気分解する場合の方が中性領域に近い水素イオン濃度で処理することができるので、殺菌すべき対象器具20としてステンレス製のものを繰返し洗浄しても錆びにくいという利点がある。
【0067】
【表1】
Figure 0003639928
【0068】
【表2】
Figure 0003639928
【0069】
【表3】
Figure 0003639928
【0070】
【表4】
Figure 0003639928
【0071】
【表5】
Figure 0003639928
【0072】
【表6】
Figure 0003639928
【0073】
【表7】
Figure 0003639928
【0074】
【発明の効果】
この発明は上述のような構成であり、次の効果を有する。
【0075】
この発明の洗浄用水の製造方法によると、洗浄対象物に活性酸素の酸化分解作用を及ぼせしめるようにした洗浄用水を容易に得ることができるので、従来よりも製造に手間がかからない。
【0076】
この発明の洗浄用水の製造装置によると、洗浄対象物に活性酸素の酸化分解作用を及ぼせしめるようにした洗浄用水を連続的に得ることができるので、従来よりも洗浄用水の使用がし易い。
【図面の簡単な説明】
【図1】 この発明の実施例1を説明するためのシステム・フロー図。
【図2】 図1の電解装置を説明するための概略斜視図。
【図3】 この発明の参考例1を説明するためのシステム・フロー図。
【図4】 この発明の参考例2を説明するためのシステム・フロー図。
【図5】 この発明の参考例3を説明するためのシステム・フロー図。
【図6】 この発明の実施例2を説明するためのシステム・フロー図。
【符号の説明】
2 陰極板
3 陽極板
4 電解通路[0001]
[Industrial application fields]
The present invention relates to an apparatus for producing washing water for washing bacteria-contaminated medical instruments, toilet bowls and other various objects to be washed, and a method for producing washing water.
[0002]
[Prior art]
Conventionally, a sodium hypochlorite (NaClO) aqueous solution is known as cleaning water for purifying cleaning objects such as medical instruments contaminated with bacteria.
[0003]
As this aqueous solution, an alkaline aqueous solution (about 120,000 ppm) having a concentration of about 12% is commercially available, and this is diluted with water to a concentration of about 100 to 500 ppm and used. Furthermore, the detergency can be improved by adjusting the aqueous solution diluted as described above with hydrochloric acid so that the pH becomes about 4 to 6 (NaClO + HCl → NaCl + HClO).
[0004]
However, since it is difficult to adjust the pH of the aqueous sodium hypochlorite solution, there is a problem that it takes time to produce cleaning water.
[0005]
In addition, if it is not used quickly after adjustment, hypochlorous acid (HClO) decomposes to release active oxygen and its detergency is greatly reduced, which makes it difficult to use as cleaning water. there were.
[0006]
[Problems to be solved by the invention]
Therefore, the present invention is intended to provide a method for producing cleaning water that requires less labor than conventional production.
[0007]
The present invention also provides an apparatus for producing cleaning water that is easier to use than conventional cleaning water.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention takes the following technical means.
[0009]
The apparatus for producing cleaning water according to the present invention has an electrolytic passage between a cathode plate and an anode plate, and is electrolyzed so as to generate active oxygen while supplying an electrolytic aqueous solution to the electrolytic passage. The water for washing which causes the active oxygen to oxidatively decompose the product is continuously obtained, and the electrolysis is carried out by adjusting the pH to about the neutral range of about 6 to about 8.5 or less in the presence of sodium bromide. Thus, hypobromite and active oxygen are produced in the electrolyte aqueous solution.
[0010]
The method for producing washing water according to the present invention is to obtain washing water that causes an oxidative decomposition action of active oxygen to an object to be washed by electrolysis so as to generate active oxygen in an electrolyte aqueous solution. It is characterized in that hypobromite and active oxygen are generated in the aqueous electrolyte solution by electrolysis by adjusting the pH to a substantially neutral range of about 6 to about 8.5 or less in the coexistence. To do.
[0011]
[Action]
The present invention has the following effects.
[0012]
According to the method for producing cleaning water of the present invention, by performing electrolysis so as to generate active oxygen in the electrolyte aqueous solution, it is possible to easily obtain cleaning water that causes the object to be cleaned to oxidatively decompose active oxygen. .
[0013]
Further, according to the apparatus for producing cleaning water of the present invention, an electrolytic passage is provided between the cathode plate and the anode plate, and electrolysis is performed so as to generate active oxygen while supplying an aqueous electrolyte solution to the electrolytic passage. In addition, it is possible to continuously obtain water for cleaning that causes the object to be cleaned to oxidatively decompose active oxygen.
[0014]
When hypochlorous acid and active oxygen are generated by electrolysis in the presence of sodium chloride, the following reaction occurs at the anode electrode.
[0015]
Figure 0003639928
(O) is active oxygen. The HCl generated in (2) and (3) is neutralized with NaOH generated at the cathode electrode to return to NaCl.
[0016]
In the case where hypobromite and active oxygen are produced by electrolysis in the presence of sodium bromide, the reaction is as follows.
[0017]
Figure 0003639928
Hypochlorous acid and hypochlorous acid decompose over time to generate active oxygen, and have an oxidative decomposition effect on the object to be cleaned.
[0018]
Incidentally, when the pH is increased, hypochlorous acid and hypobromous acid, as follows, ClO -, BrO - changes.
[0019]
HClO⇔H + + ClO
HBrO⇔H + + BrO
When hypochlorous acid or hypobromous acid is changed to ClO or BrO , the oxidative decomposition action is reduced to several tenths compared to the state as hypochlorous acid or hypobromite. Therefore, when hypochlorous acid is generated, it is preferable to perform electrolysis by adjusting the pH to a weakly acidic region having a pH of about 7 or less in the presence of an acid such as hydrochloric acid. When it is made to produce, it is preferable to perform electrolysis by adjusting the pH to a substantially neutral region of about 6 to about 8.5 or less.
[0020]
【Example】
The configuration of the present invention will be described below with reference to the drawings showing the embodiments.
(Example 1)
As shown in FIGS. 1 and 2, in this embodiment, an electrolysis passage 4 described later is formed between a cathode plate 2 and an anode plate 3 (see FIG. 2) in the electrolysis apparatus 1. By performing electrolysis so as to generate active oxygen while supplying an aqueous electrolyte solution, cleaning water that causes the object to be cleaned to oxidatively decompose active oxygen is continuously produced.
[0021]
In Table 1 (1), tap water at a flow rate of 6 liters / minute is supplied, 100 cc / minute of which is passed through the filter F, and mixed with an additive solution 10 cc / minute, which will be described later, by a pump P to form an aqueous electrolyte solution. This is sent to the electrolysis path 4 of the electrolysis apparatus 1 to generate DC by flowing a direct current and electrolyze it to generate active oxygen, which is then combined with tap water in a path that is not electrolyzed, and a discharge amount of about 6 liters / min. Is used to produce cleaning water. In addition to tap water (water supply), well water, river water, natural water, or the like may be used.
[0022]
In (1) of this table, as an additive solution, water was added to a mixture of 80 g of saline and 40 cc of 35% hydrochloric acid to make 1 liter, and stored in an additive solution supply tank. The electric conductivity of the hand-added solution was 300 to 330 (× 1000 μs / cm). In addition, it shows in Table 1 also about (2)-(4) implemented by changing conditions. In (3) and (4), sodium bromide water is used instead of saline.
[0023]
As shown in FIG. 2, the electrolysis apparatus 1 includes an electrolysis path 4 and a known rectifier (not shown) for supplying current to the electrolysis path 4. The electrolysis passage 4 is formed between the anode plates 3 on both sides of the anode plate 3 formed between them, and such electrolysis passages 4 are connected (not shown). The distance between the anode plate 3 and the cathode plate 2 is preferably set within a range of about 1 to 10 mm, but in this embodiment, it is set to 3 mm, and the total length of the continuous electrolytic passage 4 is set. Is set to 500 mm. A packing 5 is interposed between the two electrodes to prevent a short circuit, and the packing 5 has a frame shape that is hollowed out while leaving an outer assembly portion. The hollowed out inner part forms the electrolytic passage 4. A stainless steel plate 8 is externally attached to the outside of both cathode plates 2 via a packing 6 and a vinyl chloride plate 7.
[0024]
The tap water supplied from the water supply is caused to flow from the hole H penetrating below the one stainless steel plate 8 by the pump P, passes through the holes H penetrating the vinyl chloride plate 7 and the cathode plate 2, and the anode plate 3. They contact each other, pass through an electrolytic passage 4 (a portion inside the packing 5) between the cathode plate 2 and the anode plate 3, pass through a hole H penetrating above the anode plate 3, and reach the opposite surface of the anode plate 3. It passes through the electrolytic passage 4 (inside the packing 5) between the cathode plate 2 and the anode plate 3 on the opposite side, and below the cathode plate 2, the vinyl chloride plate 7 and the stainless plate 8 in the same manner as described above. It flows out through a hole (not shown) penetrating through.
[0025]
In the following Reference Examples 2 to 4 and Example 2, the electrolytic device 1 having the same structure is used.
[0026]
The electrode polarities of the anode plate 3 and the cathode plate 2 that define the electrolytic passage 4 are variable by a known electric method, and are changed at regular intervals (set at intervals of about 10 minutes). By doing this, the charged substance in the flowing water of the electrolytic passage 4 is prevented from being deposited and grown on the corresponding oppositely charged electrode, the generation of active oxygen is prevented from being lowered, and the cleaning having a constant purifying power is continuously performed. Water can be supplied. In addition, if the polarity of both electrode plates is fixed, only the electrode plate selected on the anode side will be partially depleted, but by changing the electrode polarity, the side that has become the anode alternately will be destroyed. To go. Therefore, the rate of consumption of both electrodes over time can be made substantially uniform.
[0027]
As shown in Table 1, in (1), a voltage of 3.1 to 3.2 V was applied in order to flow a constant current of 10 A during electrolytic decomposition. Hypochlorous acid produced during electrolysis when sodium chloride is used as in (1) and (2) in this table, and sodium bromide as in (3) and (4) in the examples of this table. When used, hypobromous acid produced during electrolysis decomposes over time to produce active oxygen.
[0028]
In addition, if the conventional sodium hypochlorite aqueous solution is not used quickly after preparation, there is a problem that hypochlorous acid decomposes and releases active oxygen, and its detergency is greatly reduced. According to this embodiment, there is an advantage that stable washing water can be obtained continuously.
[0029]
(Reference Example 1)
As shown in FIGS. 2 and 3, in this reference example, the saline solution is supplied to the electrolytic passage 4 (see Example 1) of the electrolysis apparatus 1 by the metering pump P at a flow rate of 10 to 25 cc / min. Is electrolyzed to continuously produce cleaning water containing hypochlorous acid and active oxygen, and this cleaning water is joined to the water supply (maximum 4 kg / cm 2 ). In this way, washing water diluted with the free residual chlorine concentration of 20 ppm, 40 ppm and 50 ppm was continuously obtained.
[0030]
The cleaning water is spray-sprayed on a demolition processing machine of a food factory (which performs demolition processing of marine products such as large fish, livestock, poultry, etc.) or dirt such as blood adhering to the floor of the workplace, Sterilized, purified and bleached. In addition, it may be hose directly instead of spraying.
[0031]
Spray spraying uses spray nozzles: (1) Raw material dismantling passage 1, (2) Raw material disassembling passage 2, (3) In front of metal detector in raw material, (4) Mixer mixer feather Washing water was sprayed (free residual chlorine concentration, 40 ppm) on the side of the mixer of the stick and (5) the mixer for mince. The dismantling machine (above (3) to (5)) was sprayed evenly once, and spraying was repeated 2 to 3 times in places of severe contamination such as the passages (above (1) and (2)). .
[0032]
Table 2 shows the test results of the bactericidal effect of various bacteria (general bacteria, coliforms, Escherichia coli, staphylococci, salmonella) from before spraying to after spraying. The numbers in parentheses in the table indicate the number of bacteria per 100 cm 2 .
[0033]
When spraying cleaning water rich in hypochlorous acid and active oxygen obtained by electrolysis, dirt components (organic matter, etc.) adhering to the surface of the object to be cleaned are oxidatively decomposed due to the strong oxidizing action of active oxygen. It can be dissolved in cleaning water and removed and purified. In addition, microorganisms such as bacteria, fungi and algae, and pathogenic microorganisms present in the organic soil can be sterilized and removed.
[0034]
The strong oxidizing action of active oxygen also works directly on malodorous components to deodorize, and oxidatively decomposes organic nitrogen compounds, organic sulfur compounds, ammonia, urea, uric acid and the like that produce malodorous components. The foul organic matter that is the source of malodor is removed, and the malodor component is also oxidized and decomposed, so that the malodor is also removed. Eventually, CO 2 , H 2 O, N 2 , or an odorless compound such as nitrate or sodium sulfate is changed.
[0035]
According to this reference example, it is possible to purify and sterilize a workplace where odors are constantly generated just by applying cleaning water, and there is an advantage that it is extremely effective in deodorizing and disinfecting the workplace.
[0036]
In addition, unclean and odor-prone places (kitchens, kitchens, marine products processing plants, slaughterhouses, kennels, stables, poultry houses, livestock farms, waste storage sites, waste handling or treatment plants, sewage treatment plants, laboratories) ), And can be suitably applied as cleaning water for trucks, containers, mechanical devices, tools, vehicles, articles, animals and the like related to the above.
[0037]
(Reference Example 2)
As shown in FIGS. 2 and 4, in this reference example, hypochlorous acid and active oxygen are supplied by supplying saline (electrolyte aqueous solution) from the additive solution supply tank 9 to the electrolytic passage 4 in the electrolysis apparatus 1. The generated cleaning water is manufactured and merged with flush water in the toilet. That is, the cleaning water in which active oxygen is generated is mixed with the flush water of the toilet, thereby purifying, sterilizing, bleaching, and deodorizing the toilet 11 of the toilet.
[0038]
When the flush lever of the flush water storage tank 10 is operated, the valve opens and flush water mixed with flush water is flushed to the toilet 11. When the flush water decreases, the tap water valve is opened by the displacement of the float 12 and water is supplied. When the flow sensor 13 detects that the water supply is completed, the circulation pump 14 operates for 5 minutes and the metering pump 15 operates at the same time, so that the saline solution is supplied from the additive solution supply tank 9 to the electrolytic passage 4 as an electrolyte aqueous solution. The Washing water containing hypochlorous acid and active oxygen generated by the electrolysis of the saline solution is supplied to the washing water circulation path 16 and merges. Electrolysis was performed by supplying a constant current 14A (applying about 3V voltage) from a rectifier.
[0039]
The washing water (9 liters) in the washing water storage tank 10 is supplied with active oxygen and has strong oxidizing power and sterilizing power by circulation for 5 minutes in which washing water is mixed. The washing water of this reference example had a pH of 5.5 to 6.5 and a residual chlorine concentration of 25 to 30 ppm.
[0040]
This flush water contains hypochlorous acid and active oxygen, and when it is flushed to the toilet 11 of the toilet, the oxidative decomposition of dirt components (organic matter, etc.) adhering to the surface of the toilet 11 of the toilet is performed by the strong oxidizing action of active oxygen. This was dissolved in washing water and removed and purified.
[0041]
Instead of producing cleaning water containing hypochlorous acid and active oxygen and mixing it with washing water, hypochlorite can be obtained by adding salt water to tap water in advance and flowing it through the electrolytic passage 4 for electrolysis. Washing water containing an acid and active oxygen can also be obtained.
[0042]
The following evaluation test was performed using a Western-style toilet attached to a construction work site (use of stool for about 5-6 times a day, use of urine about 14-15 times).
[0043]
The Western-style toilet used in the test had dark brown scale-like dirt already attached to the toilet, and it always gave off a bad odor regardless of ventilation with a ventilation fan.
[0044]
The above-described mechanism was incorporated in this Western-style toilet and the test was started. On the first day, about one third of toilet dirt was removed. About two-thirds of the remaining dirt was rapidly oxidized and bleached on the second day, and the smell inside the toilet was completely odorless. On the fourth day, all toilets were removed and the entire surface was clean and glossy. Moreover, there was an effect of removing dirt even in a pH range of about 5.0 to 7.5, which is almost neutral.
[0045]
Next, the test was conducted in the same manner using a new toilet without any dirt. In this case, even when the concentration of free residual chlorine in the washing water was set to a low concentration of about 3 to 5 ppm, there was no accumulation of dirt over time, and there was a sufficient purification effect.
[0046]
The cleaning water of this reference example is not only used for purifying dirt such as excrement attached to the toilet bowl of the toilet, but also extremely effective for purification, sterilization, and deodorization of peripheral equipment of the toilet bowl. In addition, the present invention can also be suitably applied to butt cleaning and sterilization using a bidet or the like.
[0047]
By the way, conventionally, the washing water is simply poured after the toilet is used, and the dirt cannot be removed sufficiently. In particular, the adhesion of dirt was remarkable in a frequently used place such as a public toilet. The bad odor in the room was intense, and the countermeasure against the bad odor was only done with a ventilator and deodorant, which was not enough. On the other hand, according to this reference example, there is an advantage that the purification effect is extremely excellent.
[0048]
(Reference Example 3)
As shown in FIGS. 2 and 5, the saline solution is joined from the additive solution supply tank 9 by the metering pump 15 at a flow rate of 20 cc / min. From this aqueous electrolyte solution, cleaning water in which hypochlorous acid and active oxygen are generated by electrolysis in the electrolytic passage 4 in the electrolysis apparatus 1 is produced and sent to the buffer tank 17. The free residual chlorine concentration of the obtained washing water was about 20 ppm.
[0049]
This washing water is pumped to the egg 18 washing line and sprayed onto the egg 18 moving on the conveyor. The spray is provided with three nozzles, and three eggs are spray-cleaned simultaneously for about 5 seconds. Waste water after washing was discharged into sewage 19. The cleaned chicken eggs 18 were cleaned of dirt such as chicken manure, and were bleached and whitened by the strong detergency of cleaning water containing active oxygen.
[0050]
After washing, the surface of the dried chicken egg 18 was thoroughly wiped with sterile gauze containing sterile water, and the sterile gauze was sufficiently shaken in sterile saline. From this, 1 cc was collected and added to Tryptic soyagar (TSA, Difco) and cultured for 24 hours, and then the number of E. coli colonies was measured. Table 3 shows the sterilization rate of E. coli on the surface of the chicken egg 18.
[0051]
On the other hand, the eggs were washed under the same conditions using a sodium hypochlorite aqueous solution (free residual chlorine 100 ppm) and tap water. The results are shown in Table 3 together with those from 18 eggs before washing.
[0052]
By the way, chicken eggs 18 may be contaminated by Salmonella (causing food poisoning) in addition to E. coli, but the incidence of food poisoning has increased rapidly in the world over the past few years. Although it has been pointed out that contamination in the eggshell is involved, sterilizing and washing the eggs 18 with the washing water of this reference example has the advantage that the sterilization effect is very high and the safety is high.
[0053]
(Reference Example 4)
The washing water produced in Reference Example 3 was used to test 11 strains of 19 strains (Yersinia entilocoritica, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Aeromonas hydrophila, Vibrio cholerae, prototoxic E. coli, Salmonella, methicillin resistant Bactericidal effects were tested using pathogenic bacteria of Staphylococcus aureus, methicillin-sensitive Staphylococcus aureus, E, cloacae, A, calcoaceticus, S, marcescens) cultured overnight in Tryptic soyagar (TSA, Difco).
[0054]
Table 4 shows the results of a test conducted using a cleaning water adjusted to have a free residual chlorine concentration of 5 ppm and the contact time with bacteria set to 5 seconds, 15 seconds, and 30 seconds, respectively. In addition, (-) in a table | surface represents that the microbe was killed.
[0055]
Table 4 shows that this washing water has a strong bactericidal action against all 13 types of bacteria such as Salmonella and Escherichia coli.
[0056]
Next, the sterilization effect performed by setting the free residual chlorine concentration in the washing water to a lower concentration (0.25 ppm, 0.57 ppm, 0.81 ppm) and setting the contact time to 1 minute, 5 minutes, (30 minutes) The test (n number = 2) was carried out (Yersinia entilocoritica, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Aeromonas hydrophila, Vibrio cholerae, Escherichia coli E. coli, Salmonella). The results are shown in Table 5.
[0057]
(Example 2)
As shown in FIGS. 2 and 6, tap water (salt (NaCl) water) or sodium bromide (NaBr) water is added at a rate of 20 cc / min. An aqueous electrolyte solution was added, and from this aqueous electrolyte solution, cleaning water containing hypochlorous acid or hypobromous acid and active oxygen was produced by electrolysis in the electrolytic passage 4 of the electrolysis apparatus 1.
[0058]
Then, as shown in Table 6, the hydrogen ion concentration (pH) and concentration of this cleaning water were adjusted, and the following sterilization test was performed.
[0059]
Put 400ml of sterilized pure water in a sterilized aluminum container (500ml), and put each bacterial solution (dilution adjustment to 10 8 cells / ml) of the target bacteria (MRSA, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli toxin) In addition, the concentration was adjusted to 10 5 cells / ml. Then, the target devices 20 (three scissors, tweezers, and one dental reamer each in total) to be sterilized were sufficiently immersed in each bacterial solution in the aluminum container. Thereafter, the target device 20 was taken out and naturally dried on a sterilized paper towel.
[0060]
This target instrument 20 is placed in a stainless steel basket of an ultrasonic cleaner 21 (trade name W230R, manufactured by Honda Electronics Co., Ltd.), and cleaning water is supplied to the ultrasonic cleaner 21 via a filter F at 6 liters / minute. Sterilization and washing were performed for a certain period of time (1 minute, 3 minutes, 6 minutes) while supplying at a rate and causing overflow.
[0061]
After washing, the target device 20 was taken out from the ultrasonic cleaner 21 and placed in a sterilized aluminum container. To this, 300 ml of sensitive broth medium was added until the target device 20 was immersed, and cultured at 37 ° C. for 24 hours. Table 6 shows the evaluation results determined by the growth of the bacteria.
[0062]
On the other hand, reverse soap solution (concentration 40 ppm), benzalkonium chloride (concentration 80 ppm), cresol soap solution (concentration 400 ppm, 1000 ppm), sodium hypochlorite solution (concentration 200 ppm, 400 ppm) are sterilized. Table 7 shows the evaluation results of comparative tests in which the target device 20 to be baked was sterilized and washed by immersing it for a certain period of time (1, 3, and 6 minutes), and then cultured and determined in the same manner.
[0063]
In this embodiment, scissors, tweezers, and dental reamer are sterilized and cleaned as the target instrument 20, but various other medical devices can be cleaned and sterilized.
[0064]
By the way, it is said that the sterilizing power of hypochlorous acid (HClO) generated by electrolysis of saline solution is about 10 to 80 times that of hypochlorite ion (OCl ).
[0065]
HClO⇔H + + ClO
When the pH is 5.5, HClO having strong bactericidal activity is almost 100%, but when the pH is 7.2, HClO is about 70% and ClO is about 30%. In other words, hypochlorous acid has a slight decline in sterilizing power because HClO decreases when the pH is 7.2. Further, when the pH is 8.2, HClO is about 20% and ClO is about 80%, and the sterilizing power is remarkably lowered to the same level as that of sodium hypochlorite.
[0066]
On the other hand, as compared with hypochlorous acid (HClO), hypochlorous acid (HBrO) is less likely to dissociate and become ions, so the bactericidal power is about the same when the pH is 5.5 and 7.2. It is. In other words, it can be treated with hydrogen ion concentration closer to the neutral region in the case of electrolysis with addition of sodium bromide than in the case of electrolysis with addition of saline solution, so the target device to be sterilized No. 20 has the advantage that it is not easily rusted even when it is repeatedly washed with stainless steel.
[0067]
[Table 1]
Figure 0003639928
[0068]
[Table 2]
Figure 0003639928
[0069]
[Table 3]
Figure 0003639928
[0070]
[Table 4]
Figure 0003639928
[0071]
[Table 5]
Figure 0003639928
[0072]
[Table 6]
Figure 0003639928
[0073]
[Table 7]
Figure 0003639928
[0074]
【The invention's effect】
The present invention is configured as described above and has the following effects.
[0075]
According to the method for producing cleaning water of the present invention, since it is possible to easily obtain cleaning water that causes the object to be cleaned to oxidatively decompose active oxygen, it takes less time to manufacture.
[0076]
According to the apparatus for producing cleaning water of the present invention, it is possible to continuously obtain cleaning water that causes the object to be cleaned to oxidatively decompose active oxygen, so that it is easier to use cleaning water than in the past.
[Brief description of the drawings]
FIG. 1 is a system flow diagram for explaining a first embodiment of the present invention;
FIG. 2 is a schematic perspective view for explaining the electrolysis apparatus of FIG.
FIG. 3 is a system flow diagram for explaining a reference example 1 of the present invention.
FIG. 4 is a system flow diagram for explaining a reference example 2 of the present invention.
FIG. 5 is a system flow diagram for explaining a reference example 3 of the present invention.
FIG. 6 is a system flow diagram for explaining a second embodiment of the present invention.
[Explanation of symbols]
2 Cathode plate 3 Anode plate 4 Electrolytic passage

Claims (2)

陰極板と陽極板との間に電解通路を有し、この電解通路に電解質水溶液を供給しながら活性酸素を生成させるように電気分解することにより、洗浄対象物に活性酸素の酸化分解作用を及ぼせしめる洗浄用水を連続的に得るようにし、臭化ナトリウムの共存下でpHが約6から約8.5以下のほぼ中性領域に調整して電気分解することにより、電解質水溶液中に次亜臭素酸と活性酸素とを生成せしめるようにしたことを特徴とする洗浄用水の製造装置。An electrolysis path is provided between the cathode plate and the anode plate, and electrolysis is performed so that active oxygen is generated while supplying an electrolytic aqueous solution to the electrolysis path. In the presence of sodium bromide in the presence of sodium bromide, the pH is adjusted to approximately the neutral range of about 6 to about 8.5 or less, and electrolysis is carried out in the aqueous electrolyte solution. An apparatus for producing washing water, characterized in that an acid and active oxygen are generated . 電解質水溶液中に活性酸素を生成させるように電気分解することにより洗浄対象物に活性酸素の酸化分解作用を及ぼせしめる洗浄用水を得るようにし、臭化ナトリウムの共存下でpHが約6から約8.5以下のほぼ中性領域に調整して電気分解することにより、電解質水溶液中に次亜臭素酸と活性酸素とを生成せしめるようにしたことを特徴とする洗浄用水の製造方法。Electrolysis is performed so as to generate active oxygen in the aqueous electrolyte solution, thereby obtaining water for cleaning that causes the object to be cleaned to oxidatively decompose active oxygen. The pH is about 6 to about 8 in the presence of sodium bromide. A method for producing cleaning water, characterized in that hypobromite and active oxygen are produced in an electrolyte aqueous solution by electrolysis after adjusting to a substantially neutral region of 0.5 or less .
JP24816094A 1994-10-13 1994-10-13 Cleaning water manufacturing apparatus and manufacturing method thereof Expired - Lifetime JP3639928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24816094A JP3639928B2 (en) 1994-10-13 1994-10-13 Cleaning water manufacturing apparatus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24816094A JP3639928B2 (en) 1994-10-13 1994-10-13 Cleaning water manufacturing apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08108182A JPH08108182A (en) 1996-04-30
JP3639928B2 true JP3639928B2 (en) 2005-04-20

Family

ID=17174120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24816094A Expired - Lifetime JP3639928B2 (en) 1994-10-13 1994-10-13 Cleaning water manufacturing apparatus and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3639928B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192972A (en) * 2014-03-31 2015-11-05 Toto株式会社 Sterilized water generator
JP6582323B2 (en) * 2015-04-15 2019-10-02 エア・ウォーター・バイオデザイン株式会社 Cleaning device and cleaning method

Also Published As

Publication number Publication date
JPH08108182A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
JP4195499B2 (en) Photocatalytic reaction water generator
US7235169B2 (en) Method and apparatus for purging and disinfecting water
JP4365413B2 (en) Neutral electrolyzed water, neutral electrolyzed water production method, and neutral electrolyzed water production apparatus
JP5108085B2 (en) Toilet seat with local cleaning function, floor cleaning machine, cooling tower, air cleaning system, wastewater treatment system, contact lens cleaning device, shower device, dialyzer, medical equipment cleaning device, irrigation and sprinkling system for agriculture, sanitizing mask, dishwasher, Meat cleaning and sterilization equipment, washing system, defecation deodorization system, food gradual sterilization cleaning system, bathhouse / pool sterilization system
EP1740226A1 (en) Disinfectant solutions
JP4705075B2 (en) Water purifier
JP2009178710A (en) Apparatus for cleaning precision instrument, air purifier, ice making apparatus, apparatus for cleaning endoscope, shampoo apparatus, hydroponic culture apparatus and car washing apparatus
JP2858853B2 (en) humidifier
US20140302168A1 (en) Microbiocidal Solution with Ozone and Methods
CA2475443C (en) Method for sterilisation and cleaning of water supply systems, in particular in swimming and bathing pool units and device for carrying out the same
JP2008142647A (en) Method and apparatus for producing functional water
JP2008272616A (en) Long-lived active oxygen water generating method and device using photocatalytic reaction
KR100669204B1 (en) Composition for deodorization and sterilization and its manufacturing process
JP2007006817A (en) Apparatus for washing seedling raising tray
JP5102271B2 (en) Method for washing and sterilizing eggshell
JP3639928B2 (en) Cleaning water manufacturing apparatus and manufacturing method thereof
JP4757783B2 (en) How to wash and sterilize eggshell
JP3918133B2 (en) Water purification method and purification device
JP2004097174A (en) Cleaning and disinfectant unit for pigsty and swine body (living)
JPH08132050A (en) Cleaning water producing mechanism
JP3516369B2 (en) Antifouling and deodorizing method for toilet drain pipe
CA3119750A1 (en) Sterilizing electrodes set, method of sterizing and sterilization apparatus using same
WO2024180996A1 (en) Facility which uses tap water in building
JP2003190261A (en) Malodor removing method and malodor removing device
JP4348064B2 (en) Method and apparatus for cleaning harvest nets for seafood algae

Legal Events

Date Code Title Description
A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term