JP3638032B2 - Antibacterial action enhancement method - Google Patents

Antibacterial action enhancement method Download PDF

Info

Publication number
JP3638032B2
JP3638032B2 JP4689595A JP4689595A JP3638032B2 JP 3638032 B2 JP3638032 B2 JP 3638032B2 JP 4689595 A JP4689595 A JP 4689595A JP 4689595 A JP4689595 A JP 4689595A JP 3638032 B2 JP3638032 B2 JP 3638032B2
Authority
JP
Japan
Prior art keywords
water
zinc oxide
zinc
light
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4689595A
Other languages
Japanese (ja)
Other versions
JPH08243551A (en
Inventor
靖英 山口
正敏 山崎
昭 藤嶋
和仁 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP4689595A priority Critical patent/JP3638032B2/en
Publication of JPH08243551A publication Critical patent/JPH08243551A/en
Application granted granted Critical
Publication of JP3638032B2 publication Critical patent/JP3638032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【産業上の利用分野】
本発明は光溶解性のある半導体を水性液中又は空気中に配置することによりもたらされる抗菌作用の増強法に関し、詳しくは紫外線を含む光を照射することにより光溶解性のある半導体からの金属イオンの溶出量を増大させることによる抗菌作用の増強法に関する。
【0002】
【従来の技術】
銀、銅、亜鉛等の金属イオンが抗菌作用をもち、細菌やかびがこれらの金属イオンと接触すると死滅するか又はその増殖が阻止されることが知られている。この金属イオンの抗菌作用を利用するために、金属イオン自体を水性液中に添加したり、金属イオンを担持したゼオライトや包接化合物、あるいは酸化物、硫化物などを水性液中に添加して金属イオンを徐々に放出させたり、あるいは金属イオンを担持したゼオライトや包接化合物あるいは酸化物、硫化物を塗料に混入して基体に塗布するか又はそれらを基体に練り込み、水性液中に配置して金属イオンを徐々に放出させたりしている。実用的には、亜鉛イオンを担持したゼオライトや包接化合物あるいは酸化亜鉛を塗料に混入して基体に塗布するか又はそれらを基体に練り込んだ素材、又はその素材を用いた製品が用いられる。
【0003】
上記のような従来技術の例としては、酸化亜鉛を練り込んだ樹脂(特開平4−93360号公報参照)や、酸化亜鉛を含む塗料を塗布した上水設備(特開平5−50073号公報参照)、クーリングタワー(特開平5−45090号公報参照)、下水設備(特開平5−57287号公報参照)などが挙げられるが、いずれも亜鉛イオンが自然に溶出することを期待するものである。またテトラポット状の酸化亜鉛を併用することにより強度を増強し、抗菌ゼオライトの活性を高めたものもある。更に、亜鉛イオンの溶出による防食効果を利用する目的でジンクリッチペイントを船底、タンカーのタンク内などに塗布することにより、亜鉛イオンの作用によって副次的に船底への微生物、貝類の付着を防止することも知られている。また酸化亜鉛を練り込んだ繊維に関する技術も公知である(例えば特開平2−169662号公報参照、特開平5−156510号公報参照)が、これらも亜鉛イオンの自然溶出による抗菌効果を狙ったものである。また酸化亜鉛からの亜鉛イオンの溶出による抗菌作用を利用する方法において、紫外線を含む光を照射することによってその抗菌活性が高まることについての事例、報告はない。
【0004】
【発明が解決しようとする課題】
銀、銅、亜鉛等の金属イオンは抗菌作用をもたらすことが知られているが、従来技術においては金属イオンの自然溶出を利用するものであり、金属イオンの溶出量を制御することはできなかった。即ち、水性液中に細菌やかびが存在しなくても金属イオンの微量の自然溶出が続き、また水性液中の細菌やかびの量が増大して大きな抗菌作用を必要とする時であっても金属イオンの溶出を増大させて抗菌作用を高めることはできなかった。水の分量、水のpHを制御することにより金属イオンの溶出量を制御することは原理的には可能であるが、実用上ではそれらを制御して抗菌作用を変化させることは不可能である。
【0005】
本発明の目的は、水性液中に溶出する抗菌性金属イオン量を制御して、大きな抗菌作用を必要とする時に抗菌性金属イオンの溶出量を増加させて抗菌作用を増強させる方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記目的を達成するために鋭意検討の結果、抗菌作用を示す金属イオン源として光溶解性のある半導体を選び、また紫外線を含む光を照射することにより金属イオンが溶け出す所謂「光溶解(フォトコロージョン)」を利用することによって、更には紫外線強度を変えることによって金属イオンの溶出濃度即ち抗菌力を制御(増強)できることを見いだし、本発明を完成した。
【0007】
即ち、本発明の抗菌作用増強法は、光溶解性のある半導体を水性液中に配置し、これに紫外線を含む光を照射することを特徴とする。本発明において用いる「光溶解性のある半導体」としては、酸化亜鉛、硫化亜鉛、酸化銅などが挙げられる。中でも酸化亜鉛は太陽光や蛍光灯等に含まれる380nm以下の紫外線を含んだ光を照射すると亜鉛イオンの溶出が効率よく生じる上、亜鉛イオンは低濃度であれば人体には毒性が無いが抗菌効果は大きいので好ましい。
【0008】
本発明において「水性液」とは、水道水、雨水、河川水、海水、水槽水、工場排水、家庭排水、下水、風呂水など如何なるものでもよく、水中に溶解又は分散している成分は如何なるものでもよく、水溶液、スラリー等の何れでもよい。しかし、例えば酸化亜鉛は酸濃度の高い水性液中では光の有無とは無関係に容易に溶解するので、本発明の効果が達成されるためには水性液のpHが3以上であることが望ましい。
【0010】
本発明において「紫外線を含む光」とは、380nm以下の短波長を持つ光を含むものであり、その例として水銀灯、蛍光灯、ブラックライト、太陽光などが挙げられる。本発明においては、紫外線を含む光の照射時間、照射強度を任意に選択できる。細菌、かびの増殖を阻止する目的、即ち予防の目的で紫外線を含む光を常時照射しても、毎日一定時間照射しても、或いは一定期間毎に(例えば毎週、毎月)一定時間照射してもよく、あるいは細菌、かびが増殖して抗菌作用の増強が必要な時に所定時間照射してもよい。また、照射強度の調整については人工的光源の光量制御、光源と光溶解性のある半導体との間に光量制御板を設置すること、光源と光溶解性のある半導体との角度の調整等によって達成される。なお、本発明において「抗菌」とは細菌、かびを死滅させるか又はその増殖を阻止することを意味する。
【0011】
本発明においては、水性液中での光溶解性のある半導体の光溶解をより有効にするために、且つ水性液中への光溶解性のある半導体の配置及び回収をより容易にするために、光溶解性のある半導体を基体表面に設けるか、あるいは基体に担持させることが好ましい。本発明でいう「基体」は、その表面に光溶解性のある半導体からなる皮膜を形成することができるか、光溶解性のある半導体を練り込むことができるか、あるいは光溶解性のある半導体を含む塗料を塗布することができ、かつ水性液中でも安定であればその素材、形状には限定されない。例えば素材として金属、繊維、プラスチック、木材、ガラス、セラミックスなどが挙げられる。また形状も板状、網状、フィルター状、多孔質体状、スポンジ状、布状、繊維状、円筒状などが挙げられる。具体例としては船体、漁網、フィルター、金属網、溶液タンクなどが挙げられる。
【0012】
光溶解性のある半導体を基体表面に設けるか、あるいは基体に担持させる方法としては、電解法、メッキ法、蒸着法、スパッタ法、溶射法、樹脂への練り込み法、塗料を用いる塗装法、粉体を用いる燒結法などが挙げられるが、本発明はそれらの方法に限定されるものではない。しかし陽極酸化法などの電解法によって亜鉛の表面に酸化亜鉛皮膜を形成する方法は、大面積の皮膜を容易に且つ安価に製作できる上、亜鉛メッキ鋼板(トタン板)、亜鉛メッキ線(針金)などに対しても皮膜を作ることができ、基体の価格も安価であるため特に有効である。また、硝酸亜鉛電解液等を用いてアルミニウム、銅、炭素等の導電体表面に酸化亜鉛皮膜を形成する方法により亜鉛以外の導電体に酸化亜鉛皮膜を形成することもできる。光溶解性のある半導体を基体表面に設けるか、あるいは基体に担持させる際に、基体表面全体に設けても、基体表面の一部に設けてもよく、また基体全体に練り込んでも、基体の一部に練り込んでもよい。
【0013】
本発明は光溶解作用により光溶解性のある半導体から金属イオンが溶出することによる抗菌効果を利用しているので、酸化チタンに代表されるような光触媒作用による抗菌と異なり、細菌などと半導体とが直接接触していなくても抗菌効果をもたらし、且つ光触媒作用より高い抗菌効果をもたらす。従って水中、水滴中に浮遊している細菌類に対しても効果がある。本発明による効果は人工的光源のみならず太陽光でも達成されるので、漁網や、魚貝類養殖用網などに利用することもできる。また酸化亜鉛などを含んだ皮膜を設けた金属網、樹脂網などを池、廃水処理槽などの水面近傍に設置することによって抗菌効果が期待できる。
【0014】
更に、本発明においては金属イオンの溶出による抗菌効果であるため、長期使用のうちに酸化亜鉛皮膜の表面層が溶出して酸化亜鉛皮膜表面に付着した無機付着物も脱離する、いわゆる「自己洗浄効果」があり、従って光触媒作用では不可能だった、無機付着物(例えばカルシウム化合物、珪素化合物)を介して付着する藻や貝類の付着の防止も可能にな、従って海水の採り入れ口、海水を貯蔵する容器に本発明を利用することができ、これによる防汚効果が期待できる。
【0015】
本発明においては、光溶解性のある半導体としてとりわけ酸化亜鉛皮膜を用いる場合には、酸化亜鉛を樹脂に練り込んだ場合や、酸化亜鉛を部分的に担持している基体に比べ、酸化亜鉛の露出面積が多く、大きな効果が期待できる。
本発明を利用することのできるその他の応用例としては、クーラーなど空気洗浄器にこの方法を用いれば、光触媒体など従来の抗菌体よりも高い抗菌効果が期待できる。また酸化亜鉛の皮膜を施した水底の浅い流水路に海水、風呂水や汚水を流し、これに水銀灯や太陽光を照射することによって、効果的に抗菌を行うこともできる。浴室や地下室などの壁、天井等に本発明を適用し、短時間でも紫外線(例えば蛍光灯)を照射すれば壁面などの抗菌、抗かびが可能である。また水性液中の細菌濃度をモニターしながら紫外線照射強度にフィールドバックさせて電力及び亜鉛イオンの消費を防ぐことも可能である。
【0016】
【実施例】
実施例1
亜鉛板(5cm×5cm、厚さ1mm)の片面に陽極酸化法によって酸化亜鉛の皮膜を施した。この酸化亜鉛皮膜上に、ブイヨン培地に大腸菌(Escherichia coli IFO 3301 )を培養した培養液(滅菌精製水で2万倍に希釈)1mlを試料として滴下した。この試料に上部から3波長型昼白色蛍光灯「三菱電機;BBパラレル;FML27EX−N(27W)」を3500ルックスになるように、あるいは中心波長340nmの紫外線を発する蛍光灯「松下電器産業;ブラックライト;FL10BL−B(10W)」1灯を試料面上20cmから照射した。また同条件で試料を暗所で室温保存し、どちらも試験開始時、保存1、2、3または6時間後の大腸菌の生菌数を測定した。また比較のために酸化皮膜のない亜鉛板又はガラス板を用いた場合についても測定した。いずれの場合も培養液は乾燥しない状態で保存した。なおこの抗菌力試験は(財)日本食品分析センターで行ったものである(試験報告書 第47091303号)。生菌数測定結果を表1に示す。
【0017】
【表1】

Figure 0003638032
【0018】
表1のデータから分かるように、酸化亜鉛皮膜上に試料を置いた場合には、試験開始時に全く同じ生菌数であった大腸菌は、ブラックライト、蛍光灯の何れを用いた場合にも、暗所保管の場合に比べ明らかに生菌数が減少している。一方比較例として示した金属亜鉛板上に試料を置いた場合には、亜鉛イオンの溶出による抗菌作用によって生菌数の減少が見られたが、ブラックライトを照射した場合と照射しなかった場合とでは生菌数の減少速度に差は認められなかった。またガラス板上に試料を置いた場合の比較例から分かるように、ブラックライトを照射した場合にも照射しなかった場合にも生菌数の減少が見られなかったので、上記のようなブラックライトや蛍光灯の紫外線によっては生菌が死滅しないことは明らかである。また上記の何れの場合にも培養液は液滴を保持した状態で保存されており、光触媒のように生菌と酸化亜鉛との直接接触は極めて少ない。以上の結果は、酸化亜鉛皮膜のみが紫外線照射によって金属イオンを積極的に溶出し、抗菌力を増強していることを示している。
【0019】
実施例2
(A)河川(荒川)水10リットルを入れたガラス製水槽に、水中に空気泡を連続的に発生させる装置を配置し、この水槽に金魚5匹を入れた。陽極酸化法により表面に酸化亜鉛皮膜を形成させた亜鉛板(10×10cm、厚さ1mm;裏面をビニールテープで被覆)をこの水槽の側面のガラス面から5mm離れた水中に設置し、その酸化亜鉛皮膜に太陽光がよく当たるようにした(水槽1)。
【0020】
(B)上記(A)と同様の河川水、空気泡発生装置、金魚及び酸化亜鉛皮膜付亜鉛板を上記(A)と同様にして収容したガラス製水槽中の酸化亜鉛皮膜に太陽光がよく当たるようにし、且つガラス外部から白色蛍光灯(照射面で約2500ルックス)を常時照射した(水槽2)。
(C)上記(A)と同様の河川水、空気泡発生装置及び金魚を上記(A)と同様にして収容したが、酸化亜鉛皮膜付亜鉛板の代わりに同じ大きさの亜鉛板を上記(A)と同様にして収容したガラス製水槽中の酸化亜鉛皮膜に太陽光がよく当たるようにした(水槽3)。
【0021】
(D)上記(A)と同様の河川水、空気泡発生装置及び金魚を上記(A)と同様にして収容したが、酸化亜鉛皮膜付亜鉛板を収容しなかったガラス製水槽中の酸化亜鉛皮膜に太陽光がよく当たるようにした(水槽4)。
最初に太陽光下に設置した直後は全ての水槽の河川水の色は同一であったが、放置3日目には亜鉛板を入れなかった水槽4の水には藻類が発生し始め、水の色は黄緑色になった。
【0022】
また放置10日目には水槽4の水は藻類で緑色になり、亜鉛板を収容した水槽3の水は黄緑色になったのに対し、酸化亜鉛皮膜付き亜鉛板を収容した水槽1及び水槽2の水は透明のままであった。放置16日目に各水槽の水中の大腸菌数を測定した結果及び放置10日目に水中に溶解している亜鉛イオン濃度を測定した結果を表2に示す。
【0023】
【表2】
Figure 0003638032
【0024】
上記の説明及び表2のデータから分かるように、本発明の方法を採用することにより藻類の繁殖を防ぐことができ、また水中の大腸菌を死滅させあるいは増殖を阻止することができる。なお、どの水槽内の金魚にも異常はなく、またいずれの水槽中にもミドリムシなどの水生動物が観察された。
【0025】
実施例3
(A)河川(荒川)水10リットルを入れたガラス製水槽に、水中に空気泡を連続的に発生させる装置を配置し、この水槽に金魚5匹を入れた。陽極酸化法により表面に酸化亜鉛皮膜を形成させた亜鉛板(10×10cm、厚さ1mm;裏面をビニールテープで被覆)をこの水槽の水面から水深1cmの水中に酸化亜鉛皮膜面が上を向くようにして水平に設置た。この水槽上部から蛍光灯により酸化亜鉛皮膜面で2500ルックスの強度となるように照射した(水槽5)。
【0026】
(B)上記(A)と同様の河川水、空気泡発生装置、金魚及び酸化亜鉛皮膜付亜鉛板を上記(A)と同様にして収容したガラス製水槽の部から蛍光灯により酸化亜鉛皮膜面で300ルックスの強度となるように照射した(水槽6)。
(C)上記(A)と同様の河川水、空気泡発生装置及び金魚を上記(A)と同様にして収容したが、酸化亜鉛皮膜付亜鉛板を収容しなかったガラス製水槽の上部から蛍光灯により酸化亜鉛皮膜面で2500ルックスの強度となるように照射した(水槽7)。
【0027】
同一の水を用いているので実験開始時にはいずれの水槽の水にも差は認められなかったが、3日目には比較例の水槽7には藻などの浮遊物が認められ、水槽5には白濁物が浮遊していた。大腸菌数を測定した結果、水槽5の菌数が最も少なかった。13日目には水槽5には白濁物が認められ、水槽6にも少量の白濁物が認められた。これは炭酸亜鉛と思われる。18日目には水槽7は濃い緑を呈し、水からは腐敗臭が発生していた。水槽6は黄緑色を呈していたが、水槽5は逆に透明性を増していた。光量が強いと亜鉛の溶出量が増して白濁したが、沈殿などによって次第に透明になったと思われる。亜鉛イオン濃度及びpH値の実験開始からの経時変化を表3に示す。
【0028】
【表3】
Figure 0003638032
【0029】
本実施例から明らかなように、紫外線の照射強度によって亜鉛の溶出量を制御することができ、藻類の発生速度も制御することができる。
【0030】
実施例4
河川(荒川)水10リットルを入れたガラス製水槽3個にそれぞれ、水中に空気泡を連続的に発生させる装置を配置し、これらの水槽に金魚を各5匹入れた。6日後には、水は藻類の繁殖により黄緑色を呈した。この時点での水中の大腸菌群数は33MPN/100mlであった。全ての金魚を取り出した後に、第一の水槽には、0.1M硝酸亜鉛水溶液からなる電解液、亜鉛板陽極、アルミニウム板陰極(直径10cm、厚さ1mm)を用い、直流電圧5V、印時間10分で電解してアルミニウム板上に酸化亜鉛皮膜を析出させて得た酸化亜鉛皮膜付アルミニウム板をこの水槽の側面のガラス面から5mm離れた水中に設置した(水槽8)。比較例として第二の水槽には、アルミニウム板の片面に蒸着によって亜鉛皮膜を形成したアルミニウム板(直径10cm、厚さ1mm)をこの水槽の側面のガラス面から5mm離れた水中に設置した(水槽9)。第三の水槽には何も浸積しなかった(水槽10)。これら水槽を太陽光下に放置した。5日後、水槽8は他の水槽に比べ緑色が薄くなり、水底沈殿物(主に藻類)の緑色が薄くなった。水槽8の大腸菌群数を測定したところ5MPN/100mlまで減少していた。さらに試験を続け、11日後に大腸菌群数を測定したところ2MPN/100ml未満であった。
【0031】
実施例5
公衆浴場の浴用水(塩素イオン濃度47μg/ml)を50リットル採取し、プラスチック容器内で3日間39℃に保温した。3日後の浴用水中の一般細菌数は1.0×107 個/mlであった。4日目からは、0.1Nの硝酸亜鉛からの電解によって陰極銅板上に酸化亜鉛皮膜を形成させて得た酸化亜鉛皮膜付銅板(10×10cm、厚さ1mm;裏面をビニールテープで被覆)2枚を水面から水深1cmの位置で皮膜面が上に向くように水平に設置した。水面の上方8cmから皮膜板にブラックライト(10W×2灯)を照射した。2日間照射した後の浴用水の一般細菌数は7.1×104 個/mlであり、亜鉛イオン濃度は1.2μg/ml、銅イオン濃度は<0.1μg/mlであった。本実施例により、本発明は浴用水の抗菌に有効であることが証明された。
【0032】
【発明の効果】
本発明により、光溶解性のある半導体からの金属イオンの溶出量を増大させて抗菌作用を増強することができ、特に紫外線を含む光の照射時間、照射強度を制御することにより抗菌作用を所望程度に増強することができ、また水性液中の細菌濃度をモニターしながら紫外線照射時間、照射強度にフィールドバックさせて電力及び亜鉛イオンの消費を防ぐことも可能である。[0001]
[Industrial application fields]
The present invention relates to a method for enhancing antibacterial action caused by placing a photo-soluble semiconductor in an aqueous liquid or air, and more particularly, a metal from a photo-soluble semiconductor by irradiating light containing ultraviolet rays. The present invention relates to a method for enhancing antibacterial action by increasing the elution amount of ions.
[0002]
[Prior art]
It is known that metal ions such as silver, copper and zinc have an antibacterial action, and when bacteria and fungi come into contact with these metal ions, they die or are prevented from growing. In order to utilize the antibacterial action of this metal ion, the metal ion itself can be added to the aqueous liquid, or a zeolite or clathrate compound carrying the metal ion, or an oxide or sulfide can be added to the aqueous liquid. Slowly release metal ions, or apply metal ions supported zeolite, clathrate compounds, oxides, and sulfides to the substrate and apply them to the substrate, or knead them into the substrate and place them in an aqueous liquid Then, metal ions are gradually released. Practically, a material in which a zeolite, clathrate compound or zinc oxide carrying zinc ions is mixed in a paint and applied to the substrate or kneaded into the substrate, or a product using the material is used.
[0003]
Examples of the above-described prior art include a water-water facility (see Japanese Patent Laid-Open No. 5-50073) coated with a resin containing zinc oxide (see Japanese Patent Laid-Open No. 4-93360) or a paint containing zinc oxide. ), A cooling tower (see JP-A-5-45090), a sewage facility (see JP-A-5-57287), and the like. In addition, there is also one in which the strength of the antibacterial zeolite is enhanced by using tetrapotted zinc oxide in combination. In addition, zinc rich paint is applied to the bottom of a ship or tanker tank for the purpose of utilizing the anticorrosive effect of zinc ion elution, thereby preventing microorganisms and shellfish from adhering to the bottom of the ship by the action of zinc ions. It is also known to do. In addition, techniques relating to fibers in which zinc oxide is kneaded are also known (for example, see Japanese Patent Laid-Open Nos. 2-169662 and 5-156510), but these also aim at an antibacterial effect due to natural elution of zinc ions. It is. In addition, there is no case or report about the antibacterial activity being increased by irradiating light containing ultraviolet rays in the method using the antibacterial action by elution of zinc ions from zinc oxide.
[0004]
[Problems to be solved by the invention]
Metal ions such as silver, copper, and zinc are known to have antibacterial effects, but the conventional technique uses the natural elution of metal ions and cannot control the elution amount of metal ions. It was. In other words, even when there is no bacteria or mold in the aqueous liquid, a small amount of metal ions are naturally eluted, and when the amount of bacteria or mold in the aqueous liquid increases and a large antibacterial action is required. However, the elution of metal ions could not be increased to enhance the antibacterial action. Although it is possible in principle to control the elution amount of metal ions by controlling the amount of water and the pH of water, it is impossible to change the antibacterial action by controlling them in practice. .
[0005]
An object of the present invention controls the antimicrobial quantity of metal ions eluted into the aqueous solution, increase the amount of elution of the antimicrobial metal ions when requiring a large antimicrobial effect provides a method for enhancing the antibacterial effect There is.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have selected a photo-soluble semiconductor as a metal ion source exhibiting antibacterial activity, and the so-called metal ions are dissolved by irradiating light containing ultraviolet rays. By utilizing “photolysis”, it was found that the elution concentration of metal ions, that is, the antibacterial activity can be controlled (enhanced) by changing the ultraviolet intensity, and the present invention has been completed.
[0007]
That is, the antibacterial effect enhancement methods of the present invention, a semiconductor with a light solubility placed in an aqueous solution, wherein this is irradiated with light containing ultraviolet rays. Examples of the “photosoluble semiconductor” used in the present invention include zinc oxide, zinc sulfide, copper oxide and the like. Among them, zinc oxide elution of zinc ions occurs efficiently when irradiated with light containing ultraviolet rays of 380 nm or less contained in sunlight, fluorescent lamps, and the like. In addition, zinc ions are not toxic to the human body at low concentrations, but antibacterial Since the effect is large, it is preferable.
[0008]
In the present invention, the “aqueous liquid” may be any of tap water, rainwater, river water, seawater, aquarium water, industrial wastewater, domestic wastewater, sewage, bath water, etc., and any component dissolved or dispersed in water. Any of aqueous solutions and slurries may be used. However, for example, zinc oxide is easily dissolved in an aqueous liquid having a high acid concentration regardless of the presence or absence of light, so that the pH of the aqueous liquid is preferably 3 or more in order to achieve the effects of the present invention. .
[0010]
In the present invention, “light containing ultraviolet light” includes light having a short wavelength of 380 nm or less, and examples thereof include mercury lamp, fluorescent lamp, black light, sunlight, and the like. In the present invention, the irradiation time and intensity of light including ultraviolet light can be arbitrarily selected. For the purpose of preventing the growth of bacteria and molds, that is, for the purpose of prevention, it is always irradiated with light containing ultraviolet rays, irradiated for a certain period of time every day, or irradiated for a certain period of time (for example, every week, every month) Alternatively, irradiation may be performed for a predetermined time when bacteria or fungi grow and antibacterial action needs to be enhanced. In addition, for adjustment of irradiation intensity, by controlling the light amount of an artificial light source, installing a light amount control plate between the light source and the light-soluble semiconductor, adjusting the angle between the light source and the light-soluble semiconductor, etc. Achieved. In the present invention, the term “antibacterial” means killing or preventing the growth of bacteria and fungi.
[0011]
In the present invention, the semiconductor light lysis with light soluble in an aqueous solution in order to more effectively, and in order to facilitate the semiconductor arrangement and recovery with a light solubility in aqueous solution It is preferable that a photo-soluble semiconductor is provided on the surface of the substrate or supported on the substrate. The “substrate” as used in the present invention can form a film made of a semiconductor having photodissolution on the surface thereof, can be kneaded with a semiconductor having photodissolution, or is a semiconductor having photodissolution. can be applied a paint containing, and the material, the shape is not limited as long as stable in aqueous solution. Examples of materials include metals, fibers, plastics, wood, glass, and ceramics. Examples of the shape include a plate shape, a net shape, a filter shape, a porous shape, a sponge shape, a cloth shape, a fiber shape, and a cylindrical shape. Examples hull, fishing nets, filters, metal mesh, etc. solvent solution tanks and the like.
[0012]
As a method for providing a semiconductor with photo-solubility on the surface of the substrate or for supporting it on the substrate, an electrolytic method, a plating method, a vapor deposition method, a sputtering method, a thermal spraying method, a kneading method into a resin, a coating method using a paint, Examples thereof include a sintering method using powder, but the present invention is not limited to these methods. However, the method of forming a zinc oxide film on the surface of zinc by an electrolytic method such as anodization can easily produce a large-area film at a low cost, and is also galvanized steel sheet (tonned sheet) and galvanized wire (wire). This is particularly effective because a coating can be formed on the substrate and the substrate is inexpensive. Alternatively, a zinc oxide film can be formed on a conductor other than zinc by a method of forming a zinc oxide film on the surface of a conductor such as aluminum, copper, or carbon using a zinc nitrate electrolytic solution or the like. When a photo-soluble semiconductor is provided on the surface of the substrate or supported on the substrate, it may be provided on the entire surface of the substrate, or may be provided on a part of the surface of the substrate. It may be partly kneaded.
[0013]
Since the present invention utilizes the antibacterial effect due to the elution of metal ions from the photosoluble semiconductor by the photodissolving action, unlike the antibacterial action by the photocatalytic action typified by titanium oxide, the bacteria and the semiconductor Even if they are not in direct contact with each other, they provide an antibacterial effect and a higher antibacterial effect than photocatalysis. Therefore, it is also effective against bacteria floating in water and in water droplets. Since the effect of the present invention can be achieved not only by an artificial light source but also by sunlight, it can also be used for fishing nets, fish shellfish cultivation nets, and the like. Moreover, an antibacterial effect can be expected by installing a metal net or a resin net provided with a film containing zinc oxide in the vicinity of the water surface such as a pond or a wastewater treatment tank.
[0014]
Furthermore, in the present invention, since the antibacterial effect is due to the elution of metal ions, the surface layer of the zinc oxide film elutes and the inorganic deposits attached to the surface of the zinc oxide film are also detached over a long period of use. There are cleaning effect "and thus it was not possible with photocatalysis, inorganic deposits (e.g. calcium compound, silicon compound) prevention of adhesion of algae and shellfish adhering through Ri possible to name thus seawater adopted port, The present invention can be used for a container for storing seawater, and an antifouling effect can be expected.
[0015]
In the present invention, in particular, when a zinc oxide film is used as a photo-soluble semiconductor, the zinc oxide film is compared with a case where zinc oxide is kneaded into a resin or a substrate partially supporting zinc oxide. A large effect can be expected due to the large exposed area.
As another application example in which the present invention can be used, if this method is used for an air cleaner such as a cooler, a higher antibacterial effect than a conventional antibacterial body such as a photocatalyst body can be expected. Moreover, antibacterial can be effectively performed by flowing seawater, bath water, and sewage through a shallow water channel with a zinc oxide film and irradiating it with mercury lamp or sunlight. If the present invention is applied to walls, ceilings, etc. of bathrooms and basements, and ultraviolet rays (for example, fluorescent lamps) are irradiated even for a short time, antibacterial and antifungal properties of the walls and the like are possible. It is also possible to prevent consumption of power and zinc ions by monitoring the concentration of bacteria in the aqueous liquid and making a field back to the ultraviolet irradiation intensity.
[0016]
【Example】
Example 1
A zinc oxide film was applied to one side of a zinc plate (5 cm × 5 cm, thickness 1 mm) by an anodic oxidation method. On this zinc oxide film, 1 ml of a culture solution (diluted 20,000 times with sterilized purified water) obtained by culturing Escherichia coli IFO 3301 in a broth medium was dropped as a sample. Three-wavelength daylight white fluorescent lamp "Mitsubishi Electric; BB parallel; FML27EX-N (27W)" from the top to 3500 lux, or fluorescent lamp "Matsushita Electric Industrial; Black" that emits ultraviolet light with a central wavelength of 340 nm Light: FL10BL-B (10 W) "1 lamp was irradiated from 20 cm above the sample surface. Under the same conditions, the samples were stored at room temperature in the dark, and in both cases, the viable count of E. coli was measured at the start of the test, 1, 2, 3 or 6 hours after storage. Moreover, it measured also about the case where the zinc plate or glass plate without an oxide film was used for the comparison. In either case, the culture solution was stored in a dry state. This antibacterial activity test was conducted at the Japan Food Analysis Center (Test Report No. 47091303). The results of viable cell count measurement are shown in Table 1.
[0017]
[Table 1]
Figure 0003638032
[0018]
As can be seen from the data in Table 1, when the sample was placed on the zinc oxide film, the E. coli that had the same viable count at the start of the test, whether using a black light or a fluorescent lamp, The number of viable bacteria is clearly reduced compared to the storage in the dark. On the other hand, when the sample was placed on the metal zinc plate shown as a comparative example, the number of viable bacteria decreased due to the antibacterial action due to elution of zinc ions, but when the black light was irradiated and when it was not irradiated There was no difference in the rate of decrease in viable cell count. As can be seen from the comparative example when the sample was placed on a glass plate, no decrease in the number of viable bacteria was observed when the black light was irradiated or not. It is clear that viable bacteria are not killed by light or UV light from fluorescent lamps. In any of the above cases, the culture solution is stored in a state where droplets are retained, and there is very little direct contact between viable bacteria and zinc oxide as in a photocatalyst. The above results show that only the zinc oxide film positively elutes metal ions by ultraviolet irradiation and enhances antibacterial activity.
[0019]
Example 2
(A) A device for continuously generating air bubbles in water was placed in a glass aquarium containing 10 liters of river (Arakawa) water, and five goldfish were placed in this aquarium. A zinc plate with a zinc oxide film formed on the surface by anodization (10 x 10 cm, thickness 1 mm; back side covered with vinyl tape) is placed in water 5 mm away from the glass surface on the side of this water tank, and the oxidation Sunlight was applied to the zinc coating well (water tank 1).
[0020]
(B) Sunlight is good on the zinc oxide film in the glass water tank containing the same river water, air bubble generator, goldfish and zinc oxide coated zinc plate as in (A) above. A white fluorescent lamp (approx. 2500 lux on the irradiated surface) was constantly irradiated from the outside of the glass (water tank 2).
(C) The same river water, air bubble generator and goldfish as in (A) above were accommodated in the same manner as in (A) above, but instead of the zinc plate with zinc oxide coating, In the same manner as in A), sunlight was well applied to the zinc oxide film in the glass water tank accommodated (water tank 3).
[0021]
(D) Zinc oxide in a glass aquarium containing the same river water, air bubble generator and goldfish as in (A) above, but not containing the zinc oxide coated zinc plate Sunlight was often applied to the film (water tank 4).
Immediately after installation under sunlight, the color of river water in all tanks was the same, but on the third day, algae began to appear in the water in tank 4 that did not contain zinc plates. The color became yellowish green.
[0022]
On the 10th day, the water in the water tank 4 turned green with algae and the water in the water tank 3 containing the zinc plate turned yellow green, whereas the water tank 1 and the water tank containing the zinc plate with the zinc oxide film were stored. The water of 2 remained clear. Table 2 shows the results of measuring the number of E. coli in water in each tank on the 16th day and the concentration of zinc ions dissolved in water on the 10th day.
[0023]
[Table 2]
Figure 0003638032
[0024]
As can be seen from the above explanation and the data in Table 2, by adopting the method of the present invention, it is possible to prevent the growth of algae, and to kill or prevent the growth of Escherichia coli in water. There were no abnormalities in goldfish in any tank, and aquatic animals such as Euglena were observed in any tank.
[0025]
Example 3
(A) A device for continuously generating air bubbles in water was placed in a glass aquarium containing 10 liters of river (Arakawa) water, and five goldfish were placed in this aquarium. A zinc plate (10 × 10 cm, thickness 1 mm; coated with vinyl tape on the back) with a zinc oxide film formed on the surface by an anodic oxidation method, the zinc oxide film surface faces upward from the water surface of this aquarium into water at a depth of 1 cm. It was placed horizontally so. Irradiation was performed from the upper part of this water tank with a fluorescent lamp so that the zinc oxide film surface had an intensity of 2500 lux (water tank 5).
[0026]
(B) Zinc oxide film surface by fluorescent lamp from the glass water tank containing the same river water, air bubble generator, goldfish and zinc oxide coated zinc plate as in (A) above. The water was irradiated so that the intensity became 300 lux (water tank 6).
(C) The same river water, air bubble generator and goldfish as in (A) above were accommodated in the same manner as in (A) above, but fluorescence was emitted from the top of the glass water tank that did not contain the zinc plate with zinc oxide coating. Irradiation was performed with a lamp so that the zinc oxide film surface had an intensity of 2500 lux (water tank 7).
[0027]
Since the same water was used, there was no difference in the water in any tank at the start of the experiment, but on the third day, floating water such as algae was observed in the tank 7 of the comparative example. The white cloud was floating. As a result of measuring the number of E. coli, the number of bacteria in the water tank 5 was the smallest. On the 13th day, white turbidity was observed in the water tank 5, and a small amount of white turbidity was also observed in the water tank 6. This seems to be zinc carbonate. On the 18th day, the aquarium 7 was dark green, and a rotting odor was generated from the water. The aquarium 6 had a yellowish green color, but the aquarium 5 had increased transparency. When the amount of light was strong, the amount of zinc elution increased and it became cloudy, but it seems to have gradually become transparent due to precipitation. Table 3 shows changes with time in the zinc ion concentration and pH value from the start of the experiment.
[0028]
[Table 3]
Figure 0003638032
[0029]
As is clear from this example, the elution amount of zinc can be controlled by the irradiation intensity of ultraviolet rays, and the algae generation rate can also be controlled.
[0030]
Example 4
In each of three glass tanks containing 10 liters of river (Arakawa) water, a device for continuously generating air bubbles in water was placed, and five goldfishes were put in each of these tanks. After 6 days, the water turned yellowish green due to the growth of algae. At this time, the number of coliforms in water was 33 MPN / 100 ml. After retrieving all goldfish, the first water tank, using an electrolyte consisting of 0.1M aqueous solution of zinc nitrate, a zinc plate anode, an aluminum plate cathode (diameter 10 cm, a thickness of 1mm) to the DC voltage 5V, sign pressurized An aluminum plate with a zinc oxide film obtained by electrolysis in 10 minutes to deposit a zinc oxide film on the aluminum plate was placed in water 5 mm away from the glass surface on the side surface of this water tank (water tank 8). As a comparative example, in the second water tank, an aluminum plate (diameter 10 cm, thickness 1 mm) having a zinc film formed by vapor deposition on one side of the aluminum plate was placed in water 5 mm away from the glass surface on the side of this water tank (water tank) 9). Nothing was immersed in the third water tank (water tank 10). These aquariums were left under sunlight. Five days later, the aquarium 8 became lighter in green than the other aquariums, and the bottom sediment (mainly algae) became lighter in green. When the number of coliforms in the water tank 8 was measured, it was reduced to 5 MPN / 100 ml. The test was further continued, and the number of coliforms was measured after 11 days and found to be less than 2 MPN / 100 ml.
[0031]
Example 5
50 liters of public bath water (chlorine ion concentration 47 μg / ml) was collected and kept at 39 ° C. for 3 days in a plastic container. The number of general bacteria in the bath water after 3 days was 1.0 × 10 7 cells / ml. From the 4th day, a zinc oxide coated copper plate obtained by forming a zinc oxide coating on the cathode copper plate by electrolysis from 0.1 N zinc nitrate (10 × 10 cm, thickness 1 mm; back side covered with vinyl tape) Two pieces were installed horizontally at a position 1 cm deep from the water surface so that the film surface was directed upward. Black light (10 W × 2 lights) was irradiated on the coating plate from 8 cm above the water surface. The number of general bacteria in bath water after irradiation for 2 days was 7.1 × 10 4 cells / ml, the zinc ion concentration was 1.2 μg / ml, and the copper ion concentration was <0.1 μg / ml. This example proves that the present invention is effective for antibacterial use of bath water.
[0032]
【The invention's effect】
According to the present invention, it is possible to enhance the antibacterial effect by increasing the elution amount of metal ions from a photo-soluble semiconductor, and in particular, the antibacterial effect is desired by controlling the irradiation time and irradiation intensity of light including ultraviolet rays. It is also possible to prevent consumption of electric power and zinc ions by monitoring the concentration of bacteria in the aqueous solution and fielding back to the ultraviolet irradiation time and irradiation intensity while monitoring the bacterial concentration in the aqueous liquid.

Claims (2)

基体表面に電解法によって設けられた光溶解性のある半導体が酸化亜鉛の皮膜であり、該酸化亜鉛皮膜を水性液中に配置し、これに紫外線を含む光を照射することを特徴とする抗菌作用増強法。 A film of semiconductor is zinc oxide with a light solubility provided by the electrolytic process on the substrate surface, the antimicrobial of the zinc oxide film was placed in an aqueous solution, and then irradiating with light containing ultraviolet rays thereto Action enhancement method. 基体表面に電解法によって設けられた光溶解性のある半導体が酸化亜鉛の皮膜であり、該酸化亜鉛皮膜を水性液中に配置し、抗菌作用の増強が必要な時にこれに紫外線を含む光を照射するか又は紫外線を含む光の照射強度を強めることを特徴とする抗菌作用増強法。 A film of semiconductor is zinc oxide with a light solubility provided by the electrolytic process on the substrate surface, the zinc oxide film was placed in an aqueous solution, the light containing ultraviolet light thereto when enhancement is required antibacterial effect A method for enhancing antibacterial action, comprising irradiating or increasing the irradiation intensity of light containing ultraviolet rays.
JP4689595A 1995-03-07 1995-03-07 Antibacterial action enhancement method Expired - Fee Related JP3638032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4689595A JP3638032B2 (en) 1995-03-07 1995-03-07 Antibacterial action enhancement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4689595A JP3638032B2 (en) 1995-03-07 1995-03-07 Antibacterial action enhancement method

Publications (2)

Publication Number Publication Date
JPH08243551A JPH08243551A (en) 1996-09-24
JP3638032B2 true JP3638032B2 (en) 2005-04-13

Family

ID=12760106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4689595A Expired - Fee Related JP3638032B2 (en) 1995-03-07 1995-03-07 Antibacterial action enhancement method

Country Status (1)

Country Link
JP (1) JP3638032B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4191037B2 (en) * 2001-11-02 2008-12-03 日本テクノ株式会社 Sterilization vibration stirrer, sterilization apparatus using vibration stirrer, and sterilization method
CN104310526B (en) * 2014-10-22 2016-01-06 中国科学院水生生物研究所 Red laser control algae device
US20180304321A1 (en) * 2015-10-27 2018-10-25 Koninklijke Philips N.V. Anti-fouling system, controller and method of controlling the anti-fouling system

Also Published As

Publication number Publication date
JPH08243551A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
US5541096A (en) Photocatalyst and process for purifying water with same
RU2534091C1 (en) Method of processing water applied for industrial purposes
JP5127983B2 (en) A kind of low current electrolysis sterilization algae device and method
US20090314711A1 (en) PHOTOELECTROCATALYTIC OXIDIZER DEVICE HAVING COMPOSITE NANOPOROUS TiO2 COATED Ti PHOTOANODE AND METHOD OF REMOVING AMMONIA FROM WATER IN AQUARIA AND RECIRCULATION AQUACULTURE SYSTEMS
CN103384645A (en) Methods for removing contaminants from aqueous solutions using photoelectrocatalytic oxidization
Suvorov et al. Electrochemical and Electrostatic Decomposition Technologies As A Means of Improving the Efficiency and Safety of Agricultural and Water Technologies.
JP2613179B2 (en) Photocatalyst and water purification method using the same
JP4686363B2 (en) Silver-carrying particles and method for producing the same
JP3638032B2 (en) Antibacterial action enhancement method
JP2001136862A (en) Water tank having sidewall with photocatalytic film
JP2004132592A (en) Electrochemical water treatment method and water treatment system
JP6566573B2 (en) Environmental improvement method and apparatus for aquarium fish tank
WO2010120198A1 (en) Electrodes for electrolysis of water
GB2359301A (en) Photocatalytic treatment of water
US20130134053A1 (en) Methods and devices for the treatment of fluids
JPH08164390A (en) Electrochemical treatment of water to be treated
KR101368491B1 (en) Appliance for electrolysis attached ship and the method of sterilizing red tied using it
JP3889106B2 (en) Water treatment sheet material and method for producing the same
JPS61204085A (en) Copper ion eluting device
JP4510387B2 (en) Seabed sediment improvement method and apparatus using crystallization method with electrolysis electrode
JP4929465B2 (en) Water quality control device for aquarium fish tank
US10160669B2 (en) Methods and devices for the treatment of fluids
JPH099820A (en) Processed net for preventing from attachment of shellfish, insect and alga and floating net basket for cultured fish
Dhar Electrochemical methods for the prevention of microbial fouling
KR20020050428A (en) A removal method of algae by using photocatalyst coated plates in river and lake

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees