JP3636132B2 - Method for producing hot-dip galvanized steel sheet - Google Patents

Method for producing hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP3636132B2
JP3636132B2 JP2001357910A JP2001357910A JP3636132B2 JP 3636132 B2 JP3636132 B2 JP 3636132B2 JP 2001357910 A JP2001357910 A JP 2001357910A JP 2001357910 A JP2001357910 A JP 2001357910A JP 3636132 B2 JP3636132 B2 JP 3636132B2
Authority
JP
Japan
Prior art keywords
steel sheet
concentration
galvanizing bath
hot dip
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357910A
Other languages
Japanese (ja)
Other versions
JP2003160850A (en
Inventor
英哉 岩本
誠二 萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001357910A priority Critical patent/JP3636132B2/en
Publication of JP2003160850A publication Critical patent/JP2003160850A/en
Application granted granted Critical
Publication of JP3636132B2 publication Critical patent/JP3636132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は溶融亜鉛めっき鋼板、とくにスパングルを極力微細化した溶融亜鉛めっき鋼板の製造方法に関する。
【0002】
【従来の技術】
溶融亜鉛めっき鋼板は、通常、素材鋼板を還元雰囲気中で高温に加熱して、焼鈍すると共に鋼板表面を還元して活性化し、その還元雰囲気中で亜鉛の融点近くまで鋼板の温度を降下させ、溶融亜鉛めっき浴を潜らせて表面にめっき皮膜を付着させて製造する。この鋼板表面に付着した亜鉛が凝固する際、樹枝状に結晶が成長し花模様のスパングルが形成される。しかしスパングル模様は、その美しさから好まれる場合がある反面、表面を塗装するときに下地の模様が塗装外観を損ねることや、用途によっては平滑性を要求されたり、スパングル模様を避けたい場合がある。
【0003】
たとえば、家電製品や電気機器などの装置には、表面の平滑性がよく、目付量を少なくでき、加工性や溶接性がすぐれていることにより、従来から電気亜鉛めっき鋼板が多く使用されている。これに対し、目付量を少なくする技術が進歩して、鋼板の加工性も向上しコストも安い点から、溶融亜鉛めっき鋼板がそれに取って代わって使用されるようになってきた。この場合、機器内部などは塗装されずに用いられることも多く、表面が電気亜鉛めっき鋼板に近い、スパングルを極力微細化したミニマムスパングル、あるいはゼロスパングルと呼ばれる溶融亜鉛めっき鋼板が適用される。
【0004】
ミニマムスパングル溶融亜鉛めっき鋼板の製造方法としては、主に二種の方法が用いられる。一つは浴中亜鉛のPbの量をできるだけ低下させる方法である。Pbは溶融亜鉛の粘性を改善し、亜鉛の濡れ性を良好にする上、スパングルの形成に大きく寄与するので、スパングルが必要な場合は、通常、質量%にて0.2%以下のPbが添加される。これに対し、スパングルを微細にするには100ppm以下、好ましくは30ppm以下に低減する。
【0005】
もう一つは、溶融亜鉛めっき浴を出た鋼板がめっき付着量調整直後の、亜鉛が未凝固状態にあるときに水や蒸気などを噴射する方法で、スパングルが成長する前に急速凝固させる。この場合、Pb量が多少多くてもミニマムスパングル化が可能であるが、Pbも低減できれば、より安定して製造することができる。
【0006】
このようなミニマムスパングル溶融亜鉛めっき鋼板を製造するとき、表面に鋼板の長さ方法に伸ばされた、正常な部分とは光沢度も色調も異なる、白色の雲状のむらが発生することがある。この白色むらは、溶融亜鉛めっき鋼板としての耐食性、塗装性、加工性または溶接性などには全く影響しないが、鋼板製品としての外観が大きく損なわれる。
【0007】
ミニマムスパングル鋼板に関し、めっき皮膜の鋼板との密着性や光沢度、あるいはスパングルの消滅に関する改善は種々検討されている。しかし、このような白色むらの抑止対策については、これまでほとんど知られていない。これに対し、めっきの付着量の不均一や、水などの冷却剤噴射の不均一などの有無の影響を調査したが、それによる改善効果はほとんど認められなかった。また、冷却剤噴射の条件や、調質圧延のロール粗度変更などにより多少は軽減されるが、本質的に防止することはできなかった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、ミニマムスパングル溶融亜鉛めっき鋼板を製造する際に、溶融亜鉛めっき浴中のAl濃度が0.14〜0.18質量%であっても、溶融亜鉛めっき鋼板の表面に発生する、白色むらを抑制する製造方法の提供にある。
【0009】
【課題を解決するための手段】
本発明者らは、ミニマムスパングル溶融亜鉛めっき鋼板の表面に発生する白色むらを抑止するため、その発生原因について種々調査をおこなった。
【0010】まずこの白色むらの発生状況は、客観的に判定することが好ましいので、目視判定で白色むらのある鋼板とない鋼板について、光沢度と白色度の計測による判別を試みた。光沢度はJIS-Z-8741に準じ入射角60°にて測定し、白色度(L値)をJIS-Z-8722により測定した。この場合、白色むらは健全な部分とそうでない部分との相対的な差として検出される。
【0011】
鋼板の幅方向にこれらの測定をおこない、最大値と最小値との差の平均値に対する比率をばらつきの幅とし、このばらつきの幅の大きさと、目視による評価とを対比してみると、図1に示す結果が得られた。図1から、目視評価にて白色むらがなく良好と判断された鋼板は、計器による光沢度のばらつきの幅が20%以下で、かつ白色度のばらつきの幅が10%以下のものであることがわかる。
【0012】
表面の良好な鋼板および白色むらの発生した鋼板について、めっき皮膜の状態を断面観察などにより調査してみると、これらの鋼板間、あるいは白色むらの部分と健全な部分とでは、亜鉛めっき皮膜が鋼板に付着した境界層近傍の状態に違いがあるのではないかと思われた。
【0013】そこで、製造チャンスの種々異なる鋼板から試料を採取し、発煙硝酸によりめっき皮膜のZn部分を溶かして取り除き、界面に生じているAlを多く含むFe−Al合金またはFe−Zn−Al合金(以下単にFe−Al合金と言う)層を露出させ、次にこのFe−Al合金層を酸洗抑止剤を添加した塩酸溶液を用いて溶解し、めっき皮膜のZn部分のAl濃度および界面のFe−Al合金層のAl量を分析した。この分析結果と、鋼板表面の白色むら発生との関係を調べると、図2に示す結果が得られた。
【0014】
この図2から、めっき皮膜のZn部分のAl濃度が高くなるほどFe−Al合金層のAl量が多くなっており、白色むらもなくなることがわかる。めっき皮膜のAl濃度は、溶融亜鉛めっき浴中のAl濃度と相関があると考えられるので、溶融亜鉛のAl濃度と白色むらの発生比率を調べてみると、図3の結果が得られた。この場合、発生比率は鋼板コイル単位とし、コイル表面の一部にでも発生しておれば不良として計上している。
【0015】
溶融亜鉛めっきをおこなうとき、溶融亜鉛めっき浴中には通常0.1〜0.2質量%程度のAlが添加される。Alの少量含有は、素材鋼板が溶融亜鉛めっき浴に浸漬されると優先的にFeと反応してFe−Al合金層を形成し、これがめっき皮膜の密着性を向上させ、硬くて脆いFe−Zn合金層の発達を抑制し、鋼板が加工されたときのめっき皮膜剥離を防止する効果があるからである。
【0016】
図3の結果は、白色むらをなくすには、溶融亜鉛めっき浴中のAl濃度を高くすればよく、Al濃度0.18%を超えると白色むらの発生は大きく減少するが、これを下回る場合は白色むらが多発し、Al濃度が低下するほどその発生頻度が増大することを示している。したがって、ミニマムスパングル溶融亜鉛めっき鋼板の製造において白色むらをなくすには、溶融亜鉛めっき浴のAl濃度を上げればよい。
【0017】
しかしながら多くの場合、同じめっきラインまたは同じ溶融亜鉛めっき浴槽を用いて、合金化溶融亜鉛めっき鋼板も製造される。合金化溶融亜鉛めっき鋼板の製造には、溶融亜鉛のAl濃度を0.08〜0.14%に管理しなければならない。これは0.08%を下回ると合金化溶融亜鉛めっき鋼板の耐パウダリング性が大きく低下するからであり、0.14%を超えると、めっき皮膜の合金化が十分できないからである。このように要求される溶融亜鉛めっき浴中のAl濃度は、目的とする鋼板により異なるので、ミニマムスパングル溶融亜鉛めっき鋼板の白色むら防止のためには、合金化溶融亜鉛めっき鋼板製造用とは別にして、それぞれの専用ラインで製造されることが望ましいといえる。
【0018】
しかし現実には、一つのラインで両鋼板を製造しなければならないことが多く、製造する鋼板により溶融亜鉛めっき浴中のAl濃度を上げたり下げたりする必要がある。しかしながら、このような溶融亜鉛めっき浴中のAl濃度の変更には多大の時間を要し、その変更途中の間にミニマムスパングル鋼板を製造すると、白色むら不良が発生しやすいとすれば、めっきラインの操業に大きな制約を受ける。したがって、Al濃度の変更のための時間を最小限にするためには、両鋼板の製造の際の溶融亜鉛めっき浴中のAl濃度の違いをできるだけ小さくすることがよいことが分かる。
【0019】
通常の溶融亜鉛めっき鋼板やミニマムスパングル鋼板では、被膜の密着性確保の観点からは、溶融亜鉛めっき浴中のAl濃度が合金化溶融亜鉛めっき鋼板製造のための上限に近い0.12〜0.14%程度以上あればよい。ところが合金化溶融亜鉛めっき鋼板では、溶融亜鉛めっき浴中のAl濃度が0.14%を超えるとほぼ製造不能になるので、合金化溶融亜鉛めっき鋼板の製造の際の溶融亜鉛めっき浴中のAl濃度が 0.14 %を超えるわけにはいかない。したがって、通常の溶融亜鉛めっき鋼板やミニマムスパングル鋼板の製造の際の溶融亜鉛めっきのAl濃度を、できるだけ合金化溶融亜鉛めっき鋼板の製造の際の溶融亜鉛めっき浴中のAl濃度に近づけてめっきラインを操業したいところであり、溶融亜鉛めっき浴中のAl濃度が0.14%0.18%であってもミニマムスパングル鋼板の白色むらの発生を抑止することができるのであれば、両者のAl濃度は近接するので、Al濃度の変更のための時間を最小限にすることができる。
【0020】
の図2をみると、亜鉛めっき皮膜のAl濃度が0.11%から0.14%の範囲、あるいはFe−Al合金層のAl含有量が150mg/mから200mg/mの範囲では白色むらのある鋼板とむらのない鋼板とが現れ、これらの範囲を超える濃度あるいは含有量では白色むらが発生していない。溶融亜鉛めっき浴中のAl濃度に対する亜鉛めっき皮膜のAl濃度は80%前後の比率になるので、亜鉛めっき皮膜のAl濃度が0.11%から0.14%の範囲は、溶融亜鉛めっき浴中のAl濃度が0.14%から0.18%に対応する。
【0021】
そこで、上記濃度範囲内で溶融亜鉛めっき浴中のAl濃度が同じであっても、白色むらが生じたり生じなかったりする理由について、さらに調査を進めた。その結果、めっき皮膜を除去した後に残ったFe−Al合金層を走査型電子顕微鏡で観察すると、めっき表面の健全な部位ではFe−Al合金層が鉄表面をほぼ均一に覆っているように見えるのに対し、白色むらの発生した部位ではFe−Al合金層に黒い斑点状、またはまだら状の部分が多くみられることがわかった。
【0022】
この黒色部分には正常なFe−Al合金層が形成されておらず、Feが現れていると推測されたので、黒色部分の面積率を計測し、黒色でない部分がFe−Al合金層であるとしてその比率を求め、これとFe−Al合金層のAl含有量との関係をみると、図4の結果が得られた。すなわち、白色むら部分は、めっき皮膜と鉄との界面に形成されるFe−Al合金層に面積率が30%を超える欠陥が存在すると生じること、言い換えれば、面積率が70%以上の十分なFe−Al合金層が形成されれば、白色むらは発生しないことが明らかになった。
【0023】
界面のFe−Al層が素材鋼板の表面を十分に覆うには、鋼板が溶融亜鉛めっき浴に侵入する時点における要因が大きく影響すると推測される。そこで、浴侵入直前の諸製造条件を調査の結果、素材鋼板の溶融亜鉛めっき浴侵入直前の温度およびスナウト内の雰囲気の露点が強く影響していることが明らかになった。
鋼板温度は溶融亜鉛めっき浴侵入直後の表面における合金層形成反応の進行を大きく支配し、露点は素材鋼板表面の還元状態、または活性度を決定するためと考えられる。
【0024】
以上の知見に基づき、さらに実験を繰り返した結果、白色むら抑止に対する溶融亜鉛めっき浴中のAl濃度と、鋼板温度および雰囲気露点との条件管理式を見出すことができた。本発明はこの管理式に基づく製造方法であって、その要旨は次のとおりである。
【0025】
素材鋼板が焼鈍過程を終えて冷却され、溶融亜鉛めっき浴に侵入する際、溶融亜鉛めっき浴中のAl濃度A質量%)、鋼板の温度T(℃)および溶融亜鉛めっき浴侵入直前のスナウト内雰囲気ガスの露点V(℃)が、下記(1) (4) 式のいずれをも満足する範囲とすることを特徴とするミニマムスパングル溶融亜鉛めっき鋼板の製造方法。
(0.0025×T−0.012×V)×0.1≦A・・・・・・・・・・(1)
0.14 ≦A≦ 0.18・・・・・・・・・・・・・・・・・・・・(2)
440 ≦T≦ 500・・・・・・・・・・・・・・・・・・・・・(3)
-40 ≦V≦ -15・・・・・・・・・・・・・・・・・・・・・(4)
【0026】
【発明の実施の形態】
本発明のミニマムスパングル溶融亜鉛めっき鋼板の製造方法は、とくに溶融亜鉛めっき浴中のAl濃度が0.14質量%から0.18質量%の間にある場合に、白色むら発生を抑止する
【0027】
溶融亜鉛めっき浴中のAl濃度は、低くなりすぎると、めっき鋼板の合金層を除く亜鉛めっき皮膜中のAl濃度が0.11質量%を下回ってしまい、白色むら発生を抑止することができなくなるので、溶融亜鉛めっき浴中のAl濃度を0.14質量%以上とする必要がある
また、溶融亜鉛めっき浴中のAl濃度は0.18質量%を超えると、鋼板の白色むらはほぼ発生しなくなるが、合金化溶融亜鉛めっき鋼板の製造に適した溶融亜鉛めっき浴中のAl濃度の上限の 0.14 %を大きく超えてしまうことになる。したがって、溶融亜鉛めっき浴中のAl濃度の変更のための時間を最小限にすることができない。
【0028】
本発明においては、 (1)式に基づいて、溶融亜鉛めっき浴中のAl濃度から鋼板温度とスナウト内雰囲気ガスの露点を規制する。図5、図6および図7に、それぞれ、溶融亜鉛めっき浴のAl濃度を 0.14 %、 0.16 %または 0.18 %とし、溶融亜鉛めっき浴侵入時の鋼板温度および露点を変えてミニマムスパングル鋼板を製造した場合の、白色むら発生状況を示す。素材鋼板の侵入時の温度を低くすること、および露点を上昇させることが、いずれも白色むら発生の抑制に効果があることが分かる
【0029】
ただし、(1)式にて規制される範囲内であっても、素材鋼板の侵入時の温度が低すぎると不めっきを発生するようになり、高すぎると好ましくないFe−Zn合金層が過剰に発達するので、鋼板の温度を440〜500℃の範囲とする必要がある。また露点も低くしすぎるとスナウト内の溶融亜鉛めっき浴面からの亜鉛蒸気の発生が増して、これが内壁面に堆積し素材鋼板面に落下してめっき皮膜の欠陥を生じさせ、高くしすぎると不めっきを生じる。したがって−40〜−15℃の範囲内で制御する必要がある
【0030】
【実施例】
板厚0.6mm、板幅914mm、炭素0.04質量%の通常の低炭素鋼素材鋼板コイルにて連続式溶融亜鉛めっきラインを用い、洗浄後、空燃比0.95、板温600℃の無酸化炉を経て、水素10%残部窒素の雰囲気中にて740℃に加熱焼鈍後、素材鋼板温度を降下させて、460±5℃に保持した溶融亜鉛めっき浴に侵入させた。浴から引き上げ直後ガスワイピングによりめっき付着量を片面90g/mとし、直ちにミストスプレイによりミニマムスパングル化した。
【0031】
この溶融亜鉛めっきをおこなう際、溶融亜鉛めっき浴中のAl濃度が0.12%、0.14%、0.16%、0.18%および0.20%である操業時に、それぞれ亜鉛のスナウト内雰囲気中露点を−45〜−15℃の範囲で変え、素材鋼板の溶融亜鉛めっき浴侵入温度を440〜520℃の種々の温度に変えてめっきをおこなった。
【0032】
得られた溶融亜鉛めっき鋼板コイルの各条件が明確に確認されている部分よりそれぞれ鋼板試料を切りだし、鋼板表面の幅方向の光沢度変動をJIS-Z-8741に基づいて60°鏡面光沢法で測定し、白色度変動のL値をJIS-Z8722に準じて測定して、白色むらを図1に示した基準により評価した。
【0033】
溶融亜鉛めっき浴のAl濃度を0.14%、0.16%または0.18%としたとき、それぞれ溶融亜鉛めっき浴侵入時の鋼板温度および露点を変えてミニマムスパングル鋼板を製造した場合の、白色むら発生状況、図5、図6および図7に示されたとおりである。図中に示した点線は、(1)式によるものであり、(1)式を満足する素材鋼板温度およびスナウト内雰囲気露点とすれば、白色むらを抑止できることがわかる。
【0034】
なお、溶融亜鉛めっき浴中のAl濃度が0.12%のとき、いずれのスナウト内雰囲気露点および素材鋼板の溶融亜鉛めっき浴侵入温度の組み合わせにおいても、白色むらが発生していた。また溶融亜鉛めっき浴中のAl濃度が0.20%のときは、いずれの鋼板にも白色むらの発生は認められなかった。
【0035】
【発明の効果】
ミニマムスパングル溶融亜鉛めっき鋼板の表面の白色むらは鋼板の表面品質を悪くするが、この白色むらは、溶融亜鉛めっき浴中のAl濃度を高くすることにより抑止できる。しかしながら、合金化溶融亜鉛めっき鋼板を製造するとき、溶融亜鉛めっき浴中のAl濃度を低くしなければならず、このAl濃度変更には、多大な時間を要し、その間、ミニマムスパングル溶融亜鉛めっき鋼板の製造は避けざるを得ない。これに対し、別のめっきラインで製造するか、同じラインでは溶融亜鉛めっき浴のポットを交換すればよいが、大規模な設備投資を要し、容易には実施できない。
【0036】
本発明の製造方法によれば、溶融亜鉛めっき鋼板を製造する際の溶融亜鉛めっき浴中のAl濃度が、合金化溶融亜鉛めっき鋼板に適した濃度に近接する低濃度範囲にあっても白色むらの発生を抑止することができるので、溶融亜鉛めっき浴中のAl濃度の変更のための時間を最小限にすることができる。したがって、新たな設備投資をおこなうことなく、同じめっきラインで、表面の良好なミニマムスパングル溶融亜鉛めっき鋼板と、合金化溶融亜鉛めっき鋼板との両方を容易に製造することができる。
【0037】
【図面の簡単な説明】
【図1】ミニマムスパングル溶融亜鉛めっき鋼板表面の白色むらについて、計測器による光沢度ばらつきおよび白色度ばらつきと、目視観察による評価との関係を示す図である。
【図2】白色むら発生と、鋼板の亜鉛めっき皮膜のAl濃度およびめっき皮膜−素材鋼板間の界面に形成されたFe−Al合金層のAl量との関係を示す図である。
【図3】溶融亜鉛めっき浴中のAl濃度と、白色むらの発生比率との関係を示す図である。
【図4】健全部分および白色むら部分と、Fe−Al合金層のAl含有量およびその合金層の面積率との関係を示す図である。
【図5】溶融亜鉛めっきのAl濃度が0.14%のときの、溶融亜鉛めっき浴に侵入する素材鋼板の温度およびスナウト内雰囲気の露点と、白色むら発生との関係を示す図である。
【図6】溶融亜鉛めっきのAl濃度が0.16%のときの、溶融亜鉛めっき浴に侵入する素材鋼板の温度およびスナウト内雰囲気の露点と、白色むら発生との関係を示す図である。
【図7】溶融亜鉛めっきのAl濃度が0.18%のときの、溶融亜鉛めっき浴に侵入する素材鋼板の温度およびスナウト内雰囲気の露点と、白色むら発生との関係を示す図である。
[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for producing a hot-dip galvanized steel sheet, particularly a hot-dip galvanized steel sheet in which spangles are made as fine as possible.
[0002]
[Prior art]
Hot-dip galvanized steel sheets are usually heated to a high temperature in a reducing atmosphere, annealed and reduced and activated, and the steel sheet temperature is lowered to near the melting point of zinc in the reducing atmosphere. A hot dip galvanizing bath is immersed and a plating film is adhered to the surface for production. When the zinc adhering to the surface of the steel sheet solidifies, crystals grow in a dendritic shape and flower-shaped spangles are formed. However, spangle patterns may be preferred due to their beauty. However, when painting a surface, the underlying pattern may damage the appearance of the paint, or depending on the application, smoothness may be required, or spangle patterns may be avoided. is there.
[0003]
For example, devices such as home appliances and electrical equipment have been used with a lot of electrogalvanized steel sheets because of their excellent surface smoothness, reduced basis weight, and excellent workability and weldability. . On the other hand, since the technology for reducing the basis weight has advanced, the hot-dip galvanized steel sheet has come to be used instead of it because the workability of the steel sheet is improved and the cost is low. In this case, the inside of the apparatus is often used without being painted, and a hot dip galvanized steel sheet called a minimum spangle or a zero spangle whose surface is close to an electrogalvanized steel sheet and whose spangle is made as fine as possible is applied.
[0004]
As a manufacturing method of the minimum spangle galvanized steel sheet, two kinds of methods are mainly used. One is to reduce the amount of zinc Pb in the bath as much as possible. Pb improves the viscosity of molten zinc, improves the wettability of zinc, and greatly contributes to the formation of spangles. When spangles are required, 0.2% or less of Pb is usually added in mass%. The On the other hand, in order to make spangle fine, it is reduced to 100 ppm or less, preferably 30 ppm or less.
[0005]
The other is a method of spraying water, steam or the like when zinc is in an unsolidified state immediately after adjustment of the coating amount of the steel sheet exiting the hot dip galvanizing bath, and rapidly solidifies before spangles grow. In this case, the minimum spangle can be achieved even if the amount of Pb is somewhat large, but if Pb can also be reduced, it can be manufactured more stably.
[0006]
When manufacturing such a minimum spangled galvanized steel sheet, white cloud-like unevenness having a glossiness and color tone different from that of a normal part, which is stretched on the surface by the length method of the steel sheet, may occur. This white unevenness does not affect the corrosion resistance, paintability, workability or weldability as a hot dip galvanized steel sheet at all, but the appearance as a steel sheet product is greatly impaired.
[0007]
Regarding the minimum spangled steel sheet, various improvements have been studied regarding adhesion of the plating film to the steel sheet, glossiness, or disappearance of spangles. However, little has been known about the countermeasures against such white spots. On the other hand, the effects of the presence or absence of non-uniform plating deposits and non-uniform injection of coolant such as water were investigated, but almost no improvement effect was observed. Moreover, although it is somewhat reduced by changing the conditions of jetting the coolant and changing the roll roughness of the temper rolling, it could not be essentially prevented.
[0008]
[Problems to be solved by the invention]
The object of the present invention is to produce a minimum spangled hot dip galvanized steel sheet on the surface of the hot dip galvanized steel sheet even if the Al concentration in the hot dip galvanizing bath is 0.14 to 0.18% by mass. The present invention also provides a production method for suppressing white unevenness.
[0009]
[Means for Solving the Problems]
In order to suppress white unevenness generated on the surface of the minimum spangled galvanized steel sheet, the present inventors have conducted various investigations on the cause of the occurrence.
First, since it is preferable to objectively determine the occurrence of the white unevenness, an attempt was made to discriminate the steel sheet with and without the white unevenness by visual measurement by measuring the glossiness and the whiteness. The glossiness was measured according to JIS-Z-8741 at an incident angle of 60 °, and the whiteness (L value) was measured according to JIS-Z-8722. In this case, the white unevenness is detected as a relative difference between a healthy part and an unhealthy part.
[0011]
When these measurements are performed in the width direction of the steel sheet, the ratio of the difference between the maximum value and the minimum value to the average value is regarded as the width of variation, and the magnitude of this variation is compared with visual evaluation. The result shown in 1 was obtained. From Fig. 1, the steel plate judged to be good with no white unevenness by visual evaluation should have a gloss variation of 20% or less by the instrument and a whiteness variation of 10% or less. I understand.
[0012]
For steel sheets with good surface and white unevenness, the state of the plating film was investigated by cross-sectional observation, etc., and the galvanized film was found between these steel sheets, or between the white unevenness part and the healthy part. There seemed to be a difference in the state of the boundary layer adhering to the steel plate.
Accordingly, samples are taken from various steel sheets having different production opportunities, and the Zn portion of the plating film is melted and removed by fuming nitric acid, and an Fe-Al alloy or Fe-Zn-Al alloy containing a large amount of Al generated at the interface. The layer (hereinafter simply referred to as Fe-Al alloy) is exposed, and then this Fe-Al alloy layer is dissolved using a hydrochloric acid solution to which a pickling inhibitor is added. The amount of Al in the Fe—Al alloy layer was analyzed. When the relationship between this analysis result and the occurrence of white unevenness on the steel sheet surface was examined, the result shown in FIG. 2 was obtained.
[0014]
From FIG. 2, it can be seen that as the Al concentration in the Zn portion of the plating film increases, the amount of Al in the Fe—Al alloy layer increases, and white unevenness is eliminated. Since the Al concentration of the plating film is considered to have a correlation with the Al concentration in the hot dip galvanizing bath, the results of FIG. 3 were obtained when the Al concentration of the hot dip zinc and the occurrence ratio of white unevenness were examined. In this case, the generation ratio is set as a steel sheet coil unit, and if it occurs even on a part of the coil surface, it is counted as a defect.
[0015]
When hot dip galvanizing is performed, about 0.1 to 0.2% by mass of Al is usually added to the hot dip galvanizing bath . A small amount of Al is preferentially reacted with Fe to form an Fe—Al alloy layer when the raw steel sheet is immersed in a hot dip galvanizing bath, which improves the adhesion of the plating film, and is hard and brittle Fe— This is because the development of the Zn alloy layer is suppressed and the plating film is prevented from being peeled off when the steel sheet is processed.
[0016]
Results in Figure 3, the eliminating white unevenness may be higher Al concentration in molten zinc plating bath, the occurrence of white irregularity the Al concentration exceeds 0.18% is greatly reduced, if below which It shows that white irregularities occur frequently and the frequency of occurrence increases as the Al concentration decreases. Therefore, in order to eliminate white unevenness in the production of the minimum spangled galvanized steel sheet, the Al concentration of the galvanized bath may be increased.
[0017]
However, in many cases, galvannealed steel sheets are also produced using the same plating line or the same hot dip galvanizing bath. For the production of alloyed hot-dip galvanized steel sheets, the Al concentration of hot-dip zinc must be controlled to 0.08 to 0.14%. This is because if the content is less than 0.08%, the powdering resistance of the alloyed hot-dip galvanized steel sheet is greatly deteriorated, and if it exceeds 0.14%, the plating film cannot be sufficiently alloyed. Since the required Al concentration in the hot dip galvanizing bath differs depending on the target steel plate, in order to prevent white unevenness of the minimum spangled hot dip galvanized steel plate, it is separate from that for the production of alloyed hot dip galvanized steel plate. Therefore, it can be said that it is desirable to manufacture each dedicated line.
[0018]
However, in reality, it is often necessary to produce both steel plates in one line, and it is necessary to raise or lower the Al concentration in the hot dip galvanizing bath depending on the steel plate to be produced. However, it takes a lot of time to change the Al concentration in such a hot dip galvanizing bath, and if a minimum spangled steel sheet is produced during the change, a white line defect is likely to occur. Are severely constrained by operations. Therefore, it can be seen that in order to minimize the time for changing the Al concentration, the difference in Al concentration in the hot dip galvanizing bath during the production of both steel sheets should be as small as possible.
[0019]
In ordinary hot-dip galvanized steel sheets and minimum spangled steel sheets, from the viewpoint of ensuring coating adhesion , the Al concentration in the hot-dip galvanized bath is about 0.12 to 0.14% or more, which is close to the upper limit for producing galvannealed steel sheets I just need it. However , in an alloyed hot-dip galvanized steel sheet, if the Al concentration in the hot-dip galvanized bath exceeds 0.14%, it becomes almost impossible to produce, so the Al concentration in the hot-dip galvanized bath during the production of the alloyed hot-dip galvanized steel sheet but we can not afford to not more than 0.14%. Therefore, the Al concentration in the hot dip galvanizing bath during the production of ordinary hot dip galvanized steel plates and minimum spangled steel plates should be as close as possible to the Al concentration in the hot dip galvanizing bath during the production of alloyed hot dip galvanized steel plates. If you want to operate the plating line and the white spatter of the minimum spangle steel plate can be suppressed even if the Al concentration in the hot dip galvanizing bath is 0.14% to 0.18% , the Al concentration of both is close Therefore, the time for changing the Al concentration can be minimized.
[0020]
Looking ahead predicates 2, white unevenness in the range Al concentration of 0.14% 0.11 percentage range in the zinc plating film or the Al content of Fe-Al alloy layer is from 150 mg / m 2, of 200 mg / m 2 A steel plate with unevenness and a steel plate without unevenness appear, and when the concentration or content exceeds these ranges, white unevenness does not occur. Since the Al concentration in the zinc plating film to Al concentration in molten zinc plating bath is the ratio of around 80%, Al concentration in the range 0.11% of the 0.14% in the zinc plating film, Al in the molten zinc plating bath The concentration corresponds to 0.14% to 0.18%.
[0021]
Therefore, further investigation was conducted on the reason why white unevenness does not occur even when the Al concentration in the hot dip galvanizing bath is the same within the above concentration range. As a result, when the Fe—Al alloy layer remaining after the plating film is removed is observed with a scanning electron microscope, it appears that the Fe—Al alloy layer covers the iron surface almost uniformly in a healthy part of the plating surface. On the other hand, it was found that many black spots or mottled portions were observed in the Fe—Al alloy layer at the site where white unevenness occurred.
[0022]
Since the normal Fe—Al alloy layer is not formed in this black portion, and it is presumed that Fe appears, the area ratio of the black portion is measured, and the non-black portion is the Fe—Al alloy layer. The ratio was calculated as follows, and the relationship between this ratio and the Al content of the Fe—Al alloy layer was obtained, and the result of FIG. 4 was obtained. That is, the white uneven portion occurs when a defect with an area ratio exceeding 30% exists in the Fe-Al alloy layer formed at the interface between the plating film and iron, in other words, the area ratio is sufficient with an area ratio of 70% or more. It has been clarified that white unevenness does not occur when the Fe—Al alloy layer is formed.
[0023]
In order for the Fe—Al layer at the interface to sufficiently cover the surface of the material steel plate, it is presumed that the factor at the time when the steel plate enters the hot dip galvanizing bath is greatly affected. Therefore, as a result of investigating various production conditions immediately before the bath penetration, it was found that the temperature immediately before the hot dip galvanizing bath penetration of the raw steel plate and the dew point of the atmosphere in the snout were strongly influenced.
The steel sheet temperature largely governs the progress of the alloy layer formation reaction on the surface immediately after entering the hot dip galvanizing bath, and the dew point is considered to determine the reduction state or activity of the raw steel sheet surface.
[0024]
Based on the above knowledge, further experiments were repeated, and as a result, a condition management equation for the Al concentration in the hot dip galvanizing bath against white unevenness, the steel plate temperature, and the atmospheric dew point could be found. The present invention is a manufacturing method based on this management formula, and the gist thereof is as follows.
[0025]
Steel plate is cooled after the annealing process, when entering the galvanizing bath, Al concentration A (% by mass) in the molten galvanizing bath temperature T (° C.) and hot-dip galvanizing bath penetration immediately before the snout of the steel sheet A method for producing a minimum spangled hot-dip galvanized steel sheet , characterized in that the dew point V (° C) of the internal atmosphere gas is in a range satisfying any of the following formulas (1) to (4) .
(0.0025 × T-0.012 × V) × 0.1 ≦ A (1)
0.14 ≤ A ≤ 0.18 (2)
440 ≤ T ≤ 500 (3)
-40 ≤ V ≤ -15 ... (4)
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing the minimum spangled galvanized steel sheet of the present invention suppresses the occurrence of white unevenness particularly when the Al concentration in the galvanized bath is between 0.14% by mass and 0.18% by mass .
[0027]
If the Al concentration in the hot dip galvanizing bath is too low, the Al concentration in the galvanized film excluding the alloy layer of the plated steel sheet will be less than 0.11% by mass, and it will not be possible to suppress the occurrence of white unevenness. The Al concentration in the hot dip galvanizing bath needs to be 0.14% by mass or more.
Further, the Al concentration in molten zinc plating bath exceeds 0.18 wt%, although the white unevenness of the steel sheet will not substantially occur, the upper limit of Al concentration in the molten zinc plating bath suitable for the production of galvannealed steel sheet This will greatly exceed 0.14 %. Therefore, the time for changing the Al concentration in the hot dip galvanizing bath cannot be minimized.
[0028]
In the present invention, based on the formula (1) , the steel sheet temperature and the dew point of the atmospheric gas in the snout are regulated from the Al concentration in the hot dip galvanizing bath . 5, 6, and 7, minimum spangle steel sheets were manufactured by changing the Al concentration of the hot dip galvanizing bath to 0.14 %, 0.16 %, or 0.18 %, and changing the steel sheet temperature and dew point when the hot dip galvanizing bath entered. In this case, the occurrence of white unevenness is shown. Lowering the temperature during infiltration of steel sheet, and the dew point is to increase the, it can be seen that both the effect for suppressing the white unevenness occurred.
[0029]
However, even within the range regulated by the formula (1), if the temperature at the time of penetration of the steel sheet is too low, non-plating occurs, and if it is too high, an undesirable Fe—Zn alloy layer is excessive. Therefore, the temperature of the steel sheet needs to be in the range of 440 to 500 ° C. Also, if the dew point is too low, the generation of zinc vapor from the hot dip galvanizing bath surface in the snout increases, and this deposits on the inner wall surface and falls on the material steel plate surface, causing defects in the plating film, and if it is too high Causes non-plating. Therefore, it is necessary to control within the range of -40 to -15 ° C.
[0030]
【Example】
Using a continuous hot dip galvanizing line with a normal low carbon steel plate steel coil with a plate thickness of 0.6mm, a plate width of 914mm, and carbon of 0.04% by mass, after washing, passed through a non-oxidation furnace with an air-fuel ratio of 0.95 and a plate temperature of 600 ° C Then, after annealing to 740 ° C. in an atmosphere of 10% hydrogen remaining nitrogen, the temperature of the raw steel plate was lowered and entered into a hot dip galvanizing bath maintained at 460 ± 5 ° C. Immediately after pulling up from the bath, the amount of plating was 90 g / m 2 on one side by gas wiping, and immediately minimum spangled by mist spraying.
[0031]
When performing this hot dip galvanization, the dew point in the atmosphere of zinc snout is −45 to −15 at the time of operation where the Al concentration in the hot dip galvanizing bath is 0.12%, 0.14%, 0.16%, 0.18% and 0.20%, respectively. The temperature was changed in the range of ℃, and the hot dip galvanizing bath intrusion temperature of the material steel plate was changed to various temperatures of 440 to 520 ℃ to perform plating.
[0032]
Cut the steel sheet sample from the part where each condition of the obtained hot-dip galvanized steel sheet coil is clearly confirmed, and measure the gloss fluctuation in the width direction of the steel sheet surface according to JIS-Z-8741. The whiteness variation was measured according to JIS-Z8722, and the whiteness unevenness was evaluated according to the standard shown in FIG.
[0033]
0.14% of Al concentration in the molten zinc plating bath, when the 0.16% or 0.18%, in the case of producing a minimum spangle steel by changing the steel sheet temperature and the dew point at the time of molten zinc plating bath penetration, respectively, white unevenness occurrence is 5, are as shown in FIGS. The dotted line shown in the figure, (1) is due to expression (1) if the base steel sheet temperature and the snout in dew point satisfies the equation, it can be seen that deter white unevenness.
[0034]
In addition, when the Al concentration in the hot dip galvanizing bath was 0.12%, white unevenness occurred in any combination of the atmosphere dew point in the snout and the hot dip galvanizing bath penetration temperature of the raw steel plate. Further, when the Al concentration in the hot dip galvanizing bath was 0.20%, no white unevenness was observed in any of the steel sheets.
[0035]
【The invention's effect】
The white unevenness of the surface of the minimum spangled galvanized steel sheet deteriorates the surface quality of the steel sheet, but this white unevenness can be suppressed by increasing the Al concentration in the hot dip galvanizing bath . However, when producing alloyed hot-dip galvanized steel sheets, the Al concentration in the hot-dip galvanizing bath must be lowered, and changing this Al concentration takes a lot of time. The production of steel sheets is inevitable. On the other hand, it may be manufactured in a separate plating line or the hot-dip galvanizing bath pot may be replaced in the same line, but it requires a large-scale capital investment and cannot be easily implemented.
[0036]
According to the production method of the present invention, white Al concentration in the molten zinc plating bath in the production of hot-dip galvanized steel sheet, even in the range of low concentrations in proximity to a concentration suitable for galvannealed steel sheet Since the occurrence of unevenness can be suppressed , the time for changing the Al concentration in the hot dip galvanizing bath can be minimized. Therefore , both the minimum spangled hot dip galvanized steel sheet and the alloyed hot dip galvanized steel sheet having a good surface can be easily manufactured on the same plating line without investing in new facilities.
[0037]
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing the relationship between gloss variation and whiteness variation by a measuring instrument and evaluation by visual observation for white unevenness on the surface of a minimum spangle galvanized steel sheet.
FIG. 2 is a diagram showing the relationship between the occurrence of white unevenness, the Al concentration of a galvanized film on a steel sheet, and the Al content of an Fe—Al alloy layer formed at the interface between the plated film and a raw steel sheet.
FIG. 3 is a diagram showing the relationship between the Al concentration in a hot dip galvanizing bath and the occurrence ratio of white unevenness.
FIG. 4 is a diagram showing a relationship between a healthy part and a white uneven part, an Al content of an Fe—Al alloy layer, and an area ratio of the alloy layer.
FIG. 5 is a diagram showing the relationship between the temperature of the material steel plate entering the hot dip galvanizing bath and the dew point of the atmosphere in the snout and the occurrence of white unevenness when the Al concentration in the hot dip galvanizing bath is 0.14%.
FIG. 6 is a graph showing the relationship between the temperature of the material steel sheet entering the hot dip galvanizing bath and the dew point of the atmosphere in the snout and the occurrence of white unevenness when the Al concentration in the hot dip galvanizing bath is 0.16%.
FIG. 7 is a diagram showing the relationship between the temperature of the material steel plate entering the hot dip galvanizing bath and the dew point of the atmosphere in the snout and the occurrence of white unevenness when the Al concentration in the hot dip galvanizing bath is 0.18%.

Claims (1)

素材鋼板が焼鈍過程を終えて冷却され溶融亜鉛めっき浴に侵入する際、溶融亜鉛めっき浴中のAl濃度A質量%)、鋼板の温度T(℃)および溶融亜鉛めっき浴侵入直前のスナウト内雰囲気ガスの露点V(℃)が、下記(1) (4) 式のいずれをも満足する範囲とすることを特徴とするミニマムスパングル溶融亜鉛めっき鋼板の製造方法。
(0.0025×T−0.012×V)×0.1≦A・・・・・・・・・・(1)
0.14 ≦A≦ 0.18・・・・・・・・・・・・・・・・・・・・(2)
440 ≦T≦ 500・・・・・・・・・・・・・・・・・・・・・(3)
-40 ≦V≦ -15・・・・・・・・・・・・・・・・・・・・・(4)
When the steel plate is cooled after the annealing process entering the galvanizing bath, Al concentration A (% by mass) in the molten galvanizing bath temperature T (° C.) of the steel sheet and hot-dip galvanizing bath penetration in the immediately preceding snout A method for producing a minimum spangle galvanized steel sheet , characterized in that the dew point V (° C.) of the atmospheric gas is in a range satisfying any of the following formulas (1) to (4) :
(0.0025 × T-0.012 × V) × 0.1 ≦ A (1)
0.14 ≤ A ≤ 0.18 (2)
440 ≤ T ≤ 500 (3)
-40 ≤ V ≤ -15 (4)
JP2001357910A 2001-11-22 2001-11-22 Method for producing hot-dip galvanized steel sheet Expired - Fee Related JP3636132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357910A JP3636132B2 (en) 2001-11-22 2001-11-22 Method for producing hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357910A JP3636132B2 (en) 2001-11-22 2001-11-22 Method for producing hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2003160850A JP2003160850A (en) 2003-06-06
JP3636132B2 true JP3636132B2 (en) 2005-04-06

Family

ID=19169181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357910A Expired - Fee Related JP3636132B2 (en) 2001-11-22 2001-11-22 Method for producing hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP3636132B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876711B1 (en) * 2004-10-20 2006-12-08 Usinor Sa HOT-TEMPERATURE COATING PROCESS IN ZINC BATH OF CARBON-MANGANESE STEEL BANDS
CN114250430B (en) * 2020-09-21 2024-01-09 宝山钢铁股份有限公司 Furnace nose internal atmosphere temperature control method and heating device beneficial to inhibiting zinc ash

Also Published As

Publication number Publication date
JP2003160850A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
KR100324893B1 (en) HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND SURFACE APPEARANCE AND PROCESS FOR THE PRODUCTION THEREOF
JP5270172B2 (en) Coated steel plate or strip
KR101767788B1 (en) Plating steel material having excellent friction resistance and white rust resistance and method for manufacturing same
KR101910756B1 (en) Continuous hot-dip metal coating method, galvanized steel strip, and continuous hot-dip metal coating facility
KR20120026548A (en) Method for producing a coated metal strip with an improved appearance
KR101568509B1 (en) HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
TW201434617A (en) Hot-dip galvanized steel sheet
BRPI0610540A2 (en) annealed steel sheet after hot dip galvanization and production method thereof
JPS6330984B2 (en)
US4171392A (en) Process of producing one-side alloyed galvanized steel strip
KR20180073412A (en) Alloy plated steel having excellent corrosion resistance and surface quality, and method for manufacturing the same
JP3636132B2 (en) Method for producing hot-dip galvanized steel sheet
KR101621630B1 (en) Galvannealed steel sheet having high corrosion resistance after painting
Bi et al. Formation of a dark streaky edge defect on galvannealed ultra-high strength steel
KR100929485B1 (en) Alloying hot dip galvanized steel sheet manufacturing equipment
JP4529380B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
KR100625952B1 (en) Manufacturing method of galvanized steel sheet with excellent surface appearance and brightness
KR100399226B1 (en) Preventing method of metallic dust formation from molten metal in snout for a hot dip coating
KR100627478B1 (en) Hot dipping apparatus and method
JPH0925550A (en) Aluminum-containing galvanized steel sheet and its production
JP3654520B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of machined part and method for producing the same
JP3271568B2 (en) Ti-IF steel sheet with excellent surface appearance
JP3371819B2 (en) Hot-dip galvanized steel sheet excellent in blackening resistance and method for producing the same
KR100525907B1 (en) Manufacturing method of galvannealed steel sheets
JP3278607B2 (en) Method for producing hot-dip galvanized steel sheet with good surface properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Ref document number: 3636132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees