JP3637581B2 - Ionomer resin aqueous dispersion and process for producing the same - Google Patents

Ionomer resin aqueous dispersion and process for producing the same Download PDF

Info

Publication number
JP3637581B2
JP3637581B2 JP13027395A JP13027395A JP3637581B2 JP 3637581 B2 JP3637581 B2 JP 3637581B2 JP 13027395 A JP13027395 A JP 13027395A JP 13027395 A JP13027395 A JP 13027395A JP 3637581 B2 JP3637581 B2 JP 3637581B2
Authority
JP
Japan
Prior art keywords
resin
ionomer resin
water
dispersion
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13027395A
Other languages
Japanese (ja)
Other versions
JPH08319430A (en
Inventor
勲 田林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP13027395A priority Critical patent/JP3637581B2/en
Publication of JPH08319430A publication Critical patent/JPH08319430A/en
Application granted granted Critical
Publication of JP3637581B2 publication Critical patent/JP3637581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、実質的な熱可塑性を有し、強靱で弾性に富んだアイオノマー樹脂水性分散液及びその製造方法に関し、具体的には塗料、インキ、樹脂コンパウンド等の分野で適用が可能な樹脂粒子に関する。
【0002】
【従来の技術】
樹脂乳化物の架橋方法は、従来は多官能性モノマーを反応性樹脂乳化物に共存させ、しかる後に熱または光によって反応させることによって架橋を行うことが一般的である。具体的には特開平5−148313号公報ではカルボキシル基及び架橋性官能基を有するビニル重合体(A)と、疎水性架橋剤(B)との混合物を、水性媒体中に分散し、架橋せしめることを特徴とする架橋粒子の製法が提案されており、疎水性架橋剤(B)としてポリイソシアネート化合物及び/又はエポキシ樹脂が提案されている。しかしながら、この方法は架橋のためのエネルギー源を必要とする上、乳化物が凝集する、反応に時間がかかる、未反応物が残留する等の諸問題を有している。また熱可塑性が著しく小さくなるので、塗料等の柔軟で弾性を有するフィルム形成を必要とする場合、他のフィルム形成能を有する樹脂成分の硬質マトリックス中にこの架橋粒子をアロイ化するが、架橋粒子表面と樹脂マトリックスの界面での接着・融合が必ずしも十分ではなかった。
【0003】
特開平3−186343号公報では加水分解性金属キレート化合物を含有した水難溶性芯物質溶液を、この金属キレート化合物の加水分解物と反応し得る壁物質含有水性媒体中に分散させることによりマイクロカプセルを得る方法が提案されている。しかし、水難溶性の芯物質の表面で高分子化が起こるため、得られるカプセルの機械強度は芯物質の存在によって低下し、また加水分解反応と高分子化の制御が困難で粒径が不均一になる傾向が避けられなかった。
【0004】
特開平5−237370号公報ではポリビニルアルコールまたはその誘導体と塩化ジルコニウムの混合によって得られるキレート樹脂を壁膜とするマイクロカプセルの連続製造法が提案されているが、水溶性のポリビニルアルコールとジルコニウムの水溶性塩化物の組み合わせに限定され、塩化ジルコニウムを原料とすることによる残留塩素イオンによる配管、機器の腐食の発生が避けられないという欠点がある。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、エネルギーを必要とせず容易に架橋可能で、前記従来技術にない、実質的に熱可塑性であり強靱で弾性に富んだ樹脂粒子を含む水性分散液及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、上記の課題を解決するために鋭意研究を重ねた結果、本発明を完成するに至った。
【0007】
即ち、本発明は、アニオン性の官能基(a)を有する合成樹脂(A)中の前記官能基(a)の少なくとも一部が一価対イオン(b)と塩を形成し、更に前記官能基(a)の他の少なくとも一部が多価金属イオン(c)を介して分子間架橋構造を形成する自己水分散性アイオノマー樹脂(1)が水性媒体(2)中に分散したアイオノマー樹脂水性分散液を提供するにある。
【0008】
更に本発明は前記樹脂水性分散液の特に好ましい製造方法として、有機溶媒の存在下に、中和により自己水分散しうる、アニオン性の官能基(a)を有する合成樹脂(A)と、前記官能基(a)を中和しうる水溶性一価塩基(B)と、有機溶媒に可溶性の多価金属塩(C)とを反応させて、前記樹脂(A)中にある官能基(a)の少なくとも一部が塩基(B)によって中和されて塩を形成し、かつ前記官能基(a)の他の少なくとも一部が多価金属塩(C)の多価金属イオン(c)を介して分子間架橋構造を形成する自己水分散性アイオノマー樹脂(1)を得、ついで当該アイオノマー樹脂(1)を含む溶液を水を必須成分とする水性媒体に分散することを特徴とするアイオノマー樹脂水性分散液の製造方法を提供するにある。
【0009】
この本発明のアイオノマー樹脂水性分散液から得られる樹脂粒子あるいは樹脂皮膜は、アニオン性官能基を有する合成樹脂中の前記官能基の少なくとも一部が一価の塩基で中和され、分子表面に当該塩が局在化して存在することに基づいて自己水分散性を示すとともに、特開平5−148313号公報で記載した方法により得られる永久網目構造を持つ永久ゲルを形成する共有結合性架橋による架橋粒子とは異なる、可逆的架橋からなる網目構造を持つ可逆ゲルを形成する多価金属イオンとアニオン性官能基とのイオン的な結合によるキレート樹脂粒子あるいは樹脂皮膜でもある。この自己水分散性アイオノマー樹脂は、極めて強靱で弾性に富んだ性能を有していて、樹脂粒子間の凝集も少ない。さらにこの可逆的架橋、即ちイオン結合エネルギーが共有結合と比較して小さいため、架橋率が高くても良好な熱可塑性を示すことが可能となる。
【0010】
合成樹脂(A)が有するアニオン性官能基(a)はカルボキシル基、スルホン酸基、スルフィン酸基等であって特に限定されるものではないが、このうちカルボキシル基は一般的であり、良好なアイオノマー樹脂水性分散液を与える。
【0011】
前記官能基を有する合成樹脂(A)の酸価についても特に限定されるものではないが、10未満では塩形成時の乳化特性と架橋性能が不十分であり、200を越えるとアルカリの中和により樹脂が水に膨潤や溶解しやすく、耐水性が著しく劣る傾向がある。このため合成樹脂(A)の酸価は10〜200の範囲にあることが好ましい。但し、架橋率が高い場合には合成樹脂がゲル化しやすいために高酸価樹脂を選択することが好ましい。
【0012】
アニオン性官能基を有する合成樹脂(A)としてアクリル酸樹脂、ポリエステル樹脂、エポキシ樹脂等の有機溶剤可溶性の樹脂が挙げられるが、例えばスチレン、置換スチレン、(メタ)アクリル酸エステルからなる群から選ばれる少なくとも一つのモノマーと、(メタ)アクリル酸との共重合体は、耐水性が良好で好適である。具体的にはスチレンあるいはα−メチルスチレンのような置換スチレン、アクリル酸メチルエステル、アクリル酸エチルエステル、アクリル酸ブチルエステル、アクリル酸2−エチルヘキシルエステル等のアクリル酸エステル;メタクリル酸メチルエステル、メタクリル酸エチルエステル、メタクリル酸ブチルエステル、メタクリル酸2−エチルヘキシル等のメタクリル酸エステルから選ばれる少なくとも一つ以上のモノマーと、アクリル酸、メタクリル酸から選ばれる少なくとも一つ以上のモノマーを含む(メタ)アクリル酸系共重合体が好ましい。また樹脂の分子量範囲についても特に制限はないが、1000以上10万以下の分子量のものがより好ましい。かかる樹脂が水性媒体との組み合わせで安定な樹脂乳化物を形成するものであれば、これらに特に限定されるものではなく、同時に2種類以上を混合して使用しても良い。
【0013】
本発明の自己水分散性アイオノマー樹脂(1)では、合成樹脂(A)中のアニオン性官能基(a)の少なくとも一部が一価対イオン(b)と塩を形成している。ここでいう一価対イオン(b)には、例えば後述する水溶性一価塩基(B)より生じるアルカリ金属イオン、アンモニウムイオン等がある。
【0014】
またこの自己水分散性アイオノマー樹脂(1)は、合成樹脂(A)中のアニオン性官能基(a)の他の一部が多価金属イオン(c)を介して分子間架橋される。この多価金属イオン(c)は、後述する有機溶媒に可溶性の多価金属塩(C)より生じる。当該多価金属イオン(c)の価数は、2以上であれば良いが、好ましくは2または3である。多価金属イオン(c)として、特に好ましいのはカルシウムイオン、バリウムイオン、マグネシウムイオン、亜鉛イオン、アルミニウムイオンの中から選ばれる少なくとも一つ以上である。これらの金属イオンを介して分子間架橋した構造の樹脂は一般的に無色で、毒性も少なく、良好な強靱でかつ良好な熱可塑性を示す。
【0015】
合成樹脂(A)を多価金属イオン(c)を介して架橋した際の架橋率は、合成樹脂の酸価、分子量と多価金属イオンの価数によって最適なアイオノマー樹脂水性分散液が得られるよう架橋率を選択すればよい。
【0016】
本発明のアイオノマー樹脂水性分散液の製造方法としては、▲1▼有機溶媒の存在下に、中和により自己水分散しうる、アニオン性官能基(a)を有する合成樹脂(A)と、前記官能基(a)を中和しうる水溶性一価塩基(B)と、有機溶媒に可溶性の多価金属塩(C)とを反応させて得た自己水分散性のアイオノマー樹脂の有機溶媒溶液を水を必須成分とする水性媒体中に加える方法;▲2▼前記自己水分散性のアイオノマー樹脂の有機溶媒溶液に、前記水性媒体を加える方法;▲3▼有機溶媒の不存在下に、前記したアニオン性官能基を有する合成樹脂(A)と前記した一価塩基(B)と前記した多価金属塩(C)とを溶融混練し、この混練物を水を必須成分とする水性媒体中に加える方法;▲4▼前記混練物に、前記水性媒体を加える方法;▲5▼有機溶媒の存在下にアニオン性官能基(a)を有する合成樹脂(A)と多価金属塩(C)とを反応させて得た水分散性となってないアイオノマー樹脂の有機溶媒溶液に、一価塩基(B)を含む水性媒体を加える方法;▲6▼前記水性媒体に、前記した水分散性となってないアイオノマー樹脂の有機溶媒溶液を加える方法;等が例示できる。
【0017】
水溶性一価塩基(B)は、アニオン性官能基を有する合成樹脂(A)を自己分散性にするために加える。自己水分散性アイオノマー樹脂の製造に際して反応系に添加する塩基(B)の量は、該塩基を添加する時期によって異なるが、合成樹脂(A)の全アニオン性官能基(a)の60モル%以上、好ましくは80モル%以上に相当する量を用いるのがよい。この範囲の添加量であると特に微粒径で安定したアイオノマー樹脂水性分散液が得られるので好ましい。必要であれば、製造手段によっては100モル%以上に相当する量の塩基(B)を反応系に添加しておいても差し支えない。一価の水溶性塩基(B)の加える量を変化させることにより任意の粒子径の架橋弾性微粒子が得られる。例えばこの塩基(B)の量を少なくすれば、得られるアイオノマー樹脂水性分散液の粒子径は大きくなる。このため、架橋率が高く、樹脂がゲル化して有機溶媒に対する溶解度が低下して、乳化するのが難しいと思われる場合には、高酸価の合成樹脂を用い、更に一価の水溶性塩基による中和率を高くすることによって架橋率が高くても安定なアイオノマー樹脂水性分散液が得られる。
【0018】
水溶性一価塩基(B)としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物、アンモニア、トリエチルアミン、モルホリン等の塩基性物質の他、トリエタノールアミン、ジエタノールアミン、N−メチルジエタノールアミン等のアルコールアミン系塩基性物質が使用可能であるがこれらに限られたものではない。合成樹脂(A)の有機溶媒溶液に一価の水溶性塩基(B)を混合して樹脂の中和をし、ついで乳化を行う場合、有機溶媒との相溶性の良い有機の塩基性物質を用いることがより好ましい。
【0019】
一方、有機溶媒に可溶性の多価金属塩(C)としては、2価以上の金属のアルコラート類、アシレート類、キレート類であって後述する有機溶媒に可溶なものであればに特に限定はない。金属イオンを介して分子間架橋した構造の樹脂粒子が、無色で、毒性も少なく、良好な強靱でかつ良好な熱可塑性を示すことから、カルシウム、バリウム、マグネシウム、亜鉛、アルミニウム等の多価金属のアルコラート類;前記アルコラートと酢酸、プロピオン酸、酪酸、等の有機カルボン酸とから得られるアシレート類及び前記アルコラート、アシレートと例えばアセチルアセトン、プロピオニルアセトンに代表されるβ−ジケトン類やアセト酢酸アルキルエステル、ジアセト酢酸アルキルエステルに代表されるβ−ケト酸エステル類等のキレート化剤とから得られるキレート類の使用が好適である。好ましくはこれら多価金属のアシレート類、キレート類である。またこれらの多価金属塩は併用して用いてもよい。
【0020】
自己水分散性アイオノマー樹脂の製造に際して添加する多価金属塩(C)の量は、通常、全アニオン性官能基の1〜30モル%程度に相当する添加量で充分である。アシレート類のごとき多価金属塩では、その使用量を多くして架橋率が高い樹脂を得ようとすると、架橋樹脂の有機溶剤に対する溶解度が低下し、ゲル化しやすい。しかしながら添加する際の手段によっては100モル%に相当する量の多価金属塩(C)であっても添加することができる。例えば多価金属塩(C)の添加量が全アニオン性官能基の100モル%に達する量であっても、多価金属イオンに対して過剰(余剰)となる量のキレート化剤を合成樹脂(A)、一価塩基(B)、多価金属塩(C)を含む有機溶媒の溶液中に加え、これを存在させたまま反応を行う、或いは前記した(A)、(B)、(C)成分を反応させて得た乳化前の自己水分散性アイオノマー樹脂(1)を含む有機溶媒溶液中に過剰となる量のキレート化剤を追加する等の手段をとると、樹脂の架橋のマスク効果が発生し、ゲル化することなく微粒子の樹脂乳化が可能となる。余剰量のキレート化剤が、樹脂乳化物中に存在すると平衡的に実質の樹脂の架橋は低下するが、樹脂乳化物は水性媒体中に安定に分散している。そして、樹脂乳化物中にある他の有機溶剤の留去の際にこのキレート化剤も留去すると、その平衡は大きく樹脂の架橋に傾き、結果として高架橋率のアイオノマー樹脂を含む水性分散液が得られる。過剰に加えることのできるキレート化剤の種類に特に制限はないが、アセチルアセトン、アセト酢酸エステル、ジアセト酢酸アルキルエステルの如き揮発性で留去が容易なものを使用すると好ましい。その添加量(余剰量)についても特に制限はないが、低架橋率に相当する量の多価金属塩(C)を添加するのであればキレート化剤の添加量を少なく、また高架橋率に相当する量の多価金属塩(C)を添加するのであればキレート化剤の添加量も増やすとよい。得られる架橋樹脂乳化物の粒子径は加えるキレート化剤の量が多ければ微粒子化の傾向を呈する。
【0021】
自己水分散性アイオノマー樹脂(1)の製造に際して用いる有機溶媒には、例えばアセトン、ジメチルケトン、メチルエチルケトン等のケトン系溶媒、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒、クロロホルム、塩化メチレン等の塩素系溶媒、ベンゼン、トルエン等の芳香族系溶媒、酢酸エチルエステル等のエステル系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶媒、アミド類等が使用可能である。樹脂成分がアクリル系樹脂の場合にはケトン系溶媒とアルコール系溶媒から選ばれる少なくとも1種類以上の組み合わせが良い。かかる有機溶媒の使用量は、本発明における効果を達成すれば特に規定されないが、自己水分散性樹脂/該有機溶媒の重量比が1/1〜1/20となるような量が好ましい。
【0022】
反応させるにあたっては、アニオン性官能基を有する合成樹脂(A)、水溶性一価塩基(B)および多価金属塩(C)を有機溶媒中で攪拌しながら混合して反応させるとよい。混合、反応の順序はいずれでもよい。好ましくは合成樹脂(A)の有機溶媒溶液に水溶性の有機一価塩基(B)と、多価金属塩(C)の有機溶媒溶液とを攪拌しながら混合して反応させる、溶液同士の混合方法がよい。
【0023】
溶液同士を混合する方法を実施した場合は、従来知られている合成樹脂と多価金属塩を溶融混練する方法と比べて均一な混合が可能であって架橋むらも少なく、また連続工程によって製造する場合も、原料変更が極めて容易であるので架橋度、中和度、多価金属イオンの種類等の変更が随時可能であり、このため種々の架橋樹脂粒子を容易に製造できるメリットもある。
【0024】
アニオン性官能基を有する合成樹脂(A)を含む有機溶媒溶液には、必要に応じて、分散剤、可塑剤、酸化防止剤、紫外線吸収剤等を併用しても良い。
乳化方法には、好ましくは合成樹脂(A)と多価金属塩(B)との有機溶媒溶液に溶媒可溶性の有機一価塩基(C)を混合溶解して、イオン架橋した合成樹脂を中和して自己分散性樹脂とした後、滴下等で水と混合して乳化させる、いわゆる転相乳化法を用いるとよい。この場合、水を必須成分とする水性媒体中に、自己水分散性アイオノマー樹脂を含む溶液を加えても良いが、逆に当該樹脂を含む溶液中に水性媒体を加えるほうが、均一な粒子径の水性分散液が得られる点で好ましい。しかしながら、必要に応じて界面活性剤を併用して、強制的に乳化させこともできる。界面活性剤や保護コロイドは最終的に得られる粒子の物性を低下させる傾向があるので用いないことが好まれる。
【0025】
上記自己水分散性樹脂溶液と混合され、乳化のために使用する水性媒体に必須成分として含まれる水としては、粒子の安定性のためにイオン交換水以上のグレードの水が好ましい。水性媒体には必要に応じて着色剤、分散剤、可塑剤、酸化防止剤、紫外線吸収剤等を併用しても良い。
【0026】
多価金属塩(C)としてカルボン酸塩(金属アシレート類)を用いた場合、あるいは多価金属イオンによる架橋率が高いアイオノマー樹脂を製造した場合、有機溶媒中あるいは次の乳化分散中に室温では樹脂がゲル化しやすくなるが、この場合は有機溶媒溶液や次の乳化分散中の溶液を加熱することにより有機溶媒中での樹脂のゲル化を防止することができ、安定したアイオノマー樹脂水性分散液を得ることが可能となる。
【0027】
有機溶媒存在下における混合、及び/または水に乳化分散させる際の混合を熱時に行う場合の温度条件としては30℃〜使用した有機溶媒及び水の沸点の内最も低いものの沸点の範囲が好ましい。
【0028】
アイオノマー樹脂水性分散液をそのまま樹脂水性分散液として用いる場合には、必要に応じて乳化後に水より低い沸点を有する有機溶媒を除去する工程を導入することにより、乳化樹脂の溶解・膨潤が最小となりさらに安定した樹脂水性分散液が得られる。
【0029】
得られた本発明のアイオノマー樹脂水性分散液中には必要に応じて着色剤、分散剤、可塑剤、酸化防止剤、紫外線吸収剤、架橋剤等を併用しても良い。
本発明のアイオノマー樹脂水分散物をアイオノマー樹脂粒子として用いる場合には、アイオノマー樹脂水性分散液から水や有機溶媒を除去すればよい。
【0030】
【実施例】
次に実施例及び比較例を挙げて本発明を更に具体的に説明する。尚、以下の実施例中における「部」は『重量部』を表わす。
【0031】
(実施例1)
スチレンアクリル酸樹脂(スチレン/アクリル酸/アクリル酸2エチルヘキシルエステル=77/13/10;分子量4万、酸価100)20部、トリスアセチルアセトナトアルミニウム0.9部(架橋率21%に相当する量)、トリエタノールアミン4.2部(中和率79%に相当する量)をメチルエチルケトン90部、イソプロピルアルコール40部に溶解し、攪拌しながらイオン交換水600部の混合液を毎分5mlの速度で滴下し、平均粒子径0.2μmのアイオノマー樹脂水性分散液を得た。
【0032】
(実施例2)
スチレンアクリル酸樹脂(スチレン/アクリル酸/アクリル酸2エチルヘキシルエステル=77/13/10;分子量4万、酸価100)20部をメチルエチルケトン90部、エタノール40部に溶解し、60℃に加温、攪拌しながら酢酸マグネシウムの5%エタノール溶液4.6部(架橋率6%相当量)とトリエタノールアミン5部(中和率94%相当量)を加え、更に60℃で攪拌をながら60℃に加温したイオン交換水600部を毎分5mlの速度で滴下し、平均粒子径1μmのアイオノマー樹脂水性分散液を得た。
【0033】
(実施例3)
スチレンアクリル酸樹脂(スチレン/アクリル酸/メタアクリル酸=72/12/13;分子量4万、酸価155)20部とメチルエチルケトン50部とエタノール20部の樹脂溶液に、トリスアセチルアセトナトアルミニウム6.0部(架橋率100%相当量)とアセチルアセトン50部とエタノール20部の混合溶液を混合攪拌し、更にトリエタノールアミン8.2部(中和率100%相当量)を加えた溶液に、攪拌しながらイオン交換水600部を毎分5mlの速度で滴下し、乳化を行った後、ロータリーエバポレーターを用いて揮発性の有機溶剤を留去して平均粒径0.2μmのアイオノマー樹脂水分散液を得た。
【0034】
(比較例1)
実施例1からトリスアセチルアセトナトアルミニウムを除き、トリエチルアミン5.3部(中和率100%相当量)にした組成で、実施例1と同様の方法で平均粒子径0.1μmのアイオノマー樹脂水分散物を得た。
【0035】
(硬度テスト)
個々の粒子の強靱性を測定するのは困難なため、アイオノマー樹脂粒子の熱可塑性を利用して、得られた水分散物をガラス板に塗布、150℃10分間加熱乾燥して樹脂皮膜とし、鉛筆硬度を測定した。その結果、以下のように明らかに硬度が増しており、本発明の効果があることが判明した。
【0036】
【表1】

Figure 0003637581
【0037】
【発明の効果】
本発明のアイオノマー樹脂水性分散液から得られる粒子および樹脂皮膜は、自己水分散性であることとアイオノマー樹脂であることの相乗効果により、実質的な熱可塑性を有し強靱で弾性に富んでおり、また本発明の製造方法により微粒径で分散の安定した水性分散液とすることができる。[0001]
[Industrial application fields]
The present invention relates to a tough and elastic ionomer resin aqueous dispersion having substantial thermoplasticity and a method for producing the same, and specifically, resin particles that can be applied in the fields of paints, inks, resin compounds, and the like. About.
[0002]
[Prior art]
As a method for crosslinking a resin emulsion, conventionally, crosslinking is generally performed by allowing a polyfunctional monomer to coexist in a reactive resin emulsion and then reacting with heat or light. Specifically, in JP-A-5-148313, a mixture of a vinyl polymer (A) having a carboxyl group and a crosslinkable functional group and a hydrophobic crosslinker (B) is dispersed in an aqueous medium and crosslinked. A method for producing crosslinked particles characterized by this is proposed, and a polyisocyanate compound and / or an epoxy resin is proposed as the hydrophobic crosslinking agent (B). However, this method requires an energy source for cross-linking, and has various problems such as aggregation of the emulsion, a long reaction time, and unreacted substances remaining. In addition, since the thermoplasticity is remarkably reduced, the crosslinked particles are alloyed in a hard matrix of a resin component having other film forming ability when a flexible and elastic film such as a paint is required. Adhesion and fusion at the interface between the surface and the resin matrix were not always sufficient.
[0003]
In JP-A-3-186343, a microcapsule is dispersed by dispersing a poorly water-soluble core material solution containing a hydrolyzable metal chelate compound in a wall material-containing aqueous medium capable of reacting with the hydrolyzate of the metal chelate compound. A method of obtaining has been proposed. However, since polymerization occurs on the surface of a poorly water-soluble core material, the mechanical strength of the resulting capsule is reduced by the presence of the core material, and it is difficult to control the hydrolysis reaction and polymerization, resulting in uneven particle size. The tendency to become inevitable.
[0004]
Japanese Patent Laid-Open No. 5-237370 proposes a continuous production method of microcapsules having a wall film made of a chelate resin obtained by mixing polyvinyl alcohol or a derivative thereof and zirconium chloride. There is a disadvantage that the corrosion of piping and equipment due to residual chlorine ions due to the use of zirconium chloride as a raw material is unavoidable.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is an aqueous dispersion containing resin particles that are substantially thermoplastic, tough, and elastic, and that can be easily cross-linked without requiring energy, and that does not exist in the prior art, and the production thereof It is to provide a method.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
[0007]
That is, in the present invention, at least a part of the functional group (a) in the synthetic resin (A) having an anionic functional group (a) forms a salt with a monovalent counter ion (b), An aqueous ionomer resin in which a self-water dispersible ionomer resin (1) in which at least a part of the other group (a) forms an intermolecular cross-linked structure via a polyvalent metal ion (c) is dispersed in an aqueous medium (2) To provide a dispersion.
[0008]
Furthermore, the present invention provides as a particularly preferred method for producing the aqueous resin dispersion, a synthetic resin (A) having an anionic functional group (a) capable of self-water dispersion by neutralization in the presence of an organic solvent, A functional group (a) in the resin (A) is prepared by reacting a water-soluble monovalent base (B) capable of neutralizing the functional group (a) with a polyvalent metal salt (C) soluble in an organic solvent. ) Is neutralized with a base (B) to form a salt, and at least another part of the functional group (a) is a polyvalent metal ion (c) of the polyvalent metal salt (C). A self-water dispersible ionomer resin (1) that forms an intermolecular cross-linked structure, and then a solution containing the ionomer resin (1) is dispersed in an aqueous medium containing water as an essential component. It is in providing the manufacturing method of an aqueous dispersion.
[0009]
The resin particles or resin film obtained from the ionomer resin aqueous dispersion of the present invention has at least part of the functional groups in the synthetic resin having an anionic functional group neutralized with a monovalent base, and Cross-linking by covalent cross-linking that exhibits self-water dispersibility based on the presence of a localized salt and forms a permanent gel having a permanent network structure obtained by the method described in JP-A-5-148313 It is also a chelate resin particle or resin film formed by ionic bonds between polyvalent metal ions and anionic functional groups that form a reversible gel having a network structure composed of reversible cross-linking, which is different from particles. This self-water dispersible ionomer resin has extremely tough and elastic performance, and there is little aggregation between resin particles. Furthermore, since this reversible crosslinking, that is, the ionic bond energy is smaller than that of the covalent bond, it is possible to exhibit good thermoplasticity even if the crosslinking rate is high.
[0010]
The anionic functional group (a) possessed by the synthetic resin (A) is not particularly limited and includes a carboxyl group, a sulfonic acid group, a sulfinic acid group, etc. Among them, the carboxyl group is general and good. An aqueous ionomer resin dispersion is provided.
[0011]
The acid value of the synthetic resin (A) having the functional group is not particularly limited, but if it is less than 10, the emulsification characteristics and the crosslinking performance at the time of salt formation are insufficient, and if it exceeds 200, alkali neutralization is achieved. Therefore, the resin tends to swell and dissolve in water, and the water resistance tends to be extremely poor. For this reason, it is preferable that the acid value of a synthetic resin (A) exists in the range of 10-200. However, when the crosslinking rate is high, it is preferable to select a high acid value resin because the synthetic resin is easily gelled.
[0012]
Examples of the synthetic resin (A) having an anionic functional group include resins soluble in organic solvents such as acrylic resin, polyester resin, and epoxy resin. For example, the resin is selected from the group consisting of styrene, substituted styrene, and (meth) acrylic ester. A copolymer of at least one monomer and (meth) acrylic acid is preferable because of good water resistance. Specifically, substituted styrene such as styrene or α-methylstyrene, acrylic acid methyl ester, acrylic acid ethyl ester, acrylic acid butyl ester, acrylic acid 2-ethylhexyl ester, and other acrylic acid esters; methacrylic acid methyl ester, methacrylic acid (Meth) acrylic acid comprising at least one monomer selected from methacrylic esters such as ethyl ester, butyl methacrylate, 2-ethylhexyl methacrylate, and at least one monomer selected from acrylic acid and methacrylic acid A copolymer is preferred. The molecular weight range of the resin is not particularly limited, but a resin having a molecular weight of 1000 or more and 100,000 or less is more preferable. The resin is not particularly limited as long as it forms a stable resin emulsion in combination with an aqueous medium, and two or more types may be mixed and used at the same time.
[0013]
In the self-water dispersible ionomer resin (1) of the present invention, at least a part of the anionic functional group (a) in the synthetic resin (A) forms a salt with the monovalent counter ion (b). Examples of the monovalent counter ion (b) here include alkali metal ions and ammonium ions generated from the water-soluble monovalent base (B) described later.
[0014]
Further, in this self-water dispersible ionomer resin (1), the other part of the anionic functional group (a) in the synthetic resin (A) is intermolecularly crosslinked through the polyvalent metal ion (c). This polyvalent metal ion (c) is generated from a polyvalent metal salt (C) soluble in an organic solvent described later. The valence of the polyvalent metal ion (c) may be 2 or more, but is preferably 2 or 3. Particularly preferred as the polyvalent metal ion (c) is at least one selected from calcium ions, barium ions, magnesium ions, zinc ions, and aluminum ions. Resins having a structure in which intermolecular crosslinks are made via these metal ions are generally colorless, have low toxicity, good toughness, and good thermoplasticity.
[0015]
When the synthetic resin (A) is crosslinked via the polyvalent metal ion (c), an optimum ionomer resin aqueous dispersion can be obtained depending on the acid value, molecular weight of the synthetic resin and the valence of the polyvalent metal ion. What is necessary is just to select a crosslinking rate.
[0016]
As the method for producing the aqueous ionomer resin dispersion of the present invention, (1) a synthetic resin (A) having an anionic functional group (a) capable of self-water dispersion by neutralization in the presence of an organic solvent; Organic solvent solution of self-water dispersible ionomer resin obtained by reacting water-soluble monovalent base (B) capable of neutralizing functional group (a) with polyvalent metal salt (C) soluble in organic solvent In an aqueous medium containing water as an essential component; (2) a method of adding the aqueous medium to an organic solvent solution of the self-water dispersible ionomer resin; (3) in the absence of an organic solvent, The above-mentioned synthetic resin (A) having an anionic functional group, the aforementioned monovalent base (B) and the aforementioned polyvalent metal salt (C) are melt-kneaded, and this kneaded product is contained in an aqueous medium containing water as an essential component. (4) Adding the aqueous medium to the kneaded product Method: (5) An ionomer resin having no water dispersibility obtained by reacting a synthetic resin (A) having an anionic functional group (a) with a polyvalent metal salt (C) in the presence of an organic solvent. Examples include a method of adding an aqueous medium containing a monovalent base (B) to an organic solvent solution; (6) a method of adding an organic solvent solution of an ionomer resin that is not water-dispersible to the aqueous medium; .
[0017]
The water-soluble monovalent base (B) is added to make the synthetic resin (A) having an anionic functional group self-dispersible. The amount of the base (B) added to the reaction system in the production of the self-water dispersible ionomer resin varies depending on the timing of adding the base, but is 60 mol% of the total anionic functional group (a) of the synthetic resin (A). The amount corresponding to 80 mol% or more is preferably used. An addition amount within this range is particularly preferable because an aqueous ionomer resin dispersion having a fine particle size and stable can be obtained. If necessary, depending on the production means, an amount of base (B) corresponding to 100 mol% or more may be added to the reaction system. By changing the amount of the monovalent water-soluble base (B) added, crosslinked elastic fine particles having an arbitrary particle size can be obtained. For example, if the amount of the base (B) is decreased, the particle size of the obtained ionomer resin aqueous dispersion is increased. For this reason, if the crosslinking rate is high, the resin gels, the solubility in organic solvents decreases, and it seems difficult to emulsify, a high acid number synthetic resin is used, and a monovalent water-soluble base is used. A stable ionomer resin aqueous dispersion can be obtained even if the crosslinking rate is high by increasing the neutralization rate.
[0018]
Examples of the water-soluble monovalent base (B) include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide, basic substances such as ammonia, triethylamine and morpholine, as well as triethanolamine and diethanolamine. Alcoholamine basic substances such as N-methyldiethanolamine can be used, but are not limited thereto. When neutralizing the resin by mixing the monovalent water-soluble base (B) in the organic solvent solution of the synthetic resin (A) and then emulsifying, an organic basic substance having good compatibility with the organic solvent is added. More preferably, it is used.
[0019]
On the other hand, the polyvalent metal salt (C) soluble in the organic solvent is not particularly limited as long as it is a bivalent or higher metal alcoholate, acylate, chelate and is soluble in the organic solvent described later. Absent. The resin particles with intermolecular crosslinks through metal ions are colorless, less toxic, good toughness and good thermoplasticity, so polyvalent metals such as calcium, barium, magnesium, zinc, aluminum, etc. Alcoholates of the above; acylates obtained from the above alcoholates and organic carboxylic acids such as acetic acid, propionic acid, butyric acid, and the like; and the alcoholates, acylates such as acetylacetone, β-diketones typified by propionylacetone and alkyl acetoacetates, Use of chelates obtained from chelating agents such as β-keto acid esters represented by diacetacetic acid alkyl esters is preferred. Preferred are acylates and chelates of these polyvalent metals. These polyvalent metal salts may be used in combination.
[0020]
The amount of the polyvalent metal salt (C) to be added in the production of the self-water dispersible ionomer resin is usually sufficient in an amount corresponding to about 1 to 30 mol% of the total anionic functional group. When a polyvalent metal salt such as an acylate is used in an increased amount to obtain a resin having a high crosslinking rate, the solubility of the crosslinked resin in an organic solvent is reduced and the gel is easily gelled. However, depending on the means of addition, even a polyvalent metal salt (C) in an amount corresponding to 100 mol% can be added. For example, even if the addition amount of the polyvalent metal salt (C) is an amount that reaches 100 mol% of the total anionic functional group, an amount of chelating agent that is excessive (surplus) with respect to the polyvalent metal ion is added to the synthetic resin. (A), added to a solution of an organic solvent containing a monovalent base (B) and a polyvalent metal salt (C), and the reaction is carried out in the presence of this, or the above-mentioned (A), (B), ( When a measure such as adding an excessive amount of a chelating agent to the organic solvent solution containing the self-water dispersible ionomer resin (1) before emulsification obtained by reacting the component C) is taken, The mask effect is generated, and the resin emulsification of fine particles can be performed without gelation. When an excessive amount of chelating agent is present in the resin emulsion, the substantial cross-linking of the resin is reduced in equilibrium, but the resin emulsion is stably dispersed in the aqueous medium. When this chelating agent is also distilled off when the other organic solvent in the resin emulsion is distilled off, the equilibrium is greatly inclined to the crosslinking of the resin, resulting in an aqueous dispersion containing an ionomer resin having a high crosslinking rate. can get. There are no particular limitations on the type of chelating agent that can be added in excess, but it is preferable to use a volatile and easily distillable material such as acetylacetone, acetoacetate ester, and diacetoacetate alkyl ester. There is no particular limitation on the amount of addition (excess amount), but if the amount of polyvalent metal salt (C) corresponding to the low crosslinking rate is added, the addition amount of the chelating agent is small, and it corresponds to the high crosslinking rate. If the amount of polyvalent metal salt (C) to be added is added, the amount of chelating agent added may be increased. The particle diameter of the resulting crosslinked resin emulsion tends to be finer as the amount of chelating agent added is larger.
[0021]
Examples of the organic solvent used in the production of the self-water dispersible ionomer resin (1) include ketone solvents such as acetone, dimethyl ketone and methyl ethyl ketone, alcohol solvents such as methanol, ethanol and isopropyl alcohol, and chlorine such as chloroform and methylene chloride. Solvents such as solvents, aromatic solvents such as benzene and toluene, ester solvents such as ethyl acetate, glycol ether solvents such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether, and amides can be used. When the resin component is an acrylic resin, at least one combination selected from a ketone solvent and an alcohol solvent is preferable. The amount of the organic solvent used is not particularly defined as long as the effect of the present invention is achieved, but is preferably such that the weight ratio of the self-water dispersible resin / the organic solvent is 1/1 to 1/20.
[0022]
In the reaction, the synthetic resin (A) having an anionic functional group, the water-soluble monovalent base (B) and the polyvalent metal salt (C) may be mixed and reacted in an organic solvent while stirring. Any order of mixing and reaction may be used. Preferably, the organic solvent solution of the synthetic resin (A) is mixed with the water-soluble organic monovalent base (B) and the organic solvent solution of the polyvalent metal salt (C) while being stirred and reacted. The method is good.
[0023]
When the method of mixing solutions is carried out, it can be mixed uniformly and has less cross-linking unevenness compared to the conventionally known methods of melt-kneading synthetic resins and polyvalent metal salts. In this case, since it is very easy to change the raw materials, it is possible to change the degree of crosslinking, the degree of neutralization, the type of polyvalent metal ions, etc. as needed. Therefore, there is an advantage that various crosslinked resin particles can be easily produced.
[0024]
In the organic solvent solution containing the synthetic resin (A) having an anionic functional group, a dispersant, a plasticizer, an antioxidant, an ultraviolet absorber, or the like may be used in combination as necessary.
In the emulsification method, the solvent-soluble organic monovalent base (C) is preferably mixed and dissolved in an organic solvent solution of the synthetic resin (A) and the polyvalent metal salt (B) to neutralize the ion-crosslinked synthetic resin. Then, after making a self-dispersing resin, a so-called phase inversion emulsification method, which is mixed with water by dripping or the like and emulsified, may be used. In this case, a solution containing a self-water dispersible ionomer resin may be added to an aqueous medium containing water as an essential component. Conversely, the addition of an aqueous medium to a solution containing the resin has a uniform particle size. This is preferable in that an aqueous dispersion can be obtained. However, it can also be forcibly emulsified with a surfactant if necessary. Surfactants and protective colloids are preferably not used because they tend to reduce the physical properties of the final particles.
[0025]
The water mixed with the self-water dispersible resin solution and contained as an essential component in the aqueous medium used for emulsification is preferably water of a grade higher than ion-exchanged water for the stability of particles. If necessary, the aqueous medium may be used in combination with a colorant, a dispersant, a plasticizer, an antioxidant, an ultraviolet absorber and the like.
[0026]
When a carboxylate (metal acylate) is used as the polyvalent metal salt (C), or when an ionomer resin having a high cross-linking ratio due to the polyvalent metal ion is produced, at room temperature in an organic solvent or during the subsequent emulsification dispersion. The resin is easily gelled. In this case, the resin can be prevented from gelation in the organic solvent by heating the organic solvent solution or the solution in the next emulsified dispersion, and the stable ionomer resin aqueous dispersion Can be obtained.
[0027]
As a temperature condition when mixing in the presence of an organic solvent and / or mixing when emulsified and dispersed in water is performed, a temperature range of 30 ° C. to the lowest boiling point of the organic solvent and water used is preferable.
[0028]
When the ionomer resin aqueous dispersion is used as it is as an aqueous resin dispersion, it is possible to minimize dissolution and swelling of the emulsion resin by introducing a step of removing an organic solvent having a boiling point lower than that of water after emulsification, if necessary. Further, a stable resin aqueous dispersion can be obtained.
[0029]
In the obtained ionomer resin aqueous dispersion of the present invention, a colorant, a dispersant, a plasticizer, an antioxidant, an ultraviolet absorber, a crosslinking agent, and the like may be used in combination, if necessary.
When the ionomer resin aqueous dispersion of the present invention is used as ionomer resin particles, water or an organic solvent may be removed from the ionomer resin aqueous dispersion.
[0030]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples. In the following examples, “part” represents “part by weight”.
[0031]
(Example 1)
20 parts of styrene acrylic acid resin (styrene / acrylic acid / ethyl 2-ethylhexyl acrylate ester = 77/13/10; molecular weight 40,000, acid value 100), 0.9 part of trisacetylacetonatoaluminum (corresponding to a crosslinking rate of 21%) Amount), 4.2 parts of triethanolamine (amount corresponding to a neutralization rate of 79%) are dissolved in 90 parts of methyl ethyl ketone and 40 parts of isopropyl alcohol, and a mixture of 600 parts of ion-exchanged water is stirred at 5 ml per minute. By dropping at a rate, an aqueous ionomer resin dispersion having an average particle size of 0.2 μm was obtained.
[0032]
(Example 2)
20 parts of a styrene acrylic resin (styrene / acrylic acid / acrylic acid 2-ethylhexyl ester = 77/13/10; molecular weight 40,000, acid value 100) are dissolved in 90 parts of methyl ethyl ketone and 40 parts of ethanol and heated to 60 ° C., While stirring, 4.6 parts of a 5% magnesium acetate solution in ethanol (corresponding to a crosslinking ratio of 6%) and 5 parts of triethanolamine (corresponding to a neutralization ratio of 94%) were added. 600 parts of heated ion exchange water was added dropwise at a rate of 5 ml / min to obtain an aqueous ionomer resin dispersion having an average particle size of 1 μm.
[0033]
(Example 3)
To a resin solution of 20 parts of styrene acrylic acid resin (styrene / acrylic acid / methacrylic acid = 72/12/13; molecular weight 40,000, acid value 155), 50 parts of methyl ethyl ketone and 20 parts of ethanol, trisacetylacetonatoaluminum 6. A mixed solution of 0 part (corresponding to a crosslinking rate of 100%), 50 parts of acetylacetone and 20 parts of ethanol was mixed and stirred, and further stirred with a solution of 8.2 parts of triethanolamine (equivalent to a neutralization rate of 100%). Then, 600 parts of ion-exchanged water was added dropwise at a rate of 5 ml per minute to emulsify, and then the volatile organic solvent was distilled off using a rotary evaporator to disperse the ionomer resin in water with an average particle size of 0.2 μm. Got.
[0034]
(Comparative Example 1)
An ionomer resin aqueous dispersion having an average particle size of 0.1 μm in the same manner as in Example 1 except that trisacetylacetonatoaluminum was removed from Example 1 to make 5.3 parts of triethylamine (equivalent to 100% neutralization). I got a thing.
[0035]
(Hardness test)
Since it is difficult to measure the toughness of individual particles, utilizing the thermoplasticity of ionomer resin particles, the obtained aqueous dispersion was applied to a glass plate and heated and dried at 150 ° C. for 10 minutes to form a resin film. Pencil hardness was measured. As a result, it was found that the hardness was clearly increased as follows, and the effects of the present invention were obtained.
[0036]
[Table 1]
Figure 0003637581
[0037]
【The invention's effect】
The particles and resin film obtained from the aqueous ionomer resin dispersion of the present invention have substantial thermoplasticity, toughness and high elasticity due to the synergistic effect of being self-water-dispersible and being an ionomer resin. In addition, an aqueous dispersion having a fine particle size and stable dispersion can be obtained by the production method of the present invention.

Claims (6)

有機溶媒の存在下に、中和により自己水分散しうる、アニオン性の官能基(a)を有する合成樹脂(A)と、前記官能基(a)を中和しうる水溶性一価塩基(B)と、有機溶媒に可溶性の多価金属塩(C)とを反応させて、前記樹脂(A)中にある官能基(a)の少なくとも一部が塩基(B)によって中和されて塩を形成し、かつ前記官能基(a)の他の少なくとも一部が多価金属塩(C)の多価金属イオン(c)を介して分子間架橋構造を形成する自己水分散性アイオノマー樹脂(1)を得、ついで当該アイオノマー樹脂(1)を含む溶液を水を必須成分とする水性媒体に分散することを特徴とするアイオノマー樹脂水性分散液の製造方法。A synthetic resin (A) having an anionic functional group (a) capable of self-water dispersion by neutralization in the presence of an organic solvent, and a water-soluble monovalent base capable of neutralizing the functional group (a) ( B) and a polyvalent metal salt (C) soluble in an organic solvent are reacted, and at least a part of the functional group (a) in the resin (A) is neutralized by the base (B) to form a salt And a self-water dispersible ionomer resin in which at least another part of the functional group (a) forms an intermolecular cross-linked structure via the polyvalent metal ion (c) of the polyvalent metal salt (C) ( 1), and then a solution containing the ionomer resin (1) is dispersed in an aqueous medium containing water as an essential component. 前記有機溶媒への溶解を熱時に行う請求項1に記載のアイオノマー樹脂水性分散液の製造方法。The manufacturing method of the ionomer resin aqueous dispersion of Claim 1 which melt | dissolves in the said organic solvent at the time of a heat | fever. 前記分散を熱時に行う請求項1に記載のアイオノマー樹脂水性分散液の製造方法。The manufacturing method of the ionomer resin aqueous dispersion of Claim 1 which performs the said dispersion | distribution at the time of a heat | fever. 前記有機溶媒への溶解と前記分散を熱時に行う請求項1に記載のアイオノマー樹脂水性分散液の製造方法。The method for producing an aqueous ionomer resin dispersion according to claim 1, wherein the dissolution in the organic solvent and the dispersion are performed when heated. 可溶性多価金属塩(C)が、多価金属のカルボン酸塩又は金属キレートの中から選ばれる少なくとも一つであること特徴とする請求項1に記載のアイオノマー樹脂水性分散液の製造方法。The method for producing an aqueous dispersion of an ionomer resin according to claim 1, wherein the soluble polyvalent metal salt (C) is at least one selected from carboxylates or metal chelates of polyvalent metals. 前記アイオノマー樹脂(1)を含む溶液を水を必須成分とする水性媒体に分散するに際し、界面活性剤を用いない請求項1に記載のアイオノマー樹脂水性分散液の製造方法。The method for producing an aqueous ionomer resin dispersion according to claim 1, wherein a surfactant is not used when the solution containing the ionomer resin (1) is dispersed in an aqueous medium containing water as an essential component.
JP13027395A 1995-05-29 1995-05-29 Ionomer resin aqueous dispersion and process for producing the same Expired - Fee Related JP3637581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13027395A JP3637581B2 (en) 1995-05-29 1995-05-29 Ionomer resin aqueous dispersion and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13027395A JP3637581B2 (en) 1995-05-29 1995-05-29 Ionomer resin aqueous dispersion and process for producing the same

Publications (2)

Publication Number Publication Date
JPH08319430A JPH08319430A (en) 1996-12-03
JP3637581B2 true JP3637581B2 (en) 2005-04-13

Family

ID=15030365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13027395A Expired - Fee Related JP3637581B2 (en) 1995-05-29 1995-05-29 Ionomer resin aqueous dispersion and process for producing the same

Country Status (1)

Country Link
JP (1) JP3637581B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554001B2 (en) * 1999-01-06 2010-09-29 三井・デュポンポリケミカル株式会社 Rust-proof paint and rust-proof metal material
JP2004018680A (en) * 2002-06-17 2004-01-22 Nec Corp Biodegradable resin, biodegradable resin composition, biodegradable molded article, and method for manufacturing biodegradable resin composition
JP6812642B2 (en) * 2016-03-01 2021-01-13 三菱ケミカル株式会社 Manufacturing method of aqueous dispersion

Also Published As

Publication number Publication date
JPH08319430A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
CA2848062C (en) Hydroxyethyl cellulose grafted acrylic latex
CA2168663A1 (en) Production of polymer emulsions
CN103282340B (en) The 3-oxopentanoic acid ester replaced and purposes in the coating composition thereof
EP1109628A1 (en) A film-forming polymeric sol composition
JP3259147B2 (en) Aqueous resin composition and curing method
KR20090067315A (en) Polymer beads having core-shell structure and preparation method of polymer beads by core-shell method
JP5456242B2 (en) Dispersant stabilizer or aqueous binder resin of water-based emulsion containing metal oxide or metal salt mainly composed of polyvinyl alcohol resin
JP3637581B2 (en) Ionomer resin aqueous dispersion and process for producing the same
JP2973399B2 (en) Redispersible powder composition for preparing photographic recording materials
JPH0218357B2 (en)
NZ231890A (en) Composition comprising a phosphorus-containing polymer and at least one polyvalent metal compound; coatings and adhesives therefrom
JPH11263936A (en) Coating composition
JP3706950B2 (en) Coloring composition containing an ionomer resin
US4100335A (en) Finely divided saponified ethylene-vinyl acetate interpolymers
JPH03210336A (en) Production of crosslinked resin particle
JP2021195521A (en) Molded body and method for manufacturing the same
JPS5915438A (en) Aqueous resin composition
JPS63308069A (en) Transparent material
JP3997493B2 (en) Room temperature curable one-part aqueous coating composition
JPS6338047B2 (en)
CN107098998A (en) The method for preparing resin
JP2006152144A (en) Method for producing aqueous dispersion of organic and inorganic hybrid particle
JPS59219303A (en) Production of fine suspension polymer particle
JP4050442B2 (en) Aqueous coating composition
JP3579137B2 (en) Emulsion dispersion stabilizer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees