JP3637511B2 - Crack prevention method in high pressure gas storage facility in bedrock. - Google Patents

Crack prevention method in high pressure gas storage facility in bedrock. Download PDF

Info

Publication number
JP3637511B2
JP3637511B2 JP27252496A JP27252496A JP3637511B2 JP 3637511 B2 JP3637511 B2 JP 3637511B2 JP 27252496 A JP27252496 A JP 27252496A JP 27252496 A JP27252496 A JP 27252496A JP 3637511 B2 JP3637511 B2 JP 3637511B2
Authority
JP
Japan
Prior art keywords
pressure gas
gas storage
rock
flexible
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27252496A
Other languages
Japanese (ja)
Other versions
JPH10114955A (en
Inventor
岳彦 寺田
直人 木下
孝典 佐藤
敏行 八田
博夫 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP27252496A priority Critical patent/JP3637511B2/en
Publication of JPH10114955A publication Critical patent/JPH10114955A/en
Application granted granted Critical
Publication of JP3637511B2 publication Critical patent/JP3637511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高圧気体を貯蔵するために、岩盤中に形成される空洞内に気密性を有し、かつ地下水圧等の外力に対して変形を許容する柔構造の高圧気体貯蔵容器体を構成する岩盤内高圧気体貯蔵施設の保全方法に関し、特に周囲の岩盤に亀裂が発生した場合にもこれによる歪みを柔構造の高圧気体貯蔵容器体には進展させないようにして、高圧気体の漏洩を未然に防ぐ岩盤内高圧気体貯蔵施設における亀裂防止方法に関する。
【0002】
【従来の技術】
高圧ガスを地上に設置した球形タンク、あるいは円塔状の高圧ガス貯蔵要タンク等に貯蔵せずに地下の岩盤を利用して貯蔵することが検討されてきている。
この方式は、当初地下の岩盤空洞をそのまま利用し、空洞周辺の地下水圧により高圧気体を貯蔵する水封方式の概念が提唱されていたが、貯蔵気体の圧力を100 /c にしようとするとこの内圧とバランスする地下水圧をうるためには、単純計算で貯蔵空間は1000m以上の深度に形成する必要があり、この他にも地下水の貯蔵空間への浸出の問題もあって、改善が求められていた。
そして、この改善案の一つとして、岩盤内に形成した空洞内に、気密性を有しかつ外力に対して変形を許容する貯蔵容器を前記空洞の内壁面に沿って構成し、その貯蔵容器内に高圧気体を封入した際に、その内圧を貯蔵容器を介して空洞を構成する岩盤で支持させる高圧気体の岩盤内貯蔵方法が提案された。
この貯蔵施設10は、図7に示すように、地上施設11と岩盤1内の貯蔵容器12とは気体の受け入れ・払い出し用のシャフト13で接続されており、貯蔵容器12は岩盤1内に形成され、ロックボルト14によって支持・補強された空洞15の内部に、岩盤壁面16との間に圧力伝達層17を介して設けられている。
岩盤壁面16は、掘削による凹凸を均すために全体を吹付けコンクリート18によってライニングされており、吹付けコンクリートの内側にはさらに打設コンクリートから成る壁体19が構築され、前記圧力伝達層17は、この吹付けコンクリート18と壁体19を以って構成されている。
前記貯蔵容器12は、前記壁体19の内壁面に組み立てられるもので、鋼板を溶接接続して気密性を保つように構成されている。鋼板の材質としては、一般の圧延鋼のほかにステンレス鋼や極軟鋼も考慮されるところであり、高い圧力に対して柔軟に追随変形するものであれば採用可能である。
このように構成することによって、岩盤1、圧力伝達層17及び貯蔵容器12が緊密に一体化して、貯蔵容器12に高圧気体を受け入れ・払い出ししても、受入時には貯蔵容器12が柔軟に膨張して気体の圧力を圧力伝達層17を介して岩盤1に伝達することで実質的に岩盤1が気体圧力を支持し、払い出し時には容易に元の状態に復帰することができるものである。
【0003】
【発明が解決しようとする課題】
従来の方法は、上述のように専ら貯蔵気体の圧力伝達のみを意識して、岩盤1と圧力伝達層17と貯蔵容器12とを可能な限り緊密に一体化させて構築していた。
このことを詳細に検討してみると、結果的に周囲の岩盤1に生ずる歪みを圧力伝達層17と貯蔵容器12とに同様に伝達することになってしまい、岩盤1に生ずる歪みと同程度の歪みをこれらにも一様に与えることになり、図8に示す如く、仮に貯蔵容器12の周囲の岩盤1に局所的な亀裂20が発生した場合には、一体化した圧力伝達層17と貯蔵容器12にも同様の亀裂20が進展してしまい、貯蔵している高圧気体の漏洩を引き起こす怖れがあることが判った。
本発明は、このような実情に鑑みて検討されたものであり、高圧気体貯蔵容器の周囲の岩盤に局所的な亀裂が発生した場合にも、貯蔵容器に亀裂が発生することを防止して貯蔵している高圧気体の漏洩が生じないようにする岩盤内高圧気体貯蔵施設における亀裂防止方法を提供しようとするものである。
【0004】
【課題を解決するための手段】
本発明は、岩盤中に形成された空洞内に応力伝達層を介して柔構造の高圧気体貯蔵容器体を設けてなる岩盤内高圧気体貯蔵施設を対象にしており、岩盤中に形成された空洞内に構築される応力伝達層と柔構造の高圧気体貯蔵容器体との間に、吹き付け材料又はシート状材料からなる可変形の柔軟材料製の絶縁材を設けることで、同容器体の周囲の岩盤に局所的な亀裂が発生した場合にも柔構造の高圧気体貯蔵容器体ヘの亀裂の進展を阻止する、岩盤内高圧気体貯蔵施設における亀裂防止方法である。
そして、上記絶縁材は、具体的に応力伝達層の柔構造の高圧気体貯蔵容器体側に配置したり、同容器体の外側に予め設置しておいてもよいものである。
【0005】
【発明の実施の形態】
次に、本発明による岩盤内高圧気体貯蔵施設における亀裂防止方法の具体的な実施形態を図面に基づいて説明する。
図1は、本発明による亀裂防止方法を施した岩盤内高圧気体貯蔵施設の例を斜視的に示す部分断面図である。図2は本発明を適用することによって岩盤に発生した亀裂を柔構造の高圧気体貯蔵容器体にまで進展させること無く防止した状態を示す部分断面図であり、図3〜図6は、本発明による亀裂防止方法の施工状態を部分的に順次に示す工程図である。
本発明を適用する岩盤内高圧気体貯蔵施設は、基本的には従来例として図7に示したものと同じであるから、同様の部分の符号は従来図と同じ符号を以って表示して説明する。
図1は、高圧気体貯蔵施設として、従来と同様に岩盤内に形成されロックボルトによって支持・補強された空洞の内部に構築され、地上施設と接続している岩盤1内の柔構造の高圧気体貯蔵容器体2を部分的に断面で示したものである。
本発明による亀裂防止方法を施した高圧気体貯蔵施設は、岩盤1に掘削されロックボルト14によって支持・補強された空洞の岩盤壁面16に応力伝達層3と可変形の柔軟材料製の絶縁材4とを介在配置させてから柔構造の高圧気体貯蔵容器体2を構築することで構成されている。
応力伝達層3は、岩盤壁面16の掘削による凹凸を均すためにライニングされる吹付けコンクリート5とこの吹付けコンクリート5の内側に構築される壁体6で構成されている。壁体6は、打設コンクリート8から成っており、現場打ちもしくはプレキャストコンクリート等の通常の施工法で打設される。
前記柔構造の高圧気体貯蔵容器体2は、前記壁体6の内壁面に組み立てられるもので、鋼板9を幅方向及び長さ方向に多数溶接によって接続して高い気密性を保つように構成される。
柔構造の高圧気体貯蔵容器体2と上記応力伝達層3との間には可変形の柔軟材料製の絶絶縁材4が設けられている。
絶縁材4は、アスファルト、粘土、グラファイト、パラフィン、テフロン、ゴム、鉛等の可変形の柔軟な材料から適宜選択されてよく、一方から加えられる応力を吸収・解消して他方には伝達しない機能を発揮するものであればよい。
絶縁材4がこのような機能を持っていることから、図2に示すように、周囲の岩盤1に発生した局所的な亀裂10が岩盤と一体化している応力伝達層3をも巻き込んで、応力伝達層3を構成する吹付けコンクリート5と壁体6とに亀裂が進展して来ても、絶縁材4の段階で進展してくる応力の集中が緩和されるために壁体6の歪みの集中も緩和され、柔構造の高圧気体貯蔵容器体2に部分的に歪みが集中されるのを阻止してしまい、柔構造の高圧気体貯蔵容器体2が亀裂によって破断されることを未然に防止して高圧気体の漏洩が起こることを防止できる。
【0006】
次に、本発明による岩盤内高圧気体貯蔵施設における亀裂防止方法の施工について、図3〜図6に基づいて説明する。
図3は、岩盤1内に掘削された空洞の岩盤壁面16に掘削による凹凸を均すためにライニングされた吹付けコンクリート5を示している。このライニングは、岩盤を掘削する土木工事で通常に行われる方法で施工され滑らかな壁面が得られる。
図4では、上記吹付けコンクリート5の表面に壁体6を施工した状態を示しており、壁体6の具体的な構成は前述のように補強筋を埋設した打設コンクリートから成っている。
本発明では、前記吹付けコンクリート5と壁体6を一体にして「応力伝達層」3と称し、柔構造の高圧気体貯蔵容器体2の高圧気体による膨張圧を円滑に岩盤に伝える手段として位置付けている。
図5は、打設した応力伝達層3の内側表面に絶縁材4を設ける状態を示している。絶縁材の材質については上述したとおりであるが、応力伝達層3への施工方法としては、液体状にしたものをノズルから吹き付けるようするか、予めシート状に加工しておいてこれを応力伝達層の表面に貼り付けるようにする
図6は、岩盤1の岩盤壁面内に応力伝達層3と絶縁材4とを介在して柔構造の高圧気体貯蔵容器体2を設けた状態を示している。該容器体2は、一般の圧延鋼のほかにステンレス鋼や極軟鋼等の鋼板9を多数気密性を保つように溶接接続して構成され、高い圧力に対して柔軟に追随変形する。
可変形の柔軟材料製の絶絶縁材の施工については応力伝達層3への施工方法を図5で述べたが、応力伝達層3への施工が困難な場合には、柔構造の高圧気体貯蔵容器体2を構成する個々の鋼板に工場等で予め同絶縁材を貼り付けておいて、一体化した鋼板を現場に持ち込んで柔構造容器体を構築することも可能である。この際に、鋼板に貼り付ける同絶縁材は、液体状にしたものをノズルから吹き付けるようにするか、又は予めシート状に加工しておいてこれを鋼板に貼り付けるようにする
【0007】
【発明の効果】
以上詳細に説明したように、本発明による岩盤内高圧気体貯蔵施設における亀裂防止方法は、岩盤中に形成された空洞内に応力伝達層を介して柔構造の高圧気体貯蔵容器体を設けてなる岩盤内高圧気体貯蔵施設において応力伝達層と柔構造の高圧気体貯蔵容器体との間に、前記応力伝達層の局所的な亀裂による前記容器体への部分的な歪みの集中を阻止するための、吹き付け材料又はシート状材料からなる可変形の柔軟材料製の絶縁材を設けたものであるから、同貯蔵容器の周囲の岩盤に局所的な亀裂が発生した場合にも柔構造の高圧気体貯蔵容器体ヘの亀裂の進展を阻止する効果を発揮するものである。
【図面の簡単な説明】
【図1】岩盤内高圧気体貯蔵施設の部分断面図
【図2】柔構造の高圧気体貯蔵容器体の亀裂防止状態を示す部分断面図
【図3】吹付けコンクリートの施工断面図
【図4】壁体の施工断面図
【図5】絶縁材の施工断面図
【図6】柔構造の高圧気体貯蔵容器体の施工断面図
【図7】岩盤内貯蔵施設の従来図
【図8】貯蔵容器の亀裂発生状態を示す部分断面図
【符号の説明】
1:岩盤
2:柔構造の高圧気体貯蔵容器体
3:応力伝達層
4:可変形の柔軟材料製の絶縁材
5:吹付けコンクリート
6:壁体
[0001]
BACKGROUND OF THE INVENTION
The present invention constitutes a high-pressure gas storage container body having a flexible structure that has airtightness in a cavity formed in a rock and allows deformation against an external force such as groundwater pressure in order to store high-pressure gas. advance relates preservation method of the rock in the high-pressure gas storage facilities, especially the distortion due also when the cracks occurred in the rock surrounding the high-pressure gas storage vessels of the flexible structure so as not to progress, the high-pressure gas leakage to The present invention relates to a crack prevention method in a high-pressure gas storage facility in a rock mass.
[0002]
[Prior art]
It has been studied to store high-pressure gas using an underground bedrock without storing it in a spherical tank or a high-pressure gas storage tank.
This method was originally proposed as a water-sealing method that uses the underground rock cavities as they are and stores high-pressure gas using the groundwater pressure around the cavities. However, if the stored gas pressure is set to 100 / c, In order to obtain the groundwater pressure that balances with the internal pressure, the storage space must be formed at a depth of 1000 m or more by simple calculation. In addition to this, there is a problem of leaching into the storage space of the groundwater, and improvement is required. It was.
And as one of the improvement proposals, a storage container that is airtight and allows deformation with respect to external force is formed in the cavity formed in the rock, along the inner wall surface of the cavity, and the storage container A high-pressure gas storage method was proposed in which, when high-pressure gas is sealed inside, the internal pressure is supported by a rock that forms a cavity via a storage container.
In this storage facility 10, as shown in FIG. 7, the ground facility 11 and the storage container 12 in the rock 1 are connected by a shaft 13 for receiving and discharging gas, and the storage container 12 is formed in the rock 1. Then, it is provided inside the cavity 15 supported and reinforced by the lock bolt 14 with a rock wall surface 16 through a pressure transmission layer 17.
The rock wall 16 is entirely lined with shotcrete 18 in order to level the unevenness caused by excavation, and a wall 19 made of cast concrete is further constructed inside the shotcrete, and the pressure transmission layer 17 is formed. Is composed of the shotcrete 18 and the wall 19.
The storage container 12 is assembled on the inner wall surface of the wall body 19 and is configured to maintain airtightness by welding a steel plate. As the material of the steel plate, in addition to general rolled steel, stainless steel and extremely soft steel are also considered, and any material that can be flexibly deformed following high pressure can be adopted.
By configuring in this manner, even if the rock mass 1, the pressure transmission layer 17 and the storage container 12 are closely integrated, and the high pressure gas is received and discharged from the storage container 12, the storage container 12 expands flexibly upon reception. By transmitting the gas pressure to the rock mass 1 through the pressure transmission layer 17, the rock mass 1 substantially supports the gas pressure and can easily return to the original state at the time of dispensing.
[0003]
[Problems to be solved by the invention]
As described above, the conventional method is constructed by integrating the rock mass 1, the pressure transmission layer 17, and the storage container 12 as tightly as possible, taking into consideration only the pressure transmission of the stored gas.
If this is examined in detail, the strain generated in the surrounding rock mass 1 will be transmitted to the pressure transmission layer 17 and the storage container 12 in the same manner, and the strain generated in the rock mass 1 is about the same. As shown in FIG. 8, if a local crack 20 occurs in the rock 1 around the storage container 12 as shown in FIG. It has been found that a similar crack 20 develops in the storage container 12 and may cause leakage of the stored high-pressure gas.
The present invention has been studied in view of such circumstances, and even when a local crack occurs in the rock around the high-pressure gas storage container, it prevents the storage container from cracking. It is intended to provide a crack prevention method in a high-pressure gas storage facility in a rock that prevents leakage of high-pressure gas stored in the rock.
[0004]
[Means for Solving the Problems]
The present invention is directed to an in-rock high-pressure gas storage facility in which a flexible high-pressure gas storage container body is provided in a cavity formed in the rock through a stress transmission layer, and the cavity formed in the rock Between the stress transmission layer built inside and the flexible high-pressure gas storage container body, an insulating material made of a variable flexible material made of spray material or sheet-like material is provided. This is a crack prevention method in a high pressure gas storage facility in a rock that prevents the crack from progressing to a flexible high pressure gas storage container even when a local crack occurs in the rock.
Then, the insulating material is or are arranged in the high-pressure gas storage container side of the flexible structure of the specific stress transfer layer, it may also be pre-installed on the outside of the container body castings.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, a specific embodiment of a crack prevention method in a rock mass high-pressure gas storage facility according to the present invention will be described with reference to the drawings.
FIG. 1 is a partial cross-sectional view showing an example of an in-rock high-pressure gas storage facility subjected to a crack prevention method according to the present invention. FIG. 2 is a partial cross-sectional view showing a state in which cracks generated in the rock mass by applying the present invention are prevented without progressing to a high-pressure gas storage container body having a flexible structure, and FIGS. It is process drawing which shows the construction state of the crack prevention method by a partial order sequentially.
Since the high-pressure gas storage facility in the rock to which the present invention is applied is basically the same as that shown in FIG. 7 as a conventional example, the same reference numerals are used to indicate the same parts as in the conventional figure. explain.
FIG. 1 shows a high-pressure gas storage facility, which is constructed in a cavity formed in the rock mass and supported and reinforced by rock bolts as in the past, and a flexible high-pressure gas in the rock mass 1 connected to the ground facility. The storage container body 2 is partially shown in cross section.
The high-pressure gas storage facility subjected to the crack prevention method according to the present invention includes a stress transmission layer 3 and an insulating material 4 made of a variable flexible material on a hollow rock wall 16 excavated in the rock 1 and supported and reinforced by rock bolts 14. And the flexible high-pressure gas storage container body 2 is constructed after the interposition.
The stress transmission layer 3 includes a shotcrete 5 that is lined to level the unevenness caused by excavation of the rock wall 16 and a wall body 6 that is constructed inside the shotcrete 5. The wall body 6 is made of cast concrete 8 and is cast by a normal construction method such as spot casting or precast concrete.
The high-pressure gas storage container body 2 having a flexible structure is assembled to the inner wall surface of the wall body 6, and is configured to maintain high airtightness by connecting a number of steel plates 9 by welding in the width direction and the length direction. The
A flexible insulating material 4 made of a flexible material is provided between the flexible high pressure gas storage container body 2 and the stress transmission layer 3.
The insulating material 4 may be appropriately selected from variable flexible materials such as asphalt, clay, graphite, paraffin, Teflon, rubber, lead, etc., and absorbs and cancels stress applied from one side and does not transmit it to the other side. Any device that exhibits its function may be used.
Since the insulating material 4 has such a function, as shown in FIG. 2, the local crack 10 generated in the surrounding rock mass 1 also entrains the stress transmission layer 3 integrated with the rock mass. Even if cracks develop in the shotcrete 5 and the wall body 6 constituting the stress transmission layer 3, the concentration of stress that develops at the stage of the insulating material 4 is alleviated, so that the wall body 6 strain concentration of well is reduced, in part on the high-pressure gas storage container body 2 of the flexible structure will be prevented from distortion is concentrated, that the high-pressure gas storage container body 2 of flexible structure is broken by the crack It is possible to prevent the high pressure gas from leaking in advance.
[0006]
Next, the construction of the crack prevention method in the rock mass high-pressure gas storage facility according to the present invention will be described with reference to FIGS.
FIG. 3 shows the shotcrete 5 lined to level the unevenness due to excavation on a hollow rock wall 16 excavated in the rock 1. This lining is constructed by a method normally used in civil engineering work for excavating rock, and a smooth wall surface is obtained.
FIG. 4 shows a state in which the wall body 6 is constructed on the surface of the shotcrete 5, and the specific structure of the wall body 6 is made of cast concrete in which reinforcing bars are embedded as described above.
In the present invention, the shotcrete 5 and the wall body 6 are collectively referred to as a “stress transmission layer” 3 and positioned as means for smoothly transmitting the expansion pressure of the flexible high-pressure gas storage container body 2 to the rock. ing.
FIG. 5 shows a state in which the insulating material 4 is provided on the inner surface of the placed stress transmission layer 3. The material of the insulating material is as described above. However, as a method of applying the stress transmission layer 3, a liquid material is sprayed from a nozzle or processed into a sheet shape in advance and the stress transmission layer 3 is subjected to stress transmission. so that paste on the surface of the layer.
FIG. 6 shows a state where the flexible high-pressure gas storage container 2 is provided in the rock wall surface of the rock 1 with the stress transmission layer 3 and the insulating material 4 interposed therebetween. The container body 2 is configured by welding a number of steel plates 9 such as stainless steel and extra soft steel in addition to general rolled steel so as to maintain airtightness, and is flexibly deformed following high pressure.
Regarding the construction of the insulating material made of the flexible type flexible material, the construction method for the stress transmission layer 3 is described with reference to FIG. 5, but when the construction to the stress transmission layer 3 is difficult, the flexible structure high pressure gas storage It is also possible to construct the flexible container body by sticking the same insulating material in advance to individual steel plates constituting the container body 2 at a factory or the like, and bringing the integrated steel sheet to the site. At this time, the insulating material paste to the steel sheet, or to blow those in liquid form from a nozzle, or which is to paste the steel plate had been processed in advance into a sheet.
[0007]
【The invention's effect】
As described above in detail, the crack prevention method in the rock mass high-pressure gas storage facility according to the present invention includes a flexible high-pressure gas storage container body provided through a stress transmission layer in a cavity formed in the rock mass. In order to prevent concentration of partial strain on the container body due to local cracking of the stress transmission layer between the stress transmission layer and the flexible high pressure gas storage container body in the high pressure gas storage facility in the rock mass Because it is provided with an insulating material made of a variable type flexible material made of spray material or sheet-like material , even when a local crack occurs in the rock around the storage container, it has a flexible structure for high-pressure gas storage The effect of preventing the progress of cracks in the container body is exhibited.
[Brief description of the drawings]
[Fig. 1] Partial cross-sectional view of a high-pressure gas storage facility in bedrock [Fig. 2] Partial cross-sectional view showing the crack prevention state of a flexible high-pressure gas storage vessel [Fig. 3] Cross-sectional view of shotcrete construction [Fig. 4] Cross section of wall construction [Fig. 5] Cross section of insulation construction [Fig. 6] Cross section of construction of flexible high-pressure gas storage vessel [Fig. 7] Conventional view of storage facility in bedrock [Fig. Partial cross-sectional view showing cracks
1: Rock bed 2: Flexible high-pressure gas storage container 3: Stress transmission layer 4: Insulating material 5 of deformable flexible material 5: Shotcrete 6: Wall

Claims (3)

岩盤中に形成された空洞内に応力伝達層を介して柔構造の高圧気体貯蔵容器体を設けてなる岩盤内高圧気体貯蔵施設において、応力伝達層と柔構造の高圧気体貯蔵容器体との間に、前記応力伝達層の局所的な亀裂による前記容器体への部分的な歪みの集中を阻止するための、吹き付け材料又はシート状材料からなる可変形の柔軟材料製の絶縁材を設けることを特徴とする岩盤内高圧気体貯蔵施設における亀裂防止方法。In a high-pressure gas storage facility in a rock, where a flexible high-pressure gas storage container is provided through a stress transmission layer in a cavity formed in the rock, between the stress transmission layer and the flexible high-pressure gas storage container In addition, an insulating material made of a deformable flexible material made of a spray material or a sheet-like material for preventing concentration of partial strain on the container body due to local cracks in the stress transmission layer is provided. The crack prevention method in the high-pressure gas storage facility in the bedrock characterized by the feature. 可変形の柔軟材料製の絶縁材を、応力伝達層の柔構造の高圧気体貯蔵容器体側に配置することを特徴とする請求項1に記載の岩盤内高圧気体貯蔵施設における亀裂防止方法。The method for preventing cracks in a high-pressure gas storage facility in a rock mass according to claim 1, wherein the insulating material made of a flexible material is arranged on the side of the high-pressure gas storage container body of the flexible structure of the stress transmission layer. 可変形の柔軟材料製の絶縁材を、柔構造の高圧気体貯蔵容器体の外側に予め設置しておくことを特徴とする請求項1に記載の岩盤内高圧気体貯蔵施設における亀裂防止方法。The method for preventing cracks in a high-pressure gas storage facility in a rock mass according to claim 1, wherein an insulating material made of a deformable flexible material is previously installed outside the flexible high-pressure gas storage container body.
JP27252496A 1996-10-15 1996-10-15 Crack prevention method in high pressure gas storage facility in bedrock. Expired - Fee Related JP3637511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27252496A JP3637511B2 (en) 1996-10-15 1996-10-15 Crack prevention method in high pressure gas storage facility in bedrock.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27252496A JP3637511B2 (en) 1996-10-15 1996-10-15 Crack prevention method in high pressure gas storage facility in bedrock.

Publications (2)

Publication Number Publication Date
JPH10114955A JPH10114955A (en) 1998-05-06
JP3637511B2 true JP3637511B2 (en) 2005-04-13

Family

ID=17515101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27252496A Expired - Fee Related JP3637511B2 (en) 1996-10-15 1996-10-15 Crack prevention method in high pressure gas storage facility in bedrock.

Country Status (1)

Country Link
JP (1) JP3637511B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000168922A (en) * 1998-11-30 2000-06-20 Shimizu Corp Storage faclities in bedrock
JP4687934B2 (en) * 2000-10-31 2011-05-25 清水建設株式会社 High pressure gas storage facility
JP7123335B2 (en) * 2018-05-08 2022-08-23 大成建設株式会社 Construction method of water stop structure of concrete joint

Also Published As

Publication number Publication date
JPH10114955A (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP3670213B2 (en) Natural gas storage equipment
JP4958036B2 (en) Tunnel support structure
JP2001171812A (en) Storage facility in rock mass and its execution method
JP3637511B2 (en) Crack prevention method in high pressure gas storage facility in bedrock.
JP2001164589A (en) Construction method for high pressure gas storage facility
JP7288301B2 (en) Underground structure construction method and underground structure
JP3051895B2 (en) Rock tank for high pressure gas storage
JP3250045B2 (en) Pressure-resistant concrete wall structure and construction method
JP2740842B2 (en) Method of storing high pressure gas in rock and rock tank for storing high pressure gas
JP2612522B2 (en) Tunnel lining method and tunnel lining structure
Haydl et al. Design and construction errors—Case studies
JP3241356B2 (en) Tunnel reinforcement method
JP2002082195A (en) Underground disposal method and device for waste
JP3740589B2 (en) High pressure storage facility in bedrock
JP2879201B2 (en) Restoration method for structural foundation
JP2876434B2 (en) Joint structure of underground structures subject to buoyancy
JPH0462299A (en) Larger section tunnel and construction method thereof
JPH06221087A (en) Pressurized air filling method and pressurized air filling device
JP2023128599A (en) Supporting structure and tunnel construction method
JP2001140268A (en) High-pressure gas storage facility
RU7137U1 (en) COLLECTOR TUNNEL FOR CONDITIONS OF UNEQUATELY DEFORMABLE GROUND ARRAY
JPH08193497A (en) Segment having bag
CN113250195A (en) Method for integrally isolating pile head breaking through steel bars in advance
JPH0518998B2 (en)
JPH02304196A (en) Shaft excavation construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees