JP3637407B2 - Solute concentration measuring method and solute concentration measuring apparatus - Google Patents

Solute concentration measuring method and solute concentration measuring apparatus Download PDF

Info

Publication number
JP3637407B2
JP3637407B2 JP10886496A JP10886496A JP3637407B2 JP 3637407 B2 JP3637407 B2 JP 3637407B2 JP 10886496 A JP10886496 A JP 10886496A JP 10886496 A JP10886496 A JP 10886496A JP 3637407 B2 JP3637407 B2 JP 3637407B2
Authority
JP
Japan
Prior art keywords
concentration
solution
density
solute
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10886496A
Other languages
Japanese (ja)
Other versions
JPH0915132A (en
Inventor
隆史 中
秀夫 鵜沢
歩 伊東
修一 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Kyushu Electric Power Co Inc
Original Assignee
Nikkiso Co Ltd
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd, Kyushu Electric Power Co Inc filed Critical Nikkiso Co Ltd
Priority to JP10886496A priority Critical patent/JP3637407B2/en
Publication of JPH0915132A publication Critical patent/JPH0915132A/en
Application granted granted Critical
Publication of JP3637407B2 publication Critical patent/JP3637407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【0001】
【発明の属する技術分野】
この発明は溶質濃度測定方法及び溶質濃度測定装置に関する。さらに詳しくは、この発明は、溶質が一種の成分に限定することのできる溶液中のその溶質の濃度を測定することのできる濃度測定方法及び濃度測定装置に関し、特に、簡単な操作手順により、ほう素化合物を含有する溶液中のほう素濃度を正確に測定することができるほう素濃度測定方法及びほう素濃度測定装置に関し、さらには、原子力発電における一次冷却材中のほう素含有量の測定に好適なほう素濃度測定方法及びほう素濃度測定装置に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
原子力発電に利用されるたとえば加圧水型原子炉には、一次冷却材が使用される。この一次冷却材には、中性子を吸収するためにほう素化合物含有溶液が注入される。また、原子炉の安全な運転を確保するために、この一次冷却材に注入されるほう酸量が厳密に管理されねばならない。
【0003】
そこで、一次冷却材に注入されるほう酸量は、濃度既知のほう素化合物含有溶液の注入量をもって管理される。ここで重要なことはそのほう素化合物含有溶液のほう素濃度を正確に測定することである。
【0004】
原子力発電関係で使用されるほう素化合物含有溶液のほう素濃度の測定は、通常、滴定法によっている。たとえば、ほう素化合物含有溶液中のほう酸をα−ジオール形の多価アルコールで錯ほう酸にし、一塩基性酸として中和滴定する方法、ほう素化合物含有溶液中のほう酸をα−ジオール形の多価アルコールで錯ほう酸にし、一塩基性酸として導電率を測定するなどのアルカリ滴定法、及びほう素化合物含有溶液中のほう酸を硼酒石酸バリウムに変えてこれを沈殿分離し、この中のバリウムをEDTAで滴定する方法、ほう素化合物含有溶液中のほう酸をマンニトールほう酸に変え、遊離するH+ をHIO3 で滴定する方法などの間接滴定法が、ほう素濃度測定法として採用されている。
【0005】
しかしながら、これら滴定法においては、滴定溶液の調製が煩雑であり、また滴定操作の度ごとに試料溶液を一々調製するのが煩雑である。
【0006】
数万ppmのオーダーでほう酸を含有するほう素化合物含有溶液においては、常温ではほう酸が析出することがあるので、高温に加熱することによりほう酸が析出しないようにしなければならない。このような高温に加熱する操作が煩雑であるので、高濃度のほう素化合物含有溶液のほう素濃度を測定するときには、常温では析出しないような低濃度にほう素化合物含有溶液を希釈している。このような希釈操作自体が煩雑であり、しかも希釈操作などの操作を行なうこと自体が濃度測定値を不正確にする要因となる。また、滴定法による濃度測定には、操作者の熟練に負うところが多く、熟練者が滴定操作を行なっても、得られる濃度値に大きなバラ付きを生じることがあった。
【0007】
このように従来のほう素含有溶液のほう素濃度測定を滴定法によって求めていたのでは、上述のような問題点があるので、この発明者らは上記問題のないほう素化合物含有溶液中のほう素濃度を測定する方法及びその測定装置の開発を企図した。
【0008】
その開発途上で、この発明者らは、ほう素化合物含有溶液の密度とそのほう素濃度とが良好な相関を有することを見出した。そして、ほう素化合物含有溶液の密度を測定するのに振動式密度計を使用することに着目した。
【0009】
しかしながら、振動式密度計で高濃度のほう素化合物含有溶液の密度を測定しようとすると、高濃度のほう素化合物含有溶液中で温度低下によるほう酸の析出を防止するために振動管を高温に加熱しなければならないところ、振動管中で高温のほう素化合物含有溶液に気泡が発生すると言う問題点が見出された。また、振動式密度計でほう素化合物含有溶液の密度を測定する度に振動管を洗浄しなければならないのであるが、洗浄液で洗浄すると、それまで高温のほう素含有溶液の流通により高温度に維持されていた振動管自体の温度が低下してしまい、振動管の内容積が変化する。この内容積の変化は測定結果に誤差を生じさせると言う問題のあることも見出された。また、振動式密度計でほう素化合物含有溶液の密度を測定する場合に、純水と濃度既知のほう素化合物含有溶液とを使用してその振動式密度計の校正を行なっていたところ、そのような校正では濃度既知のほう素化合物含有溶液の調製が煩雑であると言う問題もあった。
【0010】
このような知見及び着目から更に、溶質が一種類であるとし、あるいは溶質が一種類であるとみなして良い場合の溶質の濃度測定には、その溶質の濃度とその溶液の密度との関係に良好な相関を有するとし、密度測定の誤差となるような条件を払拭することにより、その溶液の密度からその溶液中の溶質の濃度をより一層良好かつ正確に求めることができると、この発明者らは結論した。
【0011】
この発明は、この発明者らの上記結論に基づき、上述した問題点を解消することを目的にする。この発明の目的は、滴定操作などに代表される手分析において見られたような溶質濃度の測定値たとえばほう素濃度の測定値に誤差がなく、操作者による測定値のバラつきがなく、簡単な操作で正確に溶質濃度たとえばほう素化合物含有溶液中のほう素濃度を測定することのできる濃度測定方法たとえばほう素濃度測定方法及び濃度測定装置たとえばほう素濃度測定装置を提供することにある。
【0012】
この発明の他の目的は振動式密度計を利用して溶液中の溶質の濃度たとえばほう素化合物含有溶液のほう素濃度を、簡単な操作で正確に求めることのできる溶質濃度測定方法たとえばほう素濃度測定方法及び溶質濃度測定装置たとえばほう素濃度測定装置を提供することにある。
【0013】
この発明の他の目的は、振動式密度計を利用して溶液中の溶質の濃度たとえばほう素化合物含有溶液のほう素濃度を、振動式密度計中の振動管中に気泡を発生させずに、簡単な操作で正確に求めることのできる溶質濃度測定方法たとえばほう素濃度測定方法及び溶質濃度測定装置たとえばほう素濃度測定装置を提供することにある。
【0014】
この発明の他の目的は、振動式密度計を利用して溶液中の溶質の濃度たとえばほう素化合物含有溶液のほう素濃度を、振動式密度計中の振動管を洗浄することにより発生する測定誤差を無くして、簡単な操作で正確に求めることのできる溶質濃度測定方法たとえばほう素濃度測定方法及び溶質濃度測定装置たとえばほう素濃度測定装置を提供することにある。
【0015】
この発明の他の目的は、簡単な操作により校正された振動式密度計を利用して、溶液の密度と溶液中の溶質濃度との良好な相関関係、たとえばほう素化合物含有溶液の密度とほう素化合物含有溶液中のほう素濃度との良好な相関関係を基礎にして、簡単な操作でバラつきなく正確に溶質濃度たとえばほう素濃度を測定することのできる溶質濃度測定方法たとえばほう素濃度測定方法及び溶質濃度測定装置たとえばほう素濃度測定装置を提供することにある。
【0016】
【課題を解決するための手段】
前記課題を解決するためのこの発明の手段は、
(1)濃度未知の溶質を含有する溶液の密度を、前記溶液を収容可能な振動管を有する振動式密度計で測定する工程、前記溶液の密度を前記溶液の密度と溶質濃度との相関式にしたがって溶液中の溶質の濃度を演算する工程と、前記振動管の振動数を測定する前に、前記振動管の振動数を測定するときの温度と同じ温度に加温された洗浄液をこの振動管中に流通させる振動管の洗浄工程とを有することを特徴とする溶質濃度測定方法であり、
(2) 前記(1)に記載の溶質濃度測定方法において、前記相関式がY=aX+b(ただし、Yは溶液の密度(単位;g/cm )を示し、Xは溶液中の溶質濃度(単位;ppm)を示し、a及びbは定数を示す。)で示される一次関数である溶質濃度測定方法であり、
(3) 前記(1)又は(2)に記載の溶質濃度測定方法において、前記溶液が濃度未知のほう素化合物を含有するほう素化合物含有溶液であり、溶質濃度がほう素濃度である溶質濃度測定方法であり、
(4) 前記(1)〜(3)のいずれか1項に記載の溶質濃度測定方法において、前記溶液が原子力発電装置に使用される一次冷却材に注入されるほう素化合物含有溶液であり、溶質濃度がほう素濃度である溶質濃度測定方法であり、
(5) 前記(1)〜(4)のいずれか1項に記載の溶質濃度測定方法において、前記振動管の振動数を測定する前に、前記溶液に超音波を照射する発泡防止工程を有する溶質濃度測定方法であり、
(6) 前記(3)〜(5)のいずれか1項に記載の溶質濃度測定方法において、前記相関式は、空気と純水とで校正された振動式密度計で濃度既知のほう素化合物含有溶液の密度を測定することにより求められる相関式である溶質濃度測定方法であり、
(7) 濃度未知の溶質を含有する溶液の密度に対応するパラメータを測定し、その測定信号を出力するとともに、前記溶液を収容可能な振動管を有する振動式密度計と、前記振動式密度計から出力される測定信号に基づいて濃度未知の溶質を含有する溶液の密度を演算し、前記溶液の密度と密度測定時の温度とから前記溶液の密度と溶質濃度との相関式にしたがって溶質濃度を演算する演算手段と、前記振動管の振動数を測定する前に、前記振動管の振動数を測定するときの温度と同じ温度に加温された洗浄液をこの振動管中に流通させる洗浄液供給装置とを有することを特徴とする溶質濃度測定装置であり、
前記(7)に記載の溶質濃度測定装置において、前記相関式がY=aX+b(ただし、Yは溶液の密度(単位;g/cm )を示し、Xは溶液中の溶質の濃度(単位;ppm)を示し、a及びbは定数を示す。)で示される一次関数である溶質濃度測定装置であり、
前記(7)又は(8)に記載の溶質濃度測定装置において、前記溶液が、濃度未知のほう素化合物を含有するほう素化合物含有溶液であり、溶質濃度がほう素濃度である溶質濃度測定装置であり、
10 前記(7)〜(9)のいずれか1項に記載の溶質濃度測定装置において、前記演算手段が、前記振動式密度計から出力される測定信号に基づいて濃度未知のほう素化合物を含有するほう素化合物含有溶液の密度を演算し、得られたほう素化合物含有溶液の密度と密度測定時の温度とからほう素化合物含有溶液の密度とほう素濃度との相関式にしたがってほう素濃度を演算する演算手段である溶質濃度測定装置であり、
11 前記(7)〜(10)のいずれか1項に記載の溶質濃度測定装置において、前記振動式密度計に装備された振動管に供給される濃度未知の溶液に超音波を照射する超音波照射装置を有してなる溶質濃度測定装置である。
【0017】
【発明の実施の形態】
この発明は、密度計たとえば振動式密度計で求められた溶液の密度たとえばほう素化合物含有溶液の密度と溶液中の溶質の濃度たとえばほう素化合物含有溶液の濃度とに、極めて良好な相関関係があると言う発見に基づく。
【0018】
この発明の溶質濃度測定方法によると、濃度未知の溶質を含有する溶液の密度を密度計で測定し、その溶液の密度を、濃度既知の溶質を含有する溶液の密度と濃度との相関式に当てはめることにより求める。したがって、濃度未知の溶質を含有する溶液の密度を密度計で測定すると言う操作、及び密度計で求められた前記溶液の密度から前記相関式を用いてその密度を算出すると言う演算操作で濃度未知の溶液中の溶質の濃度を求めることができるのであるから、操作が単純であり、操作者による測定値のバラつきがなく、溶液の溶質濃度が正確に測定される。
【0019】
この発明の溶質濃度測定方法は、溶質が一種の成分であるか、又は溶質が実質的に一種であるとみなせる溶液における溶質の濃度の測定に特に有効である。このような溶液として、濃度未知のほう素化合物を含有する溶液すなわちほう素化合物含有溶液が挙げられ、その溶液の溶質濃度としてほう素濃度が挙げられる。前記ほう素化合物含有溶液としては、たとえば原子力発電設備における一次冷却材のように、溶質としてほう酸などのほう素化合物が主成分である場合のほう素化合物含有溶液が挙げられ、このほう酸含有溶液におけるほう素濃度測定にこの発明の溶質濃度測定方法が特に有効である。
【0020】
この発明の溶質濃度測定方法をほう素濃度測定に適用した場合、濃度未知のほう素化合物含有溶液の密度を密度計で、好ましくは振動式密度計で測定し、得られるほう素化合物含有溶液の密度を、既に求められているほう素化合物含有溶液の密度と濃度との相関式に当てはめることにより求める。したがって、密度計で、好適には振動式密度計でほう素化合物含有溶液の密度を測定すると言う操作及び密度計で、好適には振動式密度計で求められたほう素化合物含有溶液の密度から、この発明者により見出された相関式を用いてその密度を算出すると言う演算操作で、ほう素化合物含有溶液中のほう素濃度を求めることができるのであるから、操作が単純であり、操作者による測定値のバラつきがなく、正確にほう素化合物含有溶液のほう素濃度が測定される。
【0021】
溶液の密度と溶液中の溶質の濃度との相関式は、Y=aX+bで示されことができる。
【0022】
ただし、Yは溶液特にほう素化合物含有溶液の密度(単位;g/cm3 )を示し、Xは溶液中の溶質濃度特にほう素化合物含有溶液におけるほう素濃度を(単位;ppm)を示し、a及びbは定数を示す。
【0023】
溶液がほう素化合物含有溶液であり、求める溶質濃度がほう素濃度であるときには、密度計としては振動式密度計が好ましい。この場合、振動式密度計に組み込まれた振動管中に濃度未知のほう素化合物含有溶液を流通させ、そのほう素化合物含有溶液を収容した振動管の振動周期を測定することによりそのほう素化合物含有溶液の密度を求め、求められたほう素化合物含有溶液の密度とほう素化合物含有溶液の濃度と場合により温度との相関式から濃度未知のほう素化合物含有溶液のほう素濃度を求めることができる。ほう素濃度の測定後に次のほう素化合物含有溶液の密度を測定するときには、あるいは第1回目のほう素濃度測定行なう前に、振動式密度計中の振動管を洗浄する洗浄工程が必要になることがある。
【0024】
振動管の洗浄に際しては、ほう素化合物含有溶液を測定するときのそのほう素化合物含有溶液の温度と実質的に同じ温度に加温された洗浄液を振動管中に流通させるのが良い。したがって、洗浄時に振動管が洗浄液により測定時のほう素化合物含有溶液の温度に加温されているから、洗浄後の振動管にほう素化合物含有溶液を流通させても、振動管自体に温度の変化がなくなる。洗浄時と測定時とで振動管に温度変化が生じていないから、たとえば常温の洗浄液を振動管に流通させてから高温のほう素化合物含有溶液を流通させることによる振動管の熱膨張変化に基づく測定誤差がなくなり、ほう素化合物含有溶液のほう素濃度が正確に測定される。
【0025】
振動式密度計で溶液の密度、特にほう素化合物含有溶液の密度を測定する場合には、振動式密度計の振動管に供給されるほう素化合物含有溶液に超音波を照射するのが良い。ほう素化合物含有溶液に超音波を照射すると、ほう素化合物含有溶液中の溶存気体が気泡となって溶液外に揮散する。超音波照射の終了したほう素化合物含有溶液を振動管に流通させた場合には、そのほう素化合物含有溶液は既に脱気されているので、密度測定時の所定温度にほう素化合物含有溶液が加熱されても、ほう素化合物含有溶液を収容する振動管に気泡が付着することはない。測定時に振動管中にほう素化合物含有溶液中に気泡が発生しないので、ほう素化合物含有溶液の密度が正確に測定される。この超音波照射は、被測定対象がほう素化合物含有溶液以外の溶液にも好適に適用される。
【0026】
振動式密度計でほう素化合物含有溶液の密度を測定する場合、取り扱い及び調製の簡単な空気と純水とを用いて振動式密度計の校正を行なうのが良い。すなわち、密度が既知の空気及び純水を振動式密度計に供して空気の振動数及び純水の振動数を測定する。これによって密度と振動数との相関が確かめられる。確かめられた密度と振動数との相関関係に基づいて決定されるほう素化合物含有溶液の密度とほう素化合物含有溶液のほう素濃度との相関式に基づいて、濃度未知のほう素化合物含有溶液のほう素濃度が測定される。
【0027】
この発明の溶質濃度測定装置においては、密度計により、好適には振動式密度計により、濃度未知の溶質を含有する溶液の密度、特に濃度未知のほう素化合物を含有する溶液の密度に対応するパラメータを測定し、その測定信号を出力し、演算手段により、前記密度計から出力される測定信号に基づいて濃度未知の溶質を含有する溶液の密度を演算し、前記溶液の密度と密度測定時の温度とから前記溶液の密度と溶質濃度特にほう素濃度との相関式にしたがって溶質濃度を演算する。
【0028】
振動式密度計を用いる場合には、前記振動式密度計に装備された振動管に供給される濃度未知のほう素化合物含有溶液に超音波照射装置により超音波を照射することにより、ほう素化合物含有溶液中の溶存気体を脱気する脱気装置を設けるのが良い。したがって、振動管に供給されるほう素化合物含有溶液は、たとえば測定時の温度が高温であったとしても、気泡を発生することがない。気泡のないほう素化合物含有溶液を収容する振動管の振動数を振動式密度計で測定するのであるから、正確なほう素化合物含有溶液の密度を測定することができ、ひいてはほう素化合物含有溶液のほう素濃度が正確に測定される。
【0029】
この発明の溶質濃度測定方法たとえばほう素濃度測定方法及びその方法を実施するに好適な溶質濃度測定装置たとえばほう素濃度測定装置のそれぞれ一例について、図面を参照しながら詳述する。
【0030】
図1はこの発明の一実施例であるほう素濃度測定装置を示す概略説明図である。
【0031】
図1に示されるように、このほう素濃度測定装置は、振動式密度計1と、ほう素化合物含有溶液を貯留するほう素化合物含有溶液貯留槽2と、超音波照射装置3と、洗浄液供給装置4と、演算手段である演算制御装置5と、出力装置6と、操作入力装置7とを有する。
【0032】
この振動式密度計は、ほう素化合物含有溶液を流通させるU字状に形成された振動管9と、前記振動管9のU字状の折返し部分に設けられた磁石片10と、この磁石片10に臨むように配置された検出・駆動ヘッド11と、前記振動管9を所定温度に加熱する振動管加熱手段12たとえばヒータとを有する。
【0033】
この振動式密度計における前記検出・駆動ヘッド11からは、前記振動管9の振動数に対応する検出信号が演算制御装置5に出力されるようになっている。
【0034】
前記ほう素化合物含有溶液貯留槽2は、ほう素化合物含有溶液を貯留する槽であり、たとえば原子炉の一次炉水管から採取した一次炉水(一次冷却材である。)であるほう素化合物含有溶液を一次的に貯留し、次いでこのほう素化合物含有溶液を前記振動管9に供給するようになっている。このほう素化合物含有溶液貯留槽2は前記振動管9とは配管で接続され、その配管の途中には三方コック13が介装されている。また、このほう素化合物含有溶液貯留槽2には、その天井部に排気管14が接続され、その排気管14は排気ポンプPに結合されている。この排気ポンプPを駆動することによりこのほう素化合物含有溶液貯留槽2内が減圧に維持されることができる。更にこのほう素化合物含有溶液貯留槽2には、貯留するほう素化合物含有溶液を所定の温度に加熱するほう素化合物含有溶液加熱手段(図示せず。)が設けられる。このほう素化合物含有溶液加熱手段は、演算制御装置5から出力される指令信号により駆動されてほう素化合物含有溶液を所定温度に加熱するように構成される。
【0035】
超音波照射装置3は、前記演算制御装置5からの指令信号を入力して、前記ほう素化合物含有溶液貯留槽2内のほう素化合物含有溶液に超音波を照射することができるように、前記ほう素化合物含有溶液貯留槽2に臨んで配置された超音波振動子アレイ(図示せず。)を有する。
【0036】
洗浄液供給装置4は、洗浄液を収容する洗浄液収容槽15と、この洗浄液収容槽15中の洗浄液を前記三方コック13に供給する配管と、洗浄液収容槽15内の洗浄液を加熱する洗浄液加熱手段16とを有する。
【0037】
演算制御装置5はこの発明における演算手段としての機能と、前記操作入力装置7から入力される指令に応じて、前記超音波照射装置3、及び振動式密度計1の動作を制御し、洗浄液を所定温度に加熱し、また振動管9を所定温度に加熱するために前記洗浄液加熱手段16、振動管加熱手段12及びほう素化合物含有溶液加熱手段(図示せず。)に指令信号を出力する機能とを有する。
【0038】
この演算制御装置5は、前記演算手段として、前記検出・駆動ヘッド11から出力される検出信号を入力し、密度未知の試料の密度を算出する。
【0039】
ここで、密度未知の試料の密度dは以下の式(1)に従って演算される。
【0040】
d=da −F(Ta 2−T2 )・・・(1)
ただし、dは未知試料の密度を示し、da は標準物質である空気の既知の密度値を示し、Fはファクタ値を示し、Ta は前記標準物質としての空気を装填する振動管9の振動周期を示し、Tは未知試料を装填する振動管9の振動周期を示す。また、前記ファクタ値は以下の式(2)に従って演算されて求められる。
【0041】
F=(da −dw )/(Ta 2−Tw 2)・・・(2)
ただし、da は前記と同様の意味を示し、dw は標準物質である純水の既知の密度値を示し、Ta は前記と同様の意味を示し、Tw は標準物質である純水を装填した振動管9の振動周期を示す。
【0042】
この演算制御装置5はメモリーを有していて、密度値da が既知である標準物質としての空気を装填した振動管9の振動周期Ta 、密度値dw が既知である標準物質としての空気を装填した振動管9の振動周期Tw をこのメモリーに格納している。また、ほう素濃度が既知であるほう素化合物含有溶液を収容した振動管9の振動数を入力し、この振動数の逆数すなわち振動周期を前記式(1)に代入して求められたほう素化合物含有溶液のほう素濃度を、このメモリーに格納されている。
【0043】
この発明において重要なことは、標準物質として選択された密度既知の空気を収容する振動管9の振動数と標準物質として選択された密度既知の純水を収容した振動管9の振動数とから得られる標準物質の密度とほう素濃度既知のほう素化合物含有溶液のそのほう素濃度とが良好な相関を有することである。換言すると、このほう素濃度測定装置は、振動式密度計1を空気と純水とを標準物質として構成しており、空気と純水とで構成されて得られた前記式(2)を基礎にして、試料の密度からほう素濃度を測定するようになっている。
【0044】
たとえば、密度0.00116の空気と密度0.99565の純水とを標準物質として、振動式密度計で測定された空気と純水との振動数からファクタ値を求め、次いで、慎重に手分析されて求められたほう素濃度が3137ppmであるほう酸溶液の密度を求めたところ、そのほう酸溶液の密度は1.00191であった。このほう酸溶液の密度から、後述する相関式(3)に基づいて求められたほう酸溶液のほう素濃度は3176ppmであった。同様にして2回同じ操作を繰り返したところ、ほう素濃度は3172ppm、及び3174ppmであった。
【0045】
このように、純水と空気とを標準物質として校正された振動式密度計により測定された密度とほう素化合物含有溶液中のほう素濃度とが良好な相関を有している。
【0046】
このほう素濃度測定装置においては、所定の測定温度下でほう素濃度既知のほう素化合物含有溶液を収容した振動管9の振動数を前記振動式密度計1で測定することにより得られたところの、このほう素濃度既知のほう素化合物含有溶液の密度を、前記メモリー(図示せず。)が格納している。メモリーに格納しているほう素濃度既知のほう素化合物含有溶液の密度とこのほう素化合物含有溶液のほう素濃度とが、一次式{Y=aX+b(ただし、Yはほう素化合物含有溶液の密度(単位;g/cm3 )}の相関関係を有している。この一次式の好適な一例を、図2に示す。図2に示される相関を一般化した以下の式(3)が、演算制御装置5内のメモリーに格納されている。
【0047】
Y=(−3×10-6×t2 −10-4×t+1.0021)X+3×10-11 ×t2 −6×10-9×t+0.06・・・(3)
(ただし、Yはほう素化合物含有溶液の密度(単位;g/cm3 )を示し、Xはほう素化合物含有溶液中のほう素濃度(単位;ppm)を示し、tは測定時の温度を示す。)
この演算制御装置5は、ほう素濃度未知のほう素化合物含有溶液を収容した振動管9の振動数を検出した検出信号を前記検出・駆動ヘッド11から入力し、検出信号により求められる振動周期から前記式(1)に基づいて密度を求め、求めた密度及び測定時の温度から前記式(3)に従ってほう素濃度Xを演算する。
【0048】
前記出力装置6は前記演算制御装置5から出力される演算結果を表示する機能を有し、たとえばXYプロッター、CRT及びプリンターなどで構成される。
【0049】
前記操作入力装置7は、このほう素濃度測定装置を操作する指令信号を出力し、また各種のデータたとえば測定時の温度標準物質の密度値等を入力することができるように構成される。
【0050】
次にこの発明のほう酸濃度測定方法について、前記ほう酸濃度測定装置の動作に則して説明する。
【0051】
この発明の一実施例であるほう酸濃度測定方法は、脱気工程、洗浄工程、測定工程及び演算工程とを有する。
【0052】
−洗浄工程−
洗浄工程は、振動管9中に未知のほう素化合物含有溶液を流通させる以前に振動管9中を洗浄液で洗浄する工程である。
【0053】
ここでほう素化合物含有溶液におけるほう素化合物としては、たとえばほう酸ナトリウム、ほう酸アンモニウム、ほう酸リチウム、ほう酸等を挙げることができる。ほう素化合物含有溶液として好ましいのは、ほう酸溶液である。また、この発明の方法に好適なほう素化合物含有溶液として、たとえば原子炉に使用される一次冷却水などを挙げることができる。
【0054】
換言すると、この発明の方法及び装置は原子炉における一次冷却水中のほう素濃度測定に好適である。また、観点を変えて言うと、この発明におけるほう素化合物含有溶液としては、ほう素濃度がppmオーダ以上であるほう素化合物含有化合物がこの発明に好適である。
【0055】
前記ほう素濃度測定装置においては、操作入力装置7を介して、振動管9を加熱する所定温度を入力しておく。この所定温度は振動管9の振動を測定する際の測定温度である。測定温度が入力されると、演算制御装置5は洗浄液加熱手段16に指令信号を出力することにより、洗浄液加熱手段16を動作させ、洗浄液収容槽15内の洗浄液を所定温度に加熱する。洗浄液は通常純水が使用される。
【0056】
一方、演算制御装置5は振動管加熱手段12に指令信号を出力することにより振動管加熱手段12を動作させ、振動管9を所定温度に加熱する。振動管9が加熱される所定温度と洗浄液が加熱される所定温度とは同一温度に設定される。
【0057】
次いで、演算制御装置5から指令信号が三方コック13に出力されて、三方コック13によって洗浄液収容槽15と振動管9とが連通状態に、振動管9とほう素化合物含有溶液貯留槽2とが不通状態になる。洗浄液収容槽15から洗浄液が振動管9中に流通されて振動管9内が洗浄される。
【0058】
このとき、洗浄液の温度と振動管9の温度とが一致しているので、振動管9は洗浄液の流通にもかかわらず温度変化による膨張あるいは収縮を生じない。振動管9の内容積が洗浄液の流通にもかかわらず変化しないので、後の測定工程における振動数の測定に誤差を生じることがない。
【0059】
尚、洗浄液供給装置4は、この洗浄液収容槽15内の収容液に超音波を照射する超音波装置を付設しておくのが好ましい、洗浄液収容槽15内の収容液に超音波を照射することにより洗浄液を脱気しておくと、洗浄液が振動管9中を通過する際に洗浄液から発生して振動管9の内壁に付着する気泡の発生を防止することができて好ましい。
【0060】
−脱気工程−
脱気工程は振動管9にほう素化合物含有溶液を流通させる以前にそのほう素化合物含有溶液を脱気させる工程である。
【0061】
前記ほう素濃度測定装置においては、前記洗浄工程が実施されている間に、ほう素化合物含有溶液貯留槽2にほう素化合物含有溶液が供給され、所定量のほう素化合物含有溶液がほう素化合物含有溶液貯留槽2に貯留される。なお、この脱気工程中、ほう素化合物含有溶液貯留槽2と振動管9とは不通状態になるように三方コック13が動作している。ほう素化合物含有溶液が貯留されている間、演算制御装置5から出力される指令信号を入力した超音波照射装置3が動作して超音波照射装置3からほう素化合物含有溶液に超音波が照射される。超音波が照射されると、ほう素化合物含有溶液中の溶存気体が気泡となって現出する。排気ポンプPにより現出した気泡はほう素化合物含有溶液貯留槽2外に排出される。所定時間かけてこの脱気工程を実施する。脱気工程中、このほう素化合物含有溶液貯留槽2内のほう素化合物含有溶液は、ほう素化合物含有溶液加熱手段により所定の温度に加熱されている。
【0062】
−測定工程−
前記洗浄工程及び脱気工程が終了すると、測定工程が実施される。この測定工程は、ほう素化合物含有溶液を振動管9中に流通させ、ほう素化合物含有溶液を収容する振動管9の振動数を測定し、この振動数からほう素化合物含有溶液の密度を算出する工程である。この測定工程は、この発明の方法における濃度未知のほう素化合物含有溶液の密度を振動式密度計1で測定する工程に相当する。
【0063】
前記ほう素濃度測定装置においては、演算制御装置5から出力される指令信号によって三方コック13が動作して、ほう素化合物含有溶液貯留槽2と振動管9とが連通状態になり、洗浄液収容槽15と振動管9とは不通状態になる。ほう素化合物含有溶液貯留槽2から振動管9中に、ほう素化合物含有溶液が供給される。このとき、ほう素化合物含有溶液貯留槽2内のほう素化合物含有溶液が測定温度に加熱され、また振動管9も振動管加熱手段12により測定温度に加熱され、さらにまた、洗浄液が測定温度に加熱されていたので、ほう素化合物含有溶液を収容する振動管9の振動を測定する際に、温度変化に基づく誤差の発生はない。さらに前記脱気工程によりほう素化合物含有溶液を脱気しているので、振動管中をほう素化合物含有溶液が流通しているときにこのほう素化合物含有溶液中に気泡が発生することがない。したがって、気泡発生による測定誤差がない。
【0064】
振動管9の先端部に設けられた磁石片10と検出・駆動ヘッド11との電磁気結合により振動管9が振動し、その振動数を検出・駆動ヘッド11が検出する。検出・駆動ヘッド11は検出信号を演算制御装置5に出力する。
【0065】
演算制御装置5においては、入力する検出信号に基づいて、前記式(1)に従って先ずそのほう素化合物含有溶液の密度を求める。
【0066】
−演算工程−
この演算工程は上記の測定工程で求められたほう素化合物含有溶液の密度からほう素化合物含有溶液中のほう素濃度を算出する工程である。この工程はこの発明における得られるほう素化合物含有溶液の密度をほう素化合物含有溶液の密度と濃度との相関式にしたがってほう素化合物含有溶液中のほう素濃度を演算する工程に相当する。
【0067】
前記ほう素濃度測定装置においては、演算制御装置5で求められたほう素化合物含有溶液の密度及び測定温度から前記式(3)に従ってほう素濃度が算出される。
【0068】
算出結果は、演算制御装置5から出力装置6に出力され、表示される。
【0069】
以上に詳述したように、このほう素濃度測定方法によると、簡単な操作により正確にほう素化合物含有溶液中のほう素濃度を測定することができる。
【0070】
以上、この発明の一実施例について説明したが、この発明は前記実施例に限定されるものではない。
【0071】
たとえば、振動式密度計1は、真空中あるいは空気中に置かれた中空の振動管9の振動数と振動管9の内部あるいは内・外部にほう素化合物含有溶液を満たしたときの振動数の相違からほう素化合物含有溶液の密度を求めることができる限り、その構造ないし構成に制限はない。振動式密度計1における振動管9の振動の形式として、横方向に振動させるタイプと円周上の曲げ振動を利用するタイプとがあるが、この発明においてはいずれのタイプの振動形式を有する振動管9であっても良い。また、振動管9を振動させる方式として、電磁気結合を利用した方式以外の方式を採用することもできる。振動数の検出には電磁気結合を応用した検出器及び光を用いた検出器のいずれをも、この発明においては採用することができる。
【0072】
【発明の効果】
この発明によると、滴定操作などに代表される手分析において見られたようなほう素濃度測定値の誤差がなく、操作者による測定値のバラつきがなく、簡単な操作で正確にほう素化合物含有溶液のほう素濃度を測定することのできるほう素濃度測定方法及びほう素濃度測定装置を提供することができる。この発明によると、振動式密度計を利用してほう素化合物含有溶液のほう素濃度を、簡単な操作で正確に求めることのできるほう素濃度測定方法及びほう素濃度測定装置を提供することができる。この発明によると、振動式密度計を利用してほう素化合物含有溶液のほう素濃度を、振動式密度計中の振動管中に気泡を発生させずに、簡単な操作で正確に求めることのできるほう素濃度測定方法及びほう素濃度測定装置を提供することができる。この発明によると、振動式密度計を利用してほう素化合物含有溶液のほう素濃度を、振動式密度計中の振動管を洗浄することにより発生する測定誤差を無くして、簡単な操作で正確に求めることのできるほう素濃度測定方法及びほう素濃度測定装置を提供することができる。この発明によると、簡単な操作により校正された振動式密度計を利用して、ほう素化合物含有溶液の密度とほう素化合物含有溶液中のほう素濃度との良好な相関関係を基礎にして、簡単な操作でバラつきなく正確にほう素濃度を測定することのできるほう素濃度測定方法及びほう素濃度測定装置を提供することができる。
【図面の簡単な説明】
【図1】図1はこの発明の一実施例であるほう素濃度測定装置を示す概略説明図である。
【図2】図2はほう素化合物含有溶液の密度とほう素化合物含有溶液中のほう素濃度との相関を示すグラフである。
【符号の説明】
1・・・振動式密度計、2・・・ほう素化合物含有溶液貯留槽、3・・・超音波照射装置、4・・・洗浄液供給装置、5・・・1・・・振動式密度計、2・・・ほう素化合物含有溶液貯留槽、3・・・超音波照射装置、4・・・洗浄液供給装置、5・・・演算制御装置、6・・・出力装置、7・・・操作入力装置、9・・・振動管、10・・・磁石片、11・・・検出・駆動ヘッド、12・・・振動管加熱手段、13・・・三方コック、14・・・排気管、15・・・洗浄液収容槽、16・・・洗浄液加熱手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solute concentration measuring method and a solute concentration measuring apparatus. More specifically, the present invention relates to a concentration measuring method and a concentration measuring apparatus capable of measuring the concentration of a solute in a solution in which the solute can be limited to one kind of component. The present invention relates to a boron concentration measuring method and a boron concentration measuring apparatus capable of accurately measuring the boron concentration in a solution containing an elemental compound, and further to measuring the boron content in a primary coolant in nuclear power generation. The present invention relates to a preferable boron concentration measuring method and a boron concentration measuring apparatus.
[0002]
[Prior art and problems to be solved by the invention]
For example, a primary coolant is used in a pressurized water reactor used for nuclear power generation. A boron compound-containing solution is injected into this primary coolant in order to absorb neutrons. In addition, in order to ensure safe operation of the reactor, the amount of boric acid injected into the primary coolant must be strictly controlled.
[0003]
Therefore, the amount of boric acid injected into the primary coolant is controlled by the amount of boron compound-containing solution having a known concentration. What is important here is to accurately measure the boron concentration of the boron compound-containing solution.
[0004]
The boron concentration of a boron compound-containing solution used in nuclear power generation is usually measured by a titration method. For example, boric acid in a boron compound-containing solution is converted to complex boric acid with an α-diol polyhydric alcohol and neutralized and titrated as a monobasic acid. An alkali titration method such as complex boric acid with a monohydric alcohol and measuring the conductivity as a monobasic acid, and boric acid in a boron compound-containing solution is changed to barium borotartrate, and this is precipitated and separated. Method of titration with EDTA, boric acid in a boron compound-containing solution is changed to mannitol boric acid and liberated H+ HIOThree An indirect titration method such as a titration method is employed as a boron concentration measuring method.
[0005]
However, in these titration methods, the preparation of the titration solution is complicated, and it is troublesome to prepare the sample solution for each titration operation.
[0006]
In a boron compound-containing solution containing boric acid in the order of tens of thousands of ppm, boric acid may precipitate at room temperature. Therefore, it is necessary to prevent boric acid from being precipitated by heating to a high temperature. Since the operation of heating to such a high temperature is complicated, when measuring the boron concentration of a high concentration boron compound-containing solution, the boron compound-containing solution is diluted to a low concentration that does not precipitate at room temperature. . Such a dilution operation itself is complicated, and the operation itself such as the dilution operation itself causes inaccurate concentration measurement values. In addition, the concentration measurement by the titration method often depends on the skill of the operator, and even if the skilled person performs the titration operation, the obtained concentration value may vary greatly.
[0007]
Thus, since the conventional method for determining the boron concentration of a boron-containing solution by the titration method has the above-mentioned problems, the present inventors in a boron compound-containing solution that does not have the above-mentioned problems. The development of a method for measuring the boron concentration and its measuring device was intended.
[0008]
In the course of its development, the present inventors have found that the density of the boron compound-containing solution and the boron concentration have a good correlation. And it paid attention to using a vibration type density meter to measure the density of a boron compound content solution.
[0009]
However, when trying to measure the density of a high concentration boron compound-containing solution with a vibratory densimeter, the vibration tube is heated to a high temperature to prevent precipitation of boric acid due to temperature drop in the high concentration boron compound-containing solution. However, a problem has been found that bubbles are generated in the high-temperature boron compound-containing solution in the vibrating tube. In addition, the vibration tube must be cleaned every time the density of the boron compound-containing solution is measured with a vibration type densitometer. The temperature of the vibration tube itself that has been maintained decreases, and the internal volume of the vibration tube changes. It has also been found that this change in the internal volume has a problem of causing an error in the measurement result. In addition, when measuring the density of a boron compound-containing solution with a vibration-type density meter, the vibration-type density meter was calibrated using pure water and a boron compound-containing solution with a known concentration. In such calibration, there is a problem that the preparation of a boron compound-containing solution having a known concentration is complicated.
[0010]
In addition, from such knowledge and attention, it is assumed that there is only one kind of solute, or the solute concentration measurement when it can be considered that there is only one kind of solute, the relationship between the concentration of the solute and the density of the solution. By eliminating conditions that cause a density measurement error and having a good correlation, the concentration of the solute in the solution can be determined better and more accurately from the density of the solution. They concluded.
[0011]
The present invention aims to solve the above-mentioned problems based on the above conclusions of the inventors. The object of the present invention is that there is no error in the measured value of the solute concentration, for example, the measured value of boron concentration as seen in the manual analysis typified by the titration operation, and there is no variation in the measured value by the operator. It is an object of the present invention to provide a concentration measuring method such as a boron concentration measuring method and a concentration measuring device such as a boron concentration measuring device capable of accurately measuring a solute concentration, for example, a boron concentration in a boron compound-containing solution.
[0012]
Another object of the present invention is to provide a solute concentration measuring method that can accurately determine the concentration of a solute in a solution, for example, the boron concentration of a boron compound-containing solution, using a vibrating densimeter, such as boron. It is an object to provide a concentration measuring method and a solute concentration measuring device such as a boron concentration measuring device.
[0013]
Another object of the present invention is to use a vibrating densimeter to determine the concentration of a solute in the solution, for example, the boron concentration of a boron compound-containing solution without generating bubbles in the vibrating tube in the vibrating densitometer. Another object of the present invention is to provide a solute concentration measuring method, for example, a boron concentration measuring method and a solute concentration measuring device, for example, a boron concentration measuring device, which can be accurately obtained by simple operations.
[0014]
Another object of the present invention is to measure the concentration of a solute in a solution, for example, the boron concentration of a boron compound-containing solution, by washing a vibrating tube in the vibrating density meter using a vibrating density meter. It is an object of the present invention to provide a solute concentration measuring method such as a boron concentration measuring method and a solute concentration measuring device such as a boron concentration measuring device which can be accurately obtained by a simple operation without errors.
[0015]
Another object of the present invention is to use a vibrating densimeter calibrated by a simple operation to provide a good correlation between the density of the solution and the concentration of the solute in the solution, for example, the density of the boron compound-containing solution. A solute concentration measuring method, for example, a boron concentration measuring method, which can accurately measure a solute concentration, for example, a boron concentration, with a simple operation without variation, based on a good correlation with a boron concentration in an elemental compound-containing solution. And a solute concentration measuring device, for example, a boron concentration measuring device.
[0016]
[Means for Solving the Problems]
  Means of the present invention for solving the above-mentioned problems are as follows:
(1) The density of a solution containing a solute of unknown concentration isVibrating density meter having a vibrating tube capable of containing the solutionProcess to measure withWhenCalculating the concentration of the solute in the solution according to a correlation equation between the density of the solution and the concentration of the solute;Before measuring the vibration frequency of the vibration tube, a washing step of the vibration tube for allowing the cleaning liquid heated to the same temperature as the temperature of the vibration tube to be measured to flow through the vibration tubeIt is a solute concentration measuring method characterized by having,
(2) In the solute concentration measurement method according to (1), the correlation formula is Y = aX + b (where Y is the density of the solution (unit: g / cm)3 ), X represents the solute concentration (unit: ppm) in the solution, and a and b represent constants. Is a solute concentration measurement method that is a linear function represented by
(3) In the solute concentration measuring method according to (1) or (2), the solution is a boron compound-containing solution containing a boron compound of unknown concentration, and the solute concentration is a boron concentration. Measuring method,
(4) Any of (1) to (3)Described in item 1In the solute concentration measurement method, the solution is a boron compound-containing solution injected into a primary coolant used in a nuclear power plant, and the solute concentration measurement method is a boron concentration.
(5) Any of (1) to (4) above1 itemIn the solute concentration measurement method described inThe vibrating tubeBefore measuring the frequency ofSaid solutionIs a solute concentration measuring method having an anti-foaming step of irradiating with
(6) saidIn any one of (3) to (5)In the solute concentration measurement method described above, the correlation formula is a correlation formula obtained by measuring the density of a boron compound-containing solution having a known concentration with a vibration type density meter calibrated with air and pure water. Measuring method,
(7) A vibration density meter having a vibration tube capable of measuring the parameter corresponding to the density of the solution containing the solute of unknown concentration, outputting the measurement signal and accommodating the solution, and the vibration density meter The density of the solution containing the solute of unknown concentration is calculated based on the measurement signal output from the solute concentration according to the correlation equation between the density of the solution and the solute concentration from the density of the solution and the temperature at the time of density measurement. And a cleaning liquid supply for circulating a cleaning liquid heated to the same temperature as the temperature at the time of measuring the vibration frequency of the vibration tube before measuring the vibration frequency of the vibration tube A solute concentration measuring device characterized by comprising:
(8)In the solute concentration measuring apparatus according to (7),The correlation equation is Y = aX + b (where Y is the density of the solution (unit: g / cm3 ), X represents the concentration of solute in the solution (unit: ppm), and a and b represent constants. Is a solute concentration measuring device that is a linear function represented by
(9)In the solute concentration measuring apparatus according to (7) or (8),The solution is a boron compound-containing solution containing a boron compound with an unknown concentration, and a solute concentration measuring device in which the solute concentration is a boron concentration.
(10)In the solute concentration measuring apparatus according to any one of (7) to (9),The computing means isSaidBased on the measurement signal output from the vibration type density meter, the density of the boron compound-containing solution containing the boron compound of unknown concentration is calculated, and the density of the obtained boron compound-containing solution and the temperature at the time of density measurement are calculated. Is a solute concentration measuring device which is a calculation means for calculating the boron concentration according to the correlation equation between the density of the boron compound-containing solution and the boron concentration,
(11)In the solute concentration measuring apparatus according to any one of (7) to (10),Concentration unknown to be supplied to the vibrating tube equipped in the vibratory density metersolutionIt is the solute concentration measuring apparatus which has an ultrasonic irradiation apparatus which irradiates an ultrasonic wave.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, there is a very good correlation between the density of a solution obtained by a density meter, for example, a vibration-type density meter, for example, the density of a boron compound-containing solution, and the concentration of a solute in the solution, for example, the concentration of a boron compound-containing solution. Based on the discovery that there is.
[0018]
According to the solute concentration measurement method of the present invention, the density of a solution containing a solute with an unknown concentration is measured with a densitometer, and the density of the solution is expressed in a correlation equation between the density and the concentration of a solution containing a solute with a known concentration. Find by fitting. Therefore, the operation of measuring the density of a solution containing a solute of unknown concentration with a density meter, and the operation of calculating the density using the correlation equation from the density of the solution obtained by the density meter, the concentration unknown Since the concentration of the solute in the solution can be obtained, the operation is simple, the measurement value by the operator does not vary, and the solute concentration of the solution is accurately measured.
[0019]
The solute concentration measuring method of the present invention is particularly effective for measuring the concentration of a solute in a solution in which the solute is a kind of component or the solute can be regarded as substantially a kind. Examples of such a solution include a solution containing a boron compound having an unknown concentration, that is, a boron compound-containing solution, and a solute concentration of the solution includes a boron concentration. Examples of the boron compound-containing solution include a boron compound-containing solution in which a boron compound such as boric acid is a main component as a solute, such as a primary coolant in a nuclear power generation facility. The solute concentration measurement method of the present invention is particularly effective for boron concentration measurement.
[0020]
When the solute concentration measurement method of the present invention is applied to boron concentration measurement, the density of the boron compound-containing solution of unknown concentration is measured with a densimeter, preferably with a vibration type densitometer, and the resulting boron compound-containing solution is measured. The density is obtained by applying the correlation formula between the density and the concentration of the boron compound-containing solution that has already been obtained. Therefore, with the density meter, preferably with the operation of measuring the density of the boron compound-containing solution with a vibration-type density meter and the density meter, preferably from the density of the boron compound-containing solution obtained with the vibration-type density meter. The operation of calculating the density using the correlation equation found by the present inventor can calculate the boron concentration in the boron compound-containing solution, so the operation is simple and the operation The boron concentration of the boron compound-containing solution is accurately measured without any variation in the measured values by the operator.
[0021]
The correlation between the density of the solution and the concentration of the solute in the solution can be expressed as Y = aX + b.
[0022]
Where Y is the density of the solution, particularly the boron compound-containing solution (unit: g / cmThree X represents the solute concentration in the solution, particularly the boron concentration in the boron compound-containing solution (unit: ppm), and a and b represent constants.
[0023]
When the solution is a boron compound-containing solution and the solute concentration to be obtained is a boron concentration, a vibration type density meter is preferable as the density meter. In this case, a boron compound-containing solution having an unknown concentration is circulated in a vibration tube incorporated in a vibration type density meter, and the boron compound is measured by measuring the vibration period of the vibration tube containing the boron compound-containing solution. Obtaining the density of the boron compound-containing solution, and obtaining the boron concentration of the boron compound-containing solution of unknown concentration from the correlation between the obtained density of the boron compound-containing solution, the concentration of the boron compound-containing solution, and, in some cases, the temperature it can. When measuring the density of the next boron compound-containing solution after measuring the boron concentration, or before performing the first boron concentration measurement, a cleaning process for cleaning the vibrating tube in the vibratory density meter is required. Sometimes.
[0024]
When cleaning the vibrating tube, it is preferable to circulate the cleaning liquid heated to substantially the same temperature as the boron compound-containing solution when the boron compound-containing solution is measured. Therefore, since the vibration tube is heated to the temperature of the boron compound-containing solution at the time of measurement by the cleaning liquid during cleaning, even if the boron compound-containing solution is circulated through the vibration tube after cleaning, the temperature of the vibration tube itself is reduced. There is no change. Because there is no temperature change in the vibrating tube during cleaning and measurement, for example, based on changes in the thermal expansion of the vibrating tube by flowing a high-temperature boron compound-containing solution after flowing a normal temperature cleaning solution through the vibrating tube The measurement error is eliminated and the boron concentration of the boron compound-containing solution is accurately measured.
[0025]
When measuring the density of a solution, particularly the density of a boron compound-containing solution, using a vibration-type density meter, it is preferable to irradiate the boron compound-containing solution supplied to the vibration tube of the vibration-type density meter with ultrasonic waves. When the boron compound-containing solution is irradiated with ultrasonic waves, dissolved gas in the boron compound-containing solution becomes bubbles and volatilizes out of the solution. When the boron compound-containing solution after ultrasonic irradiation is circulated through the vibrating tube, the boron compound-containing solution has already been degassed. Even when heated, bubbles do not adhere to the vibrating tube containing the boron compound-containing solution. Since no bubbles are generated in the boron compound-containing solution in the vibration tube during measurement, the density of the boron compound-containing solution is accurately measured. This ultrasonic irradiation is also suitably applied to solutions other than the boron compound-containing solution.
[0026]
When measuring the density of a boron compound-containing solution with a vibration type density meter, it is preferable to calibrate the vibration type density meter using air and pure water that are easy to handle and prepare. That is, air and pure water having a known density are subjected to a vibration-type density meter to measure the frequency of air and the frequency of pure water. This confirms the correlation between density and frequency. Based on the correlation between the density of the boron compound-containing solution and the boron concentration of the boron compound-containing solution determined based on the correlation between the confirmed density and the frequency, the concentration of the boron compound-containing solution of unknown concentration is determined. The boron concentration is measured.
[0027]
In the solute concentration measuring apparatus according to the present invention, the density of a solution containing a solute of unknown concentration, particularly the density of a solution containing a boron compound of unknown concentration, is measured by a density meter, preferably a vibratory density meter. Measure the parameter, output the measurement signal, calculate the density of the solution containing the solute of unknown concentration based on the measurement signal output from the density meter by the calculation means, and measure the density and density of the solution. The solute concentration is calculated from the temperature of the solution according to the correlation equation between the density of the solution and the solute concentration, particularly the boron concentration.
[0028]
In the case of using a vibration type density meter, a boron compound is irradiated by irradiating an ultrasonic wave with an ultrasonic irradiation device to a boron compound-containing solution of unknown concentration supplied to a vibration tube equipped in the vibration type density meter. It is good to provide the deaeration apparatus which deaerates the dissolved gas in a containing solution. Therefore, the boron compound-containing solution supplied to the vibrating tube does not generate bubbles even if the temperature at the time of measurement is high. Since the frequency of the vibrating tube containing the boron compound-containing solution without bubbles is measured with a vibration type densimeter, the density of the boron compound-containing solution can be accurately measured, and consequently the boron compound-containing solution The boron concentration is accurately measured.
[0029]
One example of a solute concentration measuring method such as a boron concentration measuring method and a solute concentration measuring device suitable for carrying out the method of the present invention, such as a boron concentration measuring device, will be described in detail with reference to the drawings.
[0030]
FIG. 1 is a schematic explanatory view showing a boron concentration measuring apparatus according to an embodiment of the present invention.
[0031]
As shown in FIG. 1, this boron concentration measuring apparatus includes a vibration type density meter 1, a boron compound-containing solution storage tank 2 for storing a boron compound-containing solution, an ultrasonic irradiation device 3, and a cleaning liquid supply. It has the apparatus 4, the calculation control apparatus 5 which is a calculation means, the output device 6, and the operation input apparatus 7. FIG.
[0032]
This vibration type density meter includes a U-shaped vibrating tube 9 through which a boron compound-containing solution is circulated, a magnet piece 10 provided at a U-shaped folded portion of the vibrating tube 9, and the magnet piece. 10 includes a detection / drive head 11 disposed so as to face 10 and vibration tube heating means 12 for heating the vibration tube 9 to a predetermined temperature, for example, a heater.
[0033]
A detection signal corresponding to the frequency of the vibration tube 9 is output from the detection / drive head 11 in the vibration type density meter to the arithmetic and control unit 5.
[0034]
The boron compound-containing solution storage tank 2 is a tank for storing a boron compound-containing solution, for example, a boron compound-containing primary reactor water (which is a primary coolant) collected from a primary reactor water pipe of a nuclear reactor. The solution is temporarily stored, and then the boron compound-containing solution is supplied to the vibrating tube 9. The boron compound-containing solution storage tank 2 is connected to the vibrating tube 9 by a pipe, and a three-way cock 13 is interposed in the pipe. In addition, an exhaust pipe 14 is connected to the ceiling portion of the boron compound-containing solution storage tank 2, and the exhaust pipe 14 is coupled to an exhaust pump P. By driving the exhaust pump P, the inside of the boron compound-containing solution storage tank 2 can be maintained at a reduced pressure. Further, the boron compound-containing solution storage tank 2 is provided with a boron compound-containing solution heating means (not shown) for heating the stored boron compound-containing solution to a predetermined temperature. The boron compound-containing solution heating means is configured to heat the boron compound-containing solution to a predetermined temperature by being driven by a command signal output from the arithmetic and control unit 5.
[0035]
The ultrasonic irradiation device 3 receives the command signal from the arithmetic and control unit 5 and can irradiate the boron compound-containing solution in the boron compound-containing solution storage tank 2 with ultrasonic waves. It has an ultrasonic transducer array (not shown) arranged facing the boron compound-containing solution storage tank 2.
[0036]
The cleaning liquid supply device 4 includes a cleaning liquid storage tank 15 that stores the cleaning liquid, a pipe that supplies the cleaning liquid in the cleaning liquid storage tank 15 to the three-way cock 13, and a cleaning liquid heating means 16 that heats the cleaning liquid in the cleaning liquid storage tank 15. Have
[0037]
The arithmetic control device 5 controls the operation of the ultrasonic irradiation device 3 and the vibration type density meter 1 according to the function as the arithmetic means in the present invention and the command input from the operation input device 7, and the cleaning liquid is supplied. A function of outputting a command signal to the cleaning liquid heating means 16, the vibration pipe heating means 12 and the boron compound-containing solution heating means (not shown) for heating to a predetermined temperature and heating the vibration tube 9 to a predetermined temperature. And have.
[0038]
The calculation control device 5 receives the detection signal output from the detection / drive head 11 as the calculation means, and calculates the density of the sample whose density is unknown.
[0039]
Here, the density d of the sample whose density is unknown is calculated according to the following equation (1).
[0040]
d = da -F (Ta 2-T2 ) ... (1)
Where d indicates the density of the unknown sample and da Indicates a known density value of the standard air, F indicates a factor value, Ta Represents the vibration period of the vibration tube 9 loaded with air as the standard substance, and T represents the vibration period of the vibration tube 9 loaded with the unknown sample. The factor value is calculated according to the following equation (2).
[0041]
F = (da -Dw ) / (Ta 2-Tw 2) ... (2)
Where da Indicates the same meaning as above, dw Indicates a known density value of pure water as a standard substance, and Ta Indicates the same meaning as above, and Tw Indicates the vibration period of the vibration tube 9 loaded with pure water as a standard substance.
[0042]
This arithmetic and control unit 5 has a memory and has a density value d.a The vibration period T of the vibration tube 9 loaded with air as a standard substance with knowna , Density value dw The vibration period T of the vibration tube 9 loaded with air as a standard substance with knownw Is stored in this memory. Further, the frequency of the vibrating tube 9 containing a boron compound-containing solution having a known boron concentration is input, and the inverse of this frequency, that is, the vibration period is substituted into the formula (1). The boron concentration of the compound-containing solution is stored in this memory.
[0043]
What is important in the present invention is that the vibration frequency of the vibration tube 9 containing air of known density selected as the standard material and the vibration frequency of the vibration tube 9 containing pure water of known density selected as the standard material. The density of the obtained standard substance and the boron concentration of the boron compound-containing solution having a known boron concentration have a good correlation. In other words, this boron concentration measuring apparatus is constructed by using the vibration type density meter 1 with air and pure water as standard materials, and based on the above formula (2) obtained by forming with air and pure water. Thus, the boron concentration is measured from the density of the sample.
[0044]
For example, using air of density 0.00116 and pure water of density 0.99565 as standard materials, the factor value is obtained from the frequency of air and pure water measured with a vibration densitometer, and then carefully analyzed manually. The density of the boric acid solution having a boron concentration of 3137 ppm was determined, and the density of the boric acid solution was 1.00191. From the density of this boric acid solution, the boron concentration of the boric acid solution determined based on the correlation equation (3) described later was 3176 ppm. When the same operation was repeated twice, the boron concentrations were 3172 ppm and 3174 ppm.
[0045]
Thus, there is a good correlation between the density measured by the vibration type densitometer calibrated with pure water and air as standard materials and the boron concentration in the boron compound-containing solution.
[0046]
In this boron concentration measuring apparatus, it was obtained by measuring the vibration frequency of the vibrating tube 9 containing a boron compound-containing solution with a known boron concentration at a predetermined measurement temperature with the vibration density meter 1. The memory (not shown) stores the density of the boron compound-containing solution having a known boron concentration. The density of the boron compound-containing solution with a known boron concentration stored in the memory and the boron concentration of the boron compound-containing solution are expressed by the linear expression {Y = aX + b (where Y is the density of the boron compound-containing solution). (Unit: g / cmThree )}. A preferred example of this primary expression is shown in FIG. The following equation (3) generalizing the correlation shown in FIG. 2 is stored in the memory in the arithmetic and control unit 5.
[0047]
Y = (− 3 × 10-6Xt2 -10-Four× t + 1.0021) X + 3 × 10-11 Xt2 −6 × 10-9Xt + 0.06 (3)
Where Y is the density of the boron compound-containing solution (unit: g / cmThree X represents the boron concentration (unit: ppm) in the boron compound-containing solution, and t represents the temperature at the time of measurement. )
This arithmetic and control unit 5 inputs a detection signal from the detection / drive head 11 that detects the vibration frequency of the vibration tube 9 containing a boron compound-containing solution with an unknown boron concentration, and starts from the vibration period obtained from the detection signal. The density is calculated based on the formula (1), and the boron concentration X is calculated according to the formula (3) from the calculated density and the temperature at the time of measurement.
[0048]
The output device 6 has a function of displaying a calculation result output from the calculation control device 5, and is constituted by, for example, an XY plotter, a CRT, and a printer.
[0049]
The operation input device 7 is configured to output a command signal for operating the boron concentration measuring device and to input various data such as a density value of a temperature reference material at the time of measurement.
[0050]
Next, the boric acid concentration measuring method of the present invention will be described in accordance with the operation of the boric acid concentration measuring apparatus.
[0051]
The boric acid concentration measuring method according to one embodiment of the present invention includes a deaeration process, a cleaning process, a measurement process, and a calculation process.
[0052]
-Washing process-
The cleaning process is a process of cleaning the inside of the vibration tube 9 with a cleaning liquid before circulating the unknown boron compound-containing solution in the vibration tube 9.
[0053]
Examples of the boron compound in the boron compound-containing solution include sodium borate, ammonium borate, lithium borate, and boric acid. A boric acid solution is preferred as the boron compound-containing solution. Moreover, as a boron compound containing solution suitable for the method of this invention, the primary cooling water etc. which are used for a nuclear reactor, etc. can be mentioned, for example.
[0054]
In other words, the method and apparatus of the present invention are suitable for measuring boron concentration in primary cooling water in a nuclear reactor. In other words, as the boron compound-containing solution in the present invention, a boron compound-containing compound having a boron concentration of ppm order or more is suitable for the present invention.
[0055]
In the boron concentration measuring device, a predetermined temperature for heating the vibrating tube 9 is inputted via the operation input device 7. This predetermined temperature is a measurement temperature when the vibration of the vibration tube 9 is measured. When the measurement temperature is input, the arithmetic and control unit 5 outputs a command signal to the cleaning liquid heating unit 16 to operate the cleaning liquid heating unit 16 and heat the cleaning liquid in the cleaning liquid storage tank 15 to a predetermined temperature. As the cleaning liquid, pure water is usually used.
[0056]
On the other hand, the arithmetic and control unit 5 operates the vibrating tube heating unit 12 by outputting a command signal to the vibrating tube heating unit 12 to heat the vibrating tube 9 to a predetermined temperature. The predetermined temperature at which the vibration tube 9 is heated and the predetermined temperature at which the cleaning liquid is heated are set to the same temperature.
[0057]
Next, a command signal is output from the arithmetic and control unit 5 to the three-way cock 13 so that the cleaning liquid storage tank 15 and the vibration pipe 9 are in communication with each other, and the vibration pipe 9 and the boron compound-containing solution storage tank 2 are connected to each other. You will be disconnected. The cleaning liquid flows from the cleaning liquid storage tank 15 into the vibration tube 9 and the inside of the vibration tube 9 is cleaned.
[0058]
At this time, since the temperature of the cleaning liquid and the temperature of the vibration tube 9 coincide with each other, the vibration tube 9 does not expand or contract due to a temperature change regardless of the flow of the cleaning liquid. Since the internal volume of the vibration tube 9 does not change despite the flow of the cleaning liquid, no error occurs in the measurement of the vibration frequency in the subsequent measurement process.
[0059]
Note that the cleaning liquid supply device 4 is preferably provided with an ultrasonic device for irradiating the stored liquid in the cleaning liquid storage tank 15 with ultrasonic waves. The stored liquid in the cleaning liquid storage tank 15 is irradiated with ultrasonic waves. It is preferable that the cleaning liquid is degassed by this because it is possible to prevent generation of bubbles generated from the cleaning liquid and adhering to the inner wall of the vibration pipe 9 when the cleaning liquid passes through the vibration pipe 9.
[0060]
-Deaeration process-
The degassing step is a step of degassing the boron compound-containing solution before flowing the boron compound-containing solution through the vibrating tube 9.
[0061]
In the boron concentration measuring device, the boron compound-containing solution is supplied to the boron compound-containing solution storage tank 2 while the cleaning step is being performed, and a predetermined amount of the boron compound-containing solution is a boron compound. It is stored in the containing solution storage tank 2. During this deaeration process, the three-way cock 13 is operated so that the boron compound-containing solution storage tank 2 and the vibrating tube 9 are not in communication with each other. While the boron compound-containing solution is stored, the ultrasonic irradiation device 3 to which the command signal output from the arithmetic control device 5 is input operates to irradiate the boron compound-containing solution from the ultrasonic irradiation device 3. Is done. When the ultrasonic wave is irradiated, the dissolved gas in the boron compound-containing solution appears as bubbles. Bubbles appearing by the exhaust pump P are discharged out of the boron compound-containing solution storage tank 2. This degassing step is carried out over a predetermined time. During the deaeration process, the boron compound-containing solution in the boron compound-containing solution storage tank 2 is heated to a predetermined temperature by the boron compound-containing solution heating means.
[0062]
-Measurement process-
When the washing process and the deaeration process are completed, a measurement process is performed. In this measurement step, the boron compound-containing solution is circulated through the vibration tube 9, the frequency of the vibration tube 9 containing the boron compound-containing solution is measured, and the density of the boron compound-containing solution is calculated from this frequency. It is a process to do. This measuring step corresponds to the step of measuring the density of the boron compound-containing solution with an unknown concentration in the method of the present invention with the vibrating densitometer 1.
[0063]
In the boron concentration measuring device, the three-way cock 13 is operated by a command signal output from the arithmetic control device 5 so that the boron compound-containing solution storage tank 2 and the vibrating tube 9 are in communication with each other, and the cleaning liquid storage tank. 15 and the vibration tube 9 are disconnected. A boron compound-containing solution is supplied from the boron compound-containing solution storage tank 2 into the vibrating tube 9. At this time, the boron compound-containing solution in the boron compound-containing solution storage tank 2 is heated to the measurement temperature, the vibration tube 9 is also heated to the measurement temperature by the vibration tube heating means 12, and the cleaning liquid is also set to the measurement temperature. Since it was heated, there was no occurrence of an error based on a temperature change when measuring the vibration of the vibration tube 9 containing the boron compound-containing solution. Furthermore, since the boron compound-containing solution is degassed by the degassing step, bubbles are not generated in the boron compound-containing solution when the boron compound-containing solution is circulating in the vibrating tube. . Therefore, there is no measurement error due to bubble generation.
[0064]
The vibration tube 9 vibrates due to electromagnetic coupling between the magnet piece 10 provided at the tip of the vibration tube 9 and the detection / drive head 11, and the detection / drive head 11 detects the vibration frequency. The detection / drive head 11 outputs a detection signal to the arithmetic and control unit 5.
[0065]
In the arithmetic and control unit 5, first, the density of the boron compound-containing solution is obtained based on the input detection signal according to the equation (1).
[0066]
-Calculation process-
This calculation step is a step of calculating the boron concentration in the boron compound-containing solution from the density of the boron compound-containing solution obtained in the above measurement step. This step corresponds to the step of calculating the boron concentration in the boron compound-containing solution according to the correlation formula between the density and the concentration of the boron compound-containing solution and the density of the boron compound-containing solution obtained in the present invention.
[0067]
In the boron concentration measuring device, the boron concentration is calculated from the density of the boron compound-containing solution obtained by the arithmetic and control unit 5 and the measurement temperature according to the equation (3).
[0068]
The calculation result is output from the arithmetic control device 5 to the output device 6 and displayed.
[0069]
As described in detail above, according to this boron concentration measuring method, the boron concentration in the boron compound-containing solution can be accurately measured by a simple operation.
[0070]
As mentioned above, although one Example of this invention was described, this invention is not limited to the said Example.
[0071]
For example, the vibration type density meter 1 has a frequency of a hollow vibration tube 9 placed in a vacuum or air and a frequency when a boron compound-containing solution is filled inside, inside, or outside the vibration tube 9. As long as the density of the boron compound-containing solution can be obtained from the difference, there is no limitation on the structure or configuration. There are two types of vibration of the vibrating tube 9 in the vibration type density meter 1: a type that vibrates in the lateral direction and a type that utilizes bending vibration on the circumference. In the present invention, vibrations of any type are used. Tube 9 may be used. Further, as a method for vibrating the vibration tube 9, a method other than a method using electromagnetic coupling may be employed. For the detection of the frequency, any of a detector using electromagnetic coupling and a detector using light can be employed in the present invention.
[0072]
【The invention's effect】
According to the present invention, there is no error in the boron concentration measurement value as seen in manual analysis represented by titration operation, etc., there is no variation in the measurement value by the operator, and boron compound is contained accurately by a simple operation. A boron concentration measuring method and a boron concentration measuring device capable of measuring the boron concentration of a solution can be provided. According to the present invention, it is possible to provide a boron concentration measuring method and a boron concentration measuring apparatus capable of accurately obtaining the boron concentration of a boron compound-containing solution using a vibration type densitometer by a simple operation. it can. According to this invention, the boron concentration of the boron compound-containing solution can be accurately obtained by a simple operation without generating bubbles in the vibration tube in the vibration type density meter using the vibration type density meter. A boron concentration measuring method and a boron concentration measuring apparatus which can be provided can be provided. According to the present invention, the boron concentration of the boron compound-containing solution is accurately measured by a simple operation without using a vibration density meter and eliminating the measurement error caused by washing the vibration tube in the vibration density meter. It is possible to provide a boron concentration measuring method and a boron concentration measuring apparatus that can be obtained in the following manner. According to the present invention, based on a good correlation between the density of the boron compound-containing solution and the boron concentration in the boron compound-containing solution, using a vibration type densimeter calibrated by a simple operation, It is possible to provide a boron concentration measuring method and a boron concentration measuring device capable of accurately measuring a boron concentration without variation by a simple operation.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a boron concentration measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a graph showing the correlation between the density of a boron compound-containing solution and the boron concentration in the boron compound-containing solution.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vibration type density meter, 2 ... Boron compound containing solution storage tank, 3 ... Ultrasonic irradiation apparatus, 4 ... Cleaning liquid supply apparatus, 5 ... 1 ... Vibration type density meter DESCRIPTION OF SYMBOLS 2 ... Boron compound containing solution storage tank, 3 ... Ultrasonic irradiation apparatus, 4 ... Cleaning liquid supply apparatus, 5 ... Arithmetic control apparatus, 6 ... Output device, 7 ... Operation Input device 9 ... vibrating tube 10 ... magnet piece 11 ... detection / drive head 12 ... vibrating tube heating means 13 ... three-way cock 14 ... exhaust pipe 15 ... Cleaning liquid storage tank, 16 ... Cleaning liquid heating means.

Claims (11)

濃度未知の溶質を含有する溶液の密度を、前記溶液を収容可能な振動管を有する振動式密度計で測定する工程
前記溶液の密度を前記溶液の密度と溶質濃度との相関式にしたがって溶液中の溶質の濃度を演算する工程と、
前記振動管の振動数を測定する前に、前記振動管の振動数を測定するときの温度と同じ温度に加温された洗浄液をこの振動管中に流通させる振動管の洗浄工程とを有することを特徴とする溶質濃度測定方法。
The density of the solution containing an unknown concentration of the solute, and measuring a vibration densitometer having a vibrating tube capable of accommodating said solution,
Calculating the concentration of the solute in the solution according to the correlation equation between the density of the solution and the concentration of the solute;
Before measuring the vibration frequency of the vibration tube, it has a washing step of the vibration tube for flowing the cleaning liquid heated to the same temperature as the temperature when measuring the vibration frequency of the vibration tube. A solute concentration measuring method characterized by
前記相関式がY=aX+b(ただし、Yは溶液の密度(単位;g/cm )を示し、Xは溶液中の溶質濃度(単位;ppm)を示し、a及びbは定数を示す。)で示される一次関数である前記請求項1に記載の溶質濃度測定方法。The correlation equation is Y = aX + b (where Y represents the density of the solution (unit; g / cm 3 ), X represents the solute concentration (unit: ppm) in the solution, and a and b represent constants). The solute concentration measuring method according to claim 1, which is a linear function represented by: 前記溶液が濃度未知のほう素化合物を含有するほう素化合物含有溶液であり、溶質濃度がほう素濃度である前記請求項1又は2に記載の溶質濃度測定方法。  The solute concentration measuring method according to claim 1 or 2, wherein the solution is a boron compound-containing solution containing a boron compound having an unknown concentration, and the solute concentration is a boron concentration. 前記溶液が原子力発電装置に使用される一次冷却材に注入されるほう素化合物含有溶液であり、溶質濃度がほう素濃度である前記請求項1〜3のいずれか1項に記載の溶質濃度測定方法。Said solution is a silicon compound-containing solution should be injected into the primary coolant used in nuclear power plants, solute concentration measuring method according to any one of the claims 1-3 solute concentration of boron concentration . 前記振動管の振動数を測定する前に、前記溶液に超音波を照射する発泡防止工程を有する前記請求項1〜4のいずれか1項に記載の溶質濃度測定方法。Before measuring the frequency of the vibrating tube, solute concentration measuring method according to any one of the claims 1-4 with anti-foaming step of irradiating ultrasonic waves to the solution. 前記相関式は、空気と純水とで校正された振動式密度計で濃度既知のほう素化合物含有溶液の密度を測定することにより求められる相関式である前記請求項3〜5のいずれか1項に記載の溶質濃度測定方法。The correlation equation is any one of the claims 3 to 5 is a correlation equation is determined by measuring the density of a known concentration of more-containing compound-containing solution vibratory densitometer is calibrated with air and pure water The solute concentration measuring method according to item . 濃度未知の溶質を含有する溶液の密度に対応するパラメータを測定し、その測定信号を出力するとともに、前記溶液を収容可能な振動管を有する振動式密度計と、
前記振動式密度計から出力される測定信号に基づいて濃度未知の溶質を含有する溶液の密度を演算し、前記溶液の密度と密度測定時の温度とから前記溶液の密度と溶質濃度との相関式にしたがって溶質濃度を演算する演算手段と、
前記振動管の振動数を測定する前に、前記振動管の振動数を測定するときの温度と同じ温度に加温された洗浄液をこの振動管中に流通させる洗浄液供給装置とを有することを特徴とする溶質濃度測定装置。
Measuring a parameter corresponding to the density of a solution containing a solute of unknown concentration, outputting a measurement signal thereof , and a vibrating densimeter having a vibrating tube capable of containing the solution ;
The density of the solution containing the solute of unknown concentration is calculated based on the measurement signal output from the vibratory density meter, and the correlation between the density of the solution and the solute concentration is calculated from the density of the solution and the temperature at the time of density measurement. A computing means for computing the solute concentration according to the equation;
Before measuring the vibration frequency of the vibration tube, it has a cleaning liquid supply device that circulates the cleaning liquid heated to the same temperature as when the vibration frequency of the vibration tube is measured. Solute concentration measuring device.
前記相関式がY=aX+b(ただし、Yは溶液の密度(単位;g/cm )を示し、Xは溶液中の溶質の濃度(単位;ppm)を示し、a及びbは定数を示す。)で示される一次関数である前記請求項に記載の溶質濃度測定装置。The correlation equation is Y = aX + b (where Y represents the density of the solution (unit; g / cm 3 ), X represents the concentration of the solute in the solution (unit: ppm), and a and b represent constants. The solute concentration measuring apparatus according to claim 7 , which is a linear function represented by: 前記溶液が、濃度未知のほう素化合物を含有するほう素化合物含有溶液であり、溶質濃度がほう素濃度である前記請求項7又は8に記載の溶質濃度測定装置。The solute concentration measuring device according to claim 7 or 8 , wherein the solution is a boron compound-containing solution containing a boron compound having an unknown concentration, and the solute concentration is a boron concentration. 前記演算手段が、前記振動式密度計から出力される測定信号に基づいて濃度未知のほう素化合物を含有するほう素化合物含有溶液の密度を演算し、得られたほう素化合物含有溶液の密度と密度測定時の温度とからほう素化合物含有溶液の密度とほう素濃度との相関式にしたがってほう素濃度を演算する演算手段である前記請求項7〜9のいずれか1項に記載の溶質濃度測定装置。 It said calculating means calculates the density of the iodine compound-containing solution should contain an unknown concentration of more-containing compounds based on the measurement signal output from the vibration type density meter, a density of the resulting better-containing compound-containing solution and The solute concentration according to any one of claims 7 to 9, which is a calculation means for calculating a boron concentration from a temperature at the time of density measurement in accordance with a correlation equation between the density of the boron compound-containing solution and the boron concentration. measuring device. 前記振動式密度計に装備された振動管に供給される濃度未知の溶液に超音波を照射する超音波照射装置を有してなる前記請求項7〜10のいずれか1項に記載の溶質濃度測定装置。The solute concentration according to any one of claims 7 to 10, further comprising an ultrasonic irradiation device that irradiates an ultrasonic wave to a solution of unknown concentration supplied to a vibration tube equipped in the vibration type density meter. measuring device.
JP10886496A 1995-04-28 1996-04-30 Solute concentration measuring method and solute concentration measuring apparatus Expired - Fee Related JP3637407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10886496A JP3637407B2 (en) 1995-04-28 1996-04-30 Solute concentration measuring method and solute concentration measuring apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10669995 1995-04-28
JP7-106699 1995-04-28
JP10886496A JP3637407B2 (en) 1995-04-28 1996-04-30 Solute concentration measuring method and solute concentration measuring apparatus

Publications (2)

Publication Number Publication Date
JPH0915132A JPH0915132A (en) 1997-01-17
JP3637407B2 true JP3637407B2 (en) 2005-04-13

Family

ID=26446812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10886496A Expired - Fee Related JP3637407B2 (en) 1995-04-28 1996-04-30 Solute concentration measuring method and solute concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JP3637407B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11011280B2 (en) * 2016-03-10 2021-05-18 Westinghouse Electric Company Llc Reactor coolant system piping temperature distribution measurement system
CN108760572A (en) * 2018-08-19 2018-11-06 戴红梅 The measuring device and its method of boric acid concentration in a kind of boron recovery system
CN113504151A (en) * 2021-06-10 2021-10-15 中国核电工程有限公司 Device and method for measuring foam mixing ratio of foam fire-fighting system based on density method

Also Published As

Publication number Publication date
JPH0915132A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
RU2006134705A (en) CORIOLIS MULTI-PHASE FLOW METER
JP3637407B2 (en) Solute concentration measuring method and solute concentration measuring apparatus
Roy et al. A precise technique for the measurement of acoustic cavitation thresholds and some preliminary results
CN113906272A (en) Measuring device for determining the density, mass flow and/or viscosity of a gas-filled liquid, processing system having such a measuring device, and method for monitoring a gas-filled liquid
US3898467A (en) Method and apparatus for continuous monitoring and control of neutron absorption properties of chemical shim with temperature compensation
EP1271112B1 (en) Apparatus for measuring liquid volume in microgravity environment
CN106706690B (en) CT scanning device for high-temperature high-pressure core dynamic oil displacement experiment
JPH1190110A (en) Ultrasonic deforming method, manufacture of photosensitive material and ultrasonic deforming device
US20080025365A1 (en) Specific Heat Measuring Method and Instrument
JP3944660B2 (en) Chemical analyzer
Jarman et al. The sonically induced cavitation of liquid helium
Baik et al. Investigation of a method for real time quantification of gas bubbles in pipelines
Richards An intensity gauge for “supersonic” radiation in liquids
Donovan Jr et al. One-dimensional computer analysis of oscillatory flow in rigid tubes
Gollub et al. Complex particle trajectories and transport in stationary and periodic convective flows
Abad et al. Flow analysis deconvolution for kinetic information reconstruction
JP2000303093A (en) Evaluation apparatus for dissolved-gas-containing cleaning water
JP3142973B2 (en) Reactor cooling water flow rate measurement method using rubidium tracer
CN218003179U (en) Two-term flow generator for quantitative particles
CN114428035B (en) Device and method for measuring density change in natural gas hydrate flow process
RU2811326C1 (en) Method for measuring thermophysical properties of materials and unit for its implementation using heat flow sensors
JP2000131308A (en) Apparatus and method for measurement of concentration of dissolved nitrogen in ultrapure water
JP7418300B2 (en) Iodine behavior confirmation device, iodine behavior confirmation system, and iodine behavior confirmation method
Alippi et al. Photoacoustic cell for ultrasound contrast agent characterization
Gelat et al. Establishing a reference ultrasonic cleaning vessel: Part 1 supporting infrastructure and early measurements.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees