JP3636019B2 - Method for demagnetizing and crushing permanent magnet motor and method for disassembling a product having a permanent magnet motor - Google Patents

Method for demagnetizing and crushing permanent magnet motor and method for disassembling a product having a permanent magnet motor Download PDF

Info

Publication number
JP3636019B2
JP3636019B2 JP2000014585A JP2000014585A JP3636019B2 JP 3636019 B2 JP3636019 B2 JP 3636019B2 JP 2000014585 A JP2000014585 A JP 2000014585A JP 2000014585 A JP2000014585 A JP 2000014585A JP 3636019 B2 JP3636019 B2 JP 3636019B2
Authority
JP
Japan
Prior art keywords
permanent magnet
motor
product
temperature
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000014585A
Other languages
Japanese (ja)
Other versions
JP2001211611A (en
Inventor
和彦 馬場
仁 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000014585A priority Critical patent/JP3636019B2/en
Publication of JP2001211611A publication Critical patent/JP2001211611A/en
Application granted granted Critical
Publication of JP3636019B2 publication Critical patent/JP3636019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、永久磁石形モータをリサイクルする際の永久磁石の減磁方法及び、破砕方法に関するものである。
【0002】
【従来の技術】
従来は、永久磁石形モータに用いられた永久磁石を減磁することなく、永久磁石の磁力を保持したまま破砕機にかけてモータを破砕した後、材料の分別を行っていた。
【0003】
また、永久磁石形モータの減磁方法として、モータの温度を永久磁石のキュリー温度(永久磁石の磁力がなくなる温度)以上まで上昇させて、永久磁石の減磁を行うことが知られていた。
【0004】
【発明が解決しようとする課題】
永久磁石形モータを用いた電機製品を粉砕、選別してリサイクルする方法において、永久磁石の磁力を保持したまま破砕、選別する方法では、永久磁石は、磁性体で構成された設備の各場所に付着して悪影響を及ぼしていた。特に、破砕時に鉄屑や、破砕機の刃に付着し、鉄屑や磁石が破砕機から出てこないなどの問題を生じ、破砕機の破砕能力の低下や刃の劣化を引き起こしていた。また、破砕機から出てきて、材料を選別した場合でも、鉄屑に付着した磁石片は、鉄屑と同じ所に回収されるため、鉄の品質が下がるという問題があった。
また、モータを破砕する前にモータの温度を永久磁石のキュリー温度の約400℃以上まで上昇させて、永久磁石の減磁を行う方法においては、モータの温度を上昇させるのに炉などの大きな設備が必要になるのと、多大なエネルギーが必要となりリサイクルのコストアップにつながっていた。
また、圧縮機等のように永久磁石形モータが組み込まれ、製品化されたものでは、モータ以外の部品に温度制約条件が存在する場合があり、リサイクル時に製品ごとキュリー温度まで上昇させることが必ずしも許容されるとは限らないという問題があった。
【0005】
本発明は上記の問題を解決するためになされたもので、永久磁石形モータに用いられた永久磁石を簡単な設備のみで減磁を行い、リサイクル時に破砕機の刃や磁性部に磁石片が付着するのを防止することを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る永久磁石形モータの減磁方法は、モータを所定の温度条件下にする工程と、ステータ電機子巻線の所定の端子間に時間と共に減衰する交流電流を印加する工程とを含み、前記所定温度を巻線皮膜の溶解温度以下とした。
【0007】
また、この発明に係る永久磁石形モータの破砕方法は、永久磁石形モータに設けられた永久磁石を上述の永久磁石形モータの減磁方法を用いて減磁する工程と、前記減磁したモータを破砕機にかけて破砕する工程とを含んむ。
【0008】
また、この発明に係る永久磁石形モータを備えた製品の解体処理方法は、永久磁石形モータが搭載され、前記永久磁石による磁界の影響を受ける部品を備えた製品の解体処理方法において、上述の永久磁石形モータの減磁方法又は上述の永久磁石形モータの破砕方法を適用した。
【0009】
また、永久磁石形モータが搭載され、前記永久磁石による磁界の影響を受ける部品を備えた製品の解体処理方法において、前記モータを前記製品の使用時の許容温度以下の所定の温度条件下にする工程と、ステータ電機子巻線の所定の端子間に時間と共に減衰する交流電流を印加する工程とを含み、前記製品を圧縮機とし、前記所定の温度条件を圧縮機の許容冷媒温度以下とした。
【0010】
【発明の実施の形態】
以下、この発明の実施の形態を図を用いて説明する。
実施の形態1.
図1は一般的な3相4極の永久磁石形モータの構造を示す断面図である。図において、1は内周面に軸方向へ延びる複数のスロット2a、2b…・2fが設けられている円筒状のステータコアであり、隣接するスロット2a、2b…・2f間にはティース部3a、3b…・3fが形成されている。4はティース部3a、3b…・3fに直接巻き付けられているコイルである。図2は、モータの内径側から展開して見たコイルの結線図であり、本図で示すように、コイルはU相とV相とW相の3つの相より構成され、3相Y結線となるように集中巻線が施されている。5はステータコア1及びコイル4を有するステータである。
【0011】
6はステータ5の軸線上に配置され、ステータ5に対して回転可能なロータ軸、7はロータ軸6に固定されているロータコア、8はロータコア7の外周面に固定されている複数の永久磁石であり、これらの永久磁石8は、フェライト又はネオジなどを主成分に構成され、N極とS極とが交互になるように着磁される。9はロータ軸6、ロータコア7及び永久磁石8を有するロータであり、このロータ9とステータ5との間には、空隙10が設けられている。
【0012】
次に、図3、図4、図5を用いて、永久磁石形モータのステータを用いて永久磁石を減磁する方法について示す。ステータ5は、例えば、図3に示すようにルームエアコンや冷蔵庫などに用いられている圧縮機12の筐体13に焼きばめによって固定されている。ステータのコイルの端子は、圧縮機の上部に取り付けられたガラス端子14に接続され、ステータのコイルへの通電を可能にしている。また、ロータ9とロータ軸6は、焼きばめによって固定することで一体化されており、ロータ軸は軸受け部15により保持されている。
【0013】
尚、圧縮機12には冷凍サイクルとしての使用時にはHFCやHCFC等の冷媒が流れ、冷媒温度や冷媒吐出温度に起因する許容温度(例えば130℃)、鉱油やHAB油、エステル油等の冷凍機油の劣化を防止するための許容温度(例えば100℃)等が存在する。また、モータのコイルを覆う皮膜は圧縮機の許容温度に応じて130℃位の許容温度を持っている場合がある。更に、モータの樹脂部分等も比較的許容温度が低い。これら許容温度は通常圧縮機駆動に用いられる永久磁石形モータの永久磁石のキュリー温度に比べるとかなり低い温度である。図4は、3相Y結線されたモータに電流を印加して減磁する場合の結線図、図5はそのときの電流波形である。
【0014】
圧縮機内に設けた永久磁石形モータの永久磁石を減磁するには、まず、U相の端子を、外部に設けた単相の電源11の一端に接続し、V相の端子とW相の端子を交流電源11のもう一方の端子に接続する。次に、電源11を用いてモータの各端子に図5で示すように初期値が1kA程度の、時間の経過と共に減衰する交流電流を印加する。これにより、永久磁石には徐々に振幅が小さくなる交番磁界が印加されるので、永久磁石中の磁気モーメントの方位が平均化され、ヒステリシス現象による残留磁気が徐々に減少し、交流磁界の強さが零に至った状態で、永久磁石8を減磁することができる。このように永久磁石を減磁した後、モータは圧縮機に組み込まれた状態で破砕処理される。
【0015】
以上のように、ステータのコイルの所定の端子間に、減衰する交流電流を印加することで、モータを圧縮機の筐体から取り出すことなく、電源のみの簡単な設備だけで永久磁石の減磁を容易に行うことができる。また、永久磁石の温度をキュリー点以上まで上昇させるなどの多大なエネルギーを必要としないので、省エネ化、及び、リサイクルの低コスト化が図れる。また、破砕機の刃や磁性部に磁石片が付着することによる破砕機の劣化を防止できる。
【0016】
なお、本実施の形態では、6スロットで4極の集中巻線のモータを例に説明したが、スロット数と極数の組み合わせは、モータが回転可能であれば、全てのモータに適用可能である。また、本実施の形態では、ティースに直接巻線を巻き付ける集中巻線を例に説明したが、集中巻線の変わりに分布巻線を用いても同様の効果を得ることができる。
【0017】
また、本実施の形態では、ルームエアコンや冷蔵庫に用いられている圧縮機用モータを例に説明したが、その他、例えば除湿機の圧縮機駆動用モータ、洗濯機駆動用モータ、ファンモータ、クリーナ、FDD、電気自動車駆動用モータなど、永久磁石形モータの搭載されている全ての製品に適用可能であることは言うまでもない。
【0018】
実施の形態2.
図6は、この発明の実施の形態2による永久磁石形モータの減磁方法を示すフローチャートである。発明の実施の形態1では、永久磁石の減磁作業を行うために、温度条件に規定がなかったのに対し、本実施の形態2では、減磁作業時の温度条件を定めた点で発明の実施の形態1と異なる。即ち、モータを所定の温度条件下にする工程(ステップS11)と、前記所定の温度条件下にしたモータに減衰電流を印加する工程(ステップS12)とから構成される。
【0019】
ここで、図7にフェライト磁石の減磁カーブを示す。また、図8にネオジウム、鉄、ボロンなどを主成分として構成される希土類磁石の減磁カーブを示す。横軸は保持力を示しており、保持力が小さいほど、小さな減磁界(小さな電流)で永久磁石の減磁を行えることを示している。また、縦軸は残留磁束密度であり、残留磁束密度が大きいほど磁石の磁力が大きいことを示している。本図より、フェライト磁石の場合、温度が低温になるほど、保持力が小さくなるという特性を有するのが分かる。また、希土類磁石の場合は、逆に温度が高温になるほど、保持力が小さくなるという特性を有するのが分かる。したがって、永久磁石の減磁特性は、永久磁石を構成する素材によって異なり、永久磁石の素材がフェライトを主成分に構成されている場合は、モータの温度を常温より低い温度とし、また、永久磁石の素材がネオジウム、鉄、ボロンなどを主成分として構成されている場合は、モータ温度を常温より高い温度にした後、減衰電流を印加するようにすることで、従来のようにキュリー点以上まで永久磁石の温度を上昇させることなく、常温時よりも小さい電力で信頼性の高い減磁を行うことができる。
【0020】
一例としてフェライト磁石を用いたモータの場合の温度条件として−20℃程度があげられる。また、ネオジウム、鉄、ボロンなどを主成分として構成されている場合の温度条件として100℃程度があげられる。100℃の条件は前述した圧縮機の許容温度以内となるものであり、他の部品が変形したりせず、その後の解体、破砕処理を円滑に行なうことができる。
【0021】
実施の形態3.
図3における圧縮機12を構成する各構成要素の許容温度を永久磁石のキュリー温度より高くすることにより、圧縮機をキュリー温度下に置いて減磁し、その後実施の形態1、2と同様に圧縮機を破砕してもよい。特に例えば永久磁石のキュリー温度が低く、圧縮機を冷凍サイクルとして使用していたときにR21等のような圧縮機吐出温度が高い冷媒を用いる場合には、圧縮機の許容温度を高く設計することから、圧縮機に対してキュリー温度に耐えるためのコストをそれほどかけなくてもキュリー温度に耐えられる圧縮機とできる場合がある。そのような場合には、圧縮機をキュリー温度以上の許容温度もつ製品とすることで、永久磁石の減磁を行なうことができる。
【0022】
尚、上記各実施の形態では、減磁する場合を例に説明したが、勿論消磁してもよい。
【0023】
【発明の効果】
以上のように、この発明によれば、ステータ電機子巻線の所定の端子間に時間と共に減衰する交流電流を印加する工程を含むので、永久磁石の温度をキュリー点以上まで上昇させることなく、簡単な設備で永久磁石の減磁を容易に行うことができる効果が得られる。
【0024】
また、モータを所定の温度条件下にする工程と、ステータ電機子巻線の所定の端子間に時間と共に減衰する交流電流を印加する工程とを含むので、小さい電流で容易に減磁ができる効果が得られる。
【0025】
また、前記所定温度をモータの巻線皮膜の溶解温度以下としたので、モータの劣化を防止することができる効果が得られる。
【0026】
また、永久磁石形モータに設けられた永久磁石を上述の何れかに記載の減磁方法を用いて減磁する工程と、前記減磁したモータを破砕機にかけて破砕する工程とを含んだので、破砕された磁石片が鉄屑や破砕機の磁性部に付着することを防止できる効果が得られる。
【0027】
また、永久磁石形モータが搭載され、前記永久磁石による磁界の影響を受ける部品を備えた製品の解体処理方法において、上述の永久磁石形モータの減磁方法又は上述の永久磁石形モータの破砕方法を適用したので、永久磁石形モータのリサイクルを容易に行うことができる効果が得られる。
【0028】
また、永久磁石形モータが搭載され、前記永久磁石による磁界の影響を受ける部品を備えた製品の解体処理方法において、前記モータを前記製品の使用時の許容温度以下の所定の温度条件下にする工程と、ステータ電機子巻線の所定の端子間に時間と共に減衰する交流電流を印加する工程とを含むので、製品の変形や劣化を防止しながら減磁を行なうことができ、その後の解体処理が円滑に行なえる効果が得られる。
【0029】
また、前記製品を圧縮機とし、前記所定の温度条件を圧縮機の許容冷媒温度以下としたので、圧縮機のコストアップを防止しながら、小さい電流で容易に減磁ができる効果が得られる。
【図面の簡単な説明】
【図1】 この発明における3相4極の永久磁石形モータの構造を示す断面図である。
【図2】 図1の永久磁石形モータのコイルの結線図である。
【図3】 図1の永久磁石形モータを備えた圧縮機の断面図である。
【図4】 モータを減磁する場合の結線図である。
【図5】 減磁時の電流波形を示す波形図である。
【図6】 この発明の実施の形態2による永久磁石形モータの減磁方法を示すフローチャートである。
【図7】 フェライト磁石の特性を示す減磁カーブである。
【図8】 希土類磁石の特性を示す減磁カーブである。
【符号の説明】
1 ステータコア、 2a、2b…・2f スロット、 3a、3b…・3f ティース、 4 コイル、 5 ステータ、 6 ロータ軸、 7 ロータコア、 8 永久磁石、 9 ロータ、 10 空隙、 11 電源、 12 圧縮機、 13 筐体、 14 ガラス端子、 15 軸受け部、 16 U相端子、 17 V相端子、 18 W相端子。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet demagnetization method and a crushing method when recycling a permanent magnet motor.
[0002]
[Prior art]
Conventionally, without demagnetizing the permanent magnet used in the permanent magnet type motor, the motor is crushed using a crusher while maintaining the magnetic force of the permanent magnet, and then the material is separated.
[0003]
Further, as a demagnetization method for a permanent magnet motor, it has been known to demagnetize the permanent magnet by raising the temperature of the motor to a temperature equal to or higher than the Curie temperature of the permanent magnet (a temperature at which the permanent magnet loses its magnetic force).
[0004]
[Problems to be solved by the invention]
In the method of crushing, selecting and recycling electrical products using permanent magnet motors, the permanent magnet is placed in each place of equipment composed of magnetic material. Adhered and had an adverse effect. In particular, the iron scraps and the blades of the crusher adhere to the crusher during crushing, causing problems such as iron scraps and magnets not coming out of the crusher, causing a reduction in crushing capacity of the crusher and blade deterioration. In addition, even when the material comes out of the crusher and sorts the material, the magnet pieces adhering to the iron scrap are collected in the same place as the iron scrap, which causes a problem that the quality of the iron is lowered.
In the method of demagnetizing the permanent magnet by raising the motor temperature to about 400 ° C. or more of the permanent magnet Curie temperature before crushing the motor, a large furnace or the like is used to raise the motor temperature. The need for equipment and a lot of energy required an increase in recycling costs.
Also, in the case where a permanent magnet type motor such as a compressor is incorporated and commercialized, there may be a temperature constraint condition on parts other than the motor, and it is not always necessary to raise the Curie temperature for each product during recycling. There was a problem that it was not always acceptable.
[0005]
The present invention has been made to solve the above-mentioned problems. The permanent magnet used in the permanent magnet motor is demagnetized only with simple equipment, and a magnet piece is placed on the blade or magnetic part of the crusher during recycling. The purpose is to prevent adhesion.
[0006]
[Means for Solving the Problems]
A demagnetizing method for a permanent magnet motor according to the present invention includes a step of placing the motor under a predetermined temperature condition, and a step of applying an alternating current that decays with time between predetermined terminals of the stator armature winding. The predetermined temperature was set to be equal to or lower than the melting temperature of the winding film.
[0007]
The method for crushing a permanent magnet motor according to the present invention includes a step of demagnetizing a permanent magnet provided in the permanent magnet motor using the demagnetization method of the permanent magnet motor, and the demagnetized motor. And crushing with a crusher.
[0008]
Further, a disassembly processing method for a product including a permanent magnet type motor according to the present invention is the above-described disassembly processing method for a product including a component on which a permanent magnet type motor is mounted and which is affected by a magnetic field by the permanent magnet. The demagnetizing method of the permanent magnet motor or the crushing method of the permanent magnet motor described above was applied.
[0009]
Further, in a method for disassembling a product having a permanent magnet motor mounted thereon and including a component that is affected by a magnetic field by the permanent magnet, the motor is set to a predetermined temperature condition equal to or lower than an allowable temperature when the product is used. And a step of applying an alternating current that decays with time between predetermined terminals of the stator armature winding, wherein the product is a compressor, and the predetermined temperature condition is equal to or lower than an allowable refrigerant temperature of the compressor. .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a sectional view showing a structure of a general three-phase four-pole permanent magnet motor. In the figure, reference numeral 1 denotes a cylindrical stator core provided with a plurality of slots 2a, 2b,... 2f extending in the axial direction on the inner peripheral surface, and between the adjacent slots 2a, 2b,. 3b... 3f are formed. Reference numeral 4 denotes a coil directly wound around the teeth 3a, 3b,... 3f. FIG. 2 is a connection diagram of the coil as viewed from the inner diameter side of the motor. As shown in this figure, the coil is composed of three phases of the U phase, the V phase, and the W phase. Concentrated windings are applied so that Reference numeral 5 denotes a stator having a stator core 1 and a coil 4.
[0011]
6 is a rotor shaft which is arranged on the axis of the stator 5 and is rotatable with respect to the stator 5, 7 is a rotor core fixed to the rotor shaft 6, and 8 is a plurality of permanent magnets fixed to the outer peripheral surface of the rotor core 7. These permanent magnets 8 are mainly composed of ferrite or neodymium, and are magnetized so that N poles and S poles are alternated. Reference numeral 9 denotes a rotor having a rotor shaft 6, a rotor core 7, and a permanent magnet 8, and a gap 10 is provided between the rotor 9 and the stator 5.
[0012]
Next, a method for demagnetizing a permanent magnet using a stator of a permanent magnet motor will be described with reference to FIGS. 3, 4, and 5. For example, as shown in FIG. 3, the stator 5 is fixed to the casing 13 of the compressor 12 used in a room air conditioner, a refrigerator, or the like by shrink fitting. The terminal of the stator coil is connected to a glass terminal 14 attached to the upper part of the compressor, enabling energization of the stator coil. Further, the rotor 9 and the rotor shaft 6 are integrated by being fixed by shrink fitting, and the rotor shaft is held by the bearing portion 15.
[0013]
When used as a refrigeration cycle, refrigerant such as HFC or HCFC flows through the compressor 12, and an allowable temperature (eg, 130 ° C.) due to the refrigerant temperature or refrigerant discharge temperature, refrigeration oil such as mineral oil, HAB oil, or ester oil. There exists an allowable temperature (for example, 100 ° C.) for preventing the deterioration of the material. Further, the coating covering the motor coil may have an allowable temperature of about 130 ° C. depending on the allowable temperature of the compressor. Furthermore, the resin portion of the motor has a relatively low allowable temperature. These allowable temperatures are considerably lower than the Curie temperature of a permanent magnet of a permanent magnet type motor usually used for driving a compressor. FIG. 4 is a connection diagram when a current is applied to a three-phase Y-connected motor to demagnetize, and FIG. 5 shows a current waveform at that time.
[0014]
In order to demagnetize the permanent magnet of the permanent magnet motor provided in the compressor, first, a U-phase terminal is connected to one end of a single-phase power source 11 provided outside, and a V-phase terminal and a W-phase terminal are connected. Connect the terminal to the other terminal of the AC power supply 11. Next, an alternating current having an initial value of about 1 kA and decaying with time is applied to each terminal of the motor using the power source 11 as shown in FIG. As a result, an alternating magnetic field with a gradually decreasing amplitude is applied to the permanent magnet, so that the direction of the magnetic moment in the permanent magnet is averaged, the residual magnetism due to the hysteresis phenomenon is gradually reduced, and the strength of the alternating magnetic field is increased. The permanent magnet 8 can be demagnetized in a state in which has reached zero. After demagnetizing the permanent magnet in this way, the motor is crushed in a state where it is incorporated in the compressor.
[0015]
As described above, by applying a decaying alternating current between predetermined terminals of the stator coil, the demagnetization of the permanent magnet can be achieved with only a simple power supply without removing the motor from the compressor housing. Can be easily performed. Further, since a large amount of energy such as raising the temperature of the permanent magnet to the Curie point or higher is not required, energy saving and cost reduction of recycling can be achieved. Moreover, deterioration of the crusher due to the magnet pieces adhering to the blade or magnetic part of the crusher can be prevented.
[0016]
In this embodiment, a 6-slot and 4-pole concentrated winding motor has been described as an example. However, the combination of the number of slots and the number of poles can be applied to all motors as long as the motor can rotate. is there. Further, in the present embodiment, the concentrated winding in which the winding is wound directly on the teeth has been described as an example, but the same effect can be obtained even if a distributed winding is used instead of the concentrated winding.
[0017]
Further, in the present embodiment, the compressor motor used in the room air conditioner and the refrigerator has been described as an example. However, for example, the compressor driving motor, the washing machine driving motor, the fan motor, and the cleaner of the dehumidifier Needless to say, the present invention is applicable to all products on which a permanent magnet type motor is mounted, such as a motor for driving an FDD or an electric vehicle.
[0018]
Embodiment 2. FIG.
FIG. 6 is a flowchart showing a demagnetizing method for the permanent magnet motor according to the second embodiment of the present invention. In the first embodiment of the invention, the temperature condition is not defined for performing the demagnetization work of the permanent magnet, whereas in the second embodiment, the temperature condition at the time of the demagnetization work is defined. This is different from the first embodiment. That is, the process includes a process of setting the motor under a predetermined temperature condition (step S11) and a process of applying an attenuation current to the motor under the predetermined temperature condition (step S12).
[0019]
FIG. 7 shows a demagnetization curve of the ferrite magnet. FIG. 8 shows a demagnetization curve of a rare earth magnet composed mainly of neodymium, iron, boron or the like. The horizontal axis indicates the holding force, and the smaller the holding force, the more demagnetizing the permanent magnet can be performed with a small demagnetizing field (small current). The vertical axis represents the residual magnetic flux density, and the larger the residual magnetic flux density, the greater the magnetic force of the magnet. From this figure, it can be seen that the ferrite magnet has a characteristic that the holding force becomes smaller as the temperature becomes lower. In contrast, the rare earth magnet has a characteristic that the holding force decreases as the temperature increases. Therefore, the demagnetization characteristics of the permanent magnet vary depending on the material constituting the permanent magnet. When the material of the permanent magnet is composed mainly of ferrite, the motor temperature is set to a temperature lower than room temperature. If the material is composed mainly of neodymium, iron, boron, etc., the motor temperature is set to a temperature higher than room temperature, and then the damping current is applied so that the Curie point is exceeded. Without increasing the temperature of the permanent magnet, highly reliable demagnetization can be performed with less power than at normal temperature.
[0020]
As an example, a temperature condition in the case of a motor using a ferrite magnet is about −20 ° C. As a temperature condition in the case where neodymium, iron, boron, or the like is used as a main component, about 100 ° C. can be mentioned. The condition of 100 ° C. is within the allowable temperature of the compressor described above, and other parts are not deformed, and subsequent disassembly and crushing processing can be performed smoothly.
[0021]
Embodiment 3 FIG.
By making the allowable temperature of each component constituting the compressor 12 in FIG. 3 higher than the Curie temperature of the permanent magnet, the compressor is placed under the Curie temperature to demagnetize, and then the same as in the first and second embodiments. The compressor may be crushed. In particular, when using a refrigerant having a high compressor discharge temperature such as R21 when the Curie temperature of the permanent magnet is low and the compressor is used as a refrigeration cycle, the allowable temperature of the compressor should be designed high. Therefore, there may be a case where the compressor can withstand the Curie temperature without incurring much cost to withstand the Curie temperature. In such a case, the permanent magnet can be demagnetized by making the compressor a product having an allowable temperature equal to or higher than the Curie temperature.
[0022]
In each of the above embodiments, the case of demagnetization has been described as an example.
[0023]
【The invention's effect】
As described above, according to the present invention, since it includes a step of applying an alternating current that decays with time between predetermined terminals of the stator armature winding, without increasing the temperature of the permanent magnet to the Curie point or higher, An effect is obtained that the demagnetization of the permanent magnet can be easily performed with simple equipment.
[0024]
In addition, since the method includes a step of putting the motor under a predetermined temperature condition and a step of applying an alternating current that decays with time between predetermined terminals of the stator armature winding, an effect of easily demagnetizing with a small current Is obtained.
[0025]
Further, since the predetermined temperature is set to be equal to or lower than the melting temperature of the winding film of the motor, an effect of preventing the motor from being deteriorated can be obtained.
[0026]
In addition, since it includes a step of demagnetizing the permanent magnet provided in the permanent magnet type motor using any one of the demagnetization methods described above, and a step of crushing the demagnetized motor using a crusher, The effect which can prevent that the crushed magnet piece adheres to iron scrap and the magnetic part of a crusher is acquired.
[0027]
Further, in a dismantling method of a product equipped with a permanent magnet motor and having a part affected by a magnetic field by the permanent magnet, the demagnetizing method for the permanent magnet motor or the crushing method for the permanent magnet motor described above. As a result, it is possible to easily recycle the permanent magnet motor.
[0028]
Further, in a method for disassembling a product having a permanent magnet motor mounted thereon and including a component that is affected by a magnetic field by the permanent magnet, the motor is set to a predetermined temperature condition equal to or lower than an allowable temperature when the product is used. And a step of applying an alternating current that decays with time between predetermined terminals of the stator armature winding, so that demagnetization can be performed while preventing deformation and deterioration of the product, and subsequent disassembly processing Can be obtained smoothly.
[0029]
In addition, since the product is a compressor and the predetermined temperature condition is equal to or lower than the allowable refrigerant temperature of the compressor, it is possible to easily demagnetize with a small current while preventing an increase in the cost of the compressor.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of a three-phase four-pole permanent magnet motor according to the present invention.
FIG. 2 is a connection diagram of coils of the permanent magnet type motor of FIG.
FIG. 3 is a cross-sectional view of a compressor including the permanent magnet type motor of FIG.
FIG. 4 is a connection diagram when a motor is demagnetized.
FIG. 5 is a waveform diagram showing a current waveform at the time of demagnetization.
FIG. 6 is a flowchart showing a demagnetizing method for a permanent magnet type motor according to Embodiment 2 of the present invention;
FIG. 7 is a demagnetization curve showing the characteristics of a ferrite magnet.
FIG. 8 is a demagnetization curve showing characteristics of a rare earth magnet.
[Explanation of symbols]
1 Stator core, 2a, 2b... 2f slot, 3a, 3b. Case, 14 glass terminal, 15 bearing, 16 U-phase terminal, 17 V-phase terminal, 18 W-phase terminal.

Claims (4)

モータを所定の温度条件下にする工程と、ステータ電機子巻線の所定の端子間に時間と共に減衰する交流電流を印加する工程とを含み、前記所定温度をモータの巻線皮膜の溶解温度以下としたことを特徴とする永久磁石形モータの減磁方法。 Including a step of placing the motor under a predetermined temperature condition and a step of applying an alternating current that decays with time between predetermined terminals of the stator armature winding, the predetermined temperature being equal to or lower than a melting temperature of the winding film of the motor and then magnetizing method reduced the permanent magnet motor, characterized in that the. 永久磁石形モータに設けられた永久磁石を請求項1に記載の減磁方法を用いて減磁する工程と、前記減磁したモータを破砕機にかけて破砕する工程とを含んだことを特徴とする永久磁石形モータの破砕方法。The method of demagnetizing the permanent magnet provided in the permanent magnet type motor using the demagnetizing method according to claim 1 and the step of crushing the demagnetized motor with a crusher. Crushing method for permanent magnet motor. 永久磁石形モータが搭載され、前記永久磁石による磁界の影響を受ける部品を備えた製品の解体処理方法において、請求項1の永久磁石形モータの減磁方法又は請求項記載の永久磁石形モータの破砕方法を適用したことを特徴とする永久磁石形モータを備えた製品の解体処理方法。Is a permanent magnet motor is mounted, wherein the disassembly processing method of a product having a component affected by the magnetic field by the permanent magnets, reducing magnetizing method of the permanent magnet type motor according to claim 1 or claim 2 permanent magnet type motor according A method for disassembling a product provided with a permanent magnet motor, characterized by applying the crushing method. 永久磁石形モータが搭載され、前記永久磁石による磁界の影響を受ける部品を備えた製品の解体処理方法において、前記モータを前記製品の使用時の許容温度以下の所定の温度条件下にする工程と、ステータ電機子巻線の所定の端子間に時間と共に減衰する交流電流を印加する工程とを含み、前記製品を圧縮機とし、前記所定の温度条件を圧縮機の許容冷媒温度以下としたことを特徴とする永久磁石形モータを備えた製品の解体処理方法。In a method for disassembling a product equipped with a permanent magnet type motor and including a part affected by a magnetic field by the permanent magnet, the step of setting the motor to a predetermined temperature condition that is equal to or lower than an allowable temperature during use of the product; Applying an alternating current that decays with time between predetermined terminals of the stator armature winding , wherein the product is a compressor, and the predetermined temperature condition is equal to or lower than an allowable refrigerant temperature of the compressor. A dismantling method for a product provided with the featured permanent magnet motor.
JP2000014585A 2000-01-24 2000-01-24 Method for demagnetizing and crushing permanent magnet motor and method for disassembling a product having a permanent magnet motor Expired - Fee Related JP3636019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014585A JP3636019B2 (en) 2000-01-24 2000-01-24 Method for demagnetizing and crushing permanent magnet motor and method for disassembling a product having a permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014585A JP3636019B2 (en) 2000-01-24 2000-01-24 Method for demagnetizing and crushing permanent magnet motor and method for disassembling a product having a permanent magnet motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003418947A Division JP4251071B2 (en) 2003-12-17 2003-12-17 Demagnetizing method of permanent magnet motor, crushing method of permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2001211611A JP2001211611A (en) 2001-08-03
JP3636019B2 true JP3636019B2 (en) 2005-04-06

Family

ID=18542026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014585A Expired - Fee Related JP3636019B2 (en) 2000-01-24 2000-01-24 Method for demagnetizing and crushing permanent magnet motor and method for disassembling a product having a permanent magnet motor

Country Status (1)

Country Link
JP (1) JP3636019B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334303B2 (en) * 2009-02-25 2013-11-06 東芝キヤリア株式会社 Permanent magnet motor, hermetic compressor, and refrigeration cycle apparatus
CN112641391B (en) * 2021-01-18 2022-07-15 南京特柏赛贸易有限公司 Turning wood shavings collection compression equipment

Also Published As

Publication number Publication date
JP2001211611A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
US4388545A (en) Rotor for a permanent magnet AC motor
US4405873A (en) Rotor for a line-start permanent-magnet motor
US7228616B2 (en) System and method for magnetization of permanent magnet rotors in electrical machines
CA2784977C (en) Rotor having a squirrel cage
US4600873A (en) Synchronous A.C. motor
EP1278293A2 (en) Low-noise motor-compressor
JP2002112476A (en) Permanent magnet rotating electric machine
WO2008055408A1 (en) Motor and compressor including the same
EP1744437B1 (en) Self magnetizing motor and stator thereof
US20060066169A1 (en) Electric motor having different stator lamination and rotor lamination constructions
KR20010101895A (en) Magnetization method for permanent magnet motor, and permanent magnet motor
US6936945B2 (en) Permanent magnet synchronous motor
JP2003047188A (en) Stator for electric motor
JPH10112946A (en) Motor
JP2003244903A (en) Manufacturing method for permanent magnet motor, compressor, refrigeration cycle device, manufacturing device for permanent magnet motor, heat demagnetization supressing tool, pressure arm, coil protective cover, and heating device for rotor
JP4251071B2 (en) Demagnetizing method of permanent magnet motor, crushing method of permanent magnet motor
JP3636019B2 (en) Method for demagnetizing and crushing permanent magnet motor and method for disassembling a product having a permanent magnet motor
Takahata et al. Analysis of rotor eccentricity on permanent magnet synchronous motor characteristics
JPH05236685A (en) Brushless dc motor
KR100937843B1 (en) Method of Producing Cylinder Type Back Yoke Formed of Amorphous Alloy, and Method of Producing Slotless Motor Using the Same
JP2003274618A (en) Permanent magnet rotor and manufacturing method thereof
US10069358B2 (en) Rotor of electric motor with permanent magnets
JP2001346364A (en) Demagnetization device, disassembling device for product having permanent magnet, demagnetization method and disassembling method for product having permanent magnet
JP2001086670A (en) Self-starting permanent-magnet synchronous motor
CN205566002U (en) Hexapole speed reduction starter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees