JP3635776B2 - X-ray equipment - Google Patents

X-ray equipment Download PDF

Info

Publication number
JP3635776B2
JP3635776B2 JP08743296A JP8743296A JP3635776B2 JP 3635776 B2 JP3635776 B2 JP 3635776B2 JP 08743296 A JP08743296 A JP 08743296A JP 8743296 A JP8743296 A JP 8743296A JP 3635776 B2 JP3635776 B2 JP 3635776B2
Authority
JP
Japan
Prior art keywords
ray
gain
output
gain adjustment
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08743296A
Other languages
Japanese (ja)
Other versions
JPH09260093A (en
Inventor
倫匡 菱田
往道 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP08743296A priority Critical patent/JP3635776B2/en
Publication of JPH09260093A publication Critical patent/JPH09260093A/en
Application granted granted Critical
Publication of JP3635776B2 publication Critical patent/JP3635776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、フィルムへのX線撮影を行うX線撮影装置に関し、とくに自動露出制御機能を有するX線撮影装置に関する。
【0002】
【従来の技術】
X線撮影装置では、通常、自動露出制御機能(ホトタイマとも呼ばれる)が備えられている。すなわち、X線を被写体に向けて曝射し、被写体を透過したX線をフィルムに入射させて露光させることにより撮影を行なう場合に、被写体を透過したX線をX線検出器で検出し、その出力を積分して積分値が設定値に到達したときに、フィルム露光量(X線量)が所望の値に達したものとしてX線遮断信号を生じて、X線曝射を終了させる。これにより、一定のフィルム濃度で撮影を行なうことができる。
【0003】
この自動露出用のX線検出器として半導体検出器などが用いられているが、変換効率が完全には一致せず出力値がばらつくことがあり、その補正のため、検出器出力ゲインを調整する必要がある。従来の装置では、この補正のための調整作業を手作業で行なう構成となっている。
【0004】
すなわち、従来のX線撮影装置は、通常、図3のように構成されている。図3において、制御器13からX線曝射信号が高電圧発生器12に与えられると、高電圧発生器12が高電圧を発生してこれをX線管11に印加する。これにより、X線管11から被写体10に向けてX線が発射される。ここでは、立位、水平位などの3つの受光部31、32、33にフィルム21、22、23(および増感紙)が保持されており、そのうちの一つたとえばフィルム21に、被写体10を透過したX線が露光される。各受光部31、32、33はそれぞれ3つの採光野を持つマルチ採光野となっており、その採光野の各々に半導体X線検出器41〜49が設けられている。これらの検出器41〜49により、被写体10を透過したX線が検出され、電気量(電流)に変換される。これら検出器41〜49の出力は切換器50により切り換えられる。
【0005】
ここでは、受光部31が使用されているとして、この受光部31の検出器41、42、43の出力がこの切換器50で選択され、それぞれの出力電流が保護抵抗51、52、53を経て電流/電圧変換器61、62、63の各々に入力される。電圧に変換された出力は積分器81、82、83にそれぞれ入力されて積分される。その積分出力電圧Vs1、Vs2、Vs3はフィルム露光量(X線量)に対応しており、それぞれ比較器91、92、93に入力されて制御器13からの基準値(設定電圧)Vrefと比較され、積分電圧が基準値に達したときにX線遮断信号が制御器13に送られる。制御器13はこのX線遮断信号を受け取るとただちに高電圧発生器12を制御して、X線管11に供給していた高電圧を遮断して、X線曝射を停止させる。
【0006】
検出器41〜49の各々の変換効率は完全には一致しないため、同一のX線量でも積分出力Vs1、Vs2、Vs3が同一となるとは限らない。そのため、電流/電圧変換器61、62、63に可変抵抗を設けてこれを調整することによって、検出器41〜49のばらつきを補正し、同一X線量で同一積分出力が得られるようにする。この場合、3つの電流/電圧変換器61、62、63のそれぞれには、選択された受光部からの3つの出力が入力されるが、受光部が3つあるため、その各々ごとに調整用の可変抵抗を設け、切換器で切り換える。
【0007】
すなわち、3つの電流/電圧変換器61、62、63のそれぞれに、受光部31〜33の各々用の3つの可変抵抗を設ける必要があるため、合計9つの可変抵抗111、121、131、112、122、132、113、123、133を設け、これらを切換器211、221、231、212、222、232、213、223、233で切り換えて使用することになる。検出器41〜49のそれぞれの出力を調整するため、これら9つの可変抵抗の各々を手動で調整する。
【0008】
【発明が解決しようとする課題】
しかしながら、従来のように、自動露出用X線検出器の出力ゲインの調整を手動で行なうのでは非常に手間がかかり、厄介であるという問題がある。すなわち、通常、出力調整用の可変抵抗のつまみは制御器の盤面などのアクセス容易な場所には設けられていず、制御器等のキャビネット内部に納められていて、容易には調整できない。とくに、マルチ採光野で、複数の受光部を備えている場合などでは、調整すべき箇所の数が非常に多くなり、それだけ作業は複雑になり、その作業には多大な手間と時間がかかることになる。しかも、やりずらい箇所での手動調整であるため、正確に調整することも難しい。
【0009】
この発明は、上記に鑑み、自動露出用X線検出器の出力のばらつきを補正するための調整を容易に行なうことができるように改善したX線撮影装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、この発明によるX線撮影装置においては、
X線発生手段と、各々フィルムを保持する複数の受光部と、該受光部の各々に複数ずつ設けられた自動露出用X線検出手段と、使用する受光部に応じて上記X線検出手段の出力を選択する切換器と、該切換器を経たX線検出手段の出力のゲインを、外部からのゲイン調整信号に応じて調整するゲイン調整手段と、調整後の出力を積分する積分手段と、該積分値と設定値とを比較し、積分値が設定値に達したときにX線遮断信号を生じる比較手段と、上記のゲイン調整手段にゲイン調整信号を与えてゲインを変化させる制御手段とが備えられ、
該制御手段は、基準のX線条件で上記のX線発生手段からのX線曝射を繰り返し、上記各X線検出手段出力についての積分値が基準の設定値に達してX線遮断信号が発生する時間が基準露出時間に収束するよう上記のゲイン調整信号を変化させ、その収束時のゲイン調整信号をすべてのX線検出手段の各々について記憶し、かつ、使用する受光部に応じて上記X線検出手段出力が上記切換器により選択されたときに、その選択されたX線検出手段出力について記憶したゲイン調整信号を読み出して上記ゲイン調整手段のゲインを定めるものである
ことが特徴となっている。
【0011】
制御手段からゲイン調整手段にゲイン調整信号を与えることにより、自動露出用X線検出手段の各々の出力ゲインを調整する。この各々のゲイン調整信号は、あらかじめ求められて制御手段に記憶されており、使用する受光部に応じて上記X線検出手段出力が切換器により選択されたときに、その選択されたX線検出手段出力について記憶したゲイン調整信号が読み出され、上記ゲイン調整手段のゲインが定められることになる。自動露出用X線検出手段は、複数受光部の各々に複数ずつ設けられており、全体では非常に数が多くなり、それらの出力のばらつきを補正するためのゲインの調整を手動で行うのでは大変な手間かかかるが、上記のようにあらかじめ求めて記憶されたゲイン調整信号を読み出してゲイン調整手段に与えることによりゲインを定めるため、このような手間を省くことができる。
【0012】
さらに、多数の自動露出用X線検出手段についての各々のゲイン調整信号をあらかじめ求めて記憶させておく作業についても自動化され、容易である。制御手段は、基準のX線条件でX線発生手段からのX線曝射を繰り返して、各X線検出手段についての積分値が基準の設定値に達してX線遮断信号が発生する時間が基準露出時間に収束するようゲイン調整信号を変化させ、その収束時のゲイン調整信号をすべてのX線検出手段の各々について記憶するようにしており、その作業は自動的に行われる。
【0013】
【発明の実施の形態】
つぎに、この発明の実施の形態について図面を参照しながら詳細に説明する。図1において、制御器13からX線曝射信号が高電圧発生器12に与えられると、高電圧発生器12が高電圧を発生してこれをX線管11に印加する。これにより、X線管11から被写体10に向けてX線が発射される。被写体10を透過したX線はたとえばフィルム21に露光される。フィルム21には増感紙などが併用されることもある。ここでは、立位、水平位などの3つの受光部31、32、33にフィルム21、22、23(および増感紙)が保持される。そして各受光部31、32、33はそれぞれ3つの採光野を持つマルチ採光野となっており、その採光野の各々に半導体X線検出器41〜49が設けられている。これらの検出器41〜49により、被写体10を透過したX線が検出され、電気量(電流)に変換される。これら検出器41〜49の出力は切換器50を経て出力される。
【0014】
ここでは、受光部31が使用されているとして、この受光部31の検出器41、42、43の出力がこの切換器で選択され、それぞれの出力電流が保護抵抗51、52、53を経て電流/電圧変換器61、62、63の各々に入力される。電圧に変換された出力はアナログ演算器71、72、73の各々によりゲイン調整された後、積分器81、82、83にそれぞれ入力されて積分される。その積分出力電圧Vs1、Vs2、Vs3はフィルム露光量(X線量)に対応しており、それぞれ比較器91、92、93に入力されて制御器13からの設定値(設定電圧)と比較され、積分電圧が設定値に達したときにX線遮断信号が制御器13に送られる。制御器13はこのX線遮断信号を受け取るとただちに高電圧発生器12を制御して、X線管11に供給していた高電圧を遮断して、X線曝射を停止させる。
【0015】
アナログ演算器71、72、73によって検出器出力ゲインを調整するのは、検出器41〜49の各々の出力のばらつきを補正するためである。切換器50によって別の受光部の検出器が選択されると、それに対応したゲイン調整信号が制御器13からアナログ演算器71、72、73に送られて、適切な補正がなされる。
【0016】
この適切な補正を行なうための、検出器41〜49の各々に対応したゲイン調整信号は、制御器13から発生させられるため、制御器13の盤面から適当な操作によって手動で任意の最適値に定めることができる。
【0017】
また、自動で求めて制御器13に保持するよう構成してもよい。その場合、まず、複数の受光部31、32、33のすべてについてフィルム21、22、23(および増感紙)とFID(X線管11の焦点からフィルムまでの距離)を所定のものとして、固定する。高電圧発生器12からX線管11に印加される管電圧・管電流も所定の値とし、固定する。これにより、X線管11からX線を曝射する。被写体としては、基準物質たとえば厚さ200mmのアクリル板を用いる。このとき検出器41〜49の出力により得たX線遮断信号は用いず、自動露出制御は行なわない。そして、フィルム濃度が一定になる(Densityがたとえば1.3になる)ときの露出時間を別途の手段で実測する。この露出時間がTとして測定されたら、このTを基準露出時間として、制御器13の盤面などから登録する。
【0018】
つぎに、図2のフローチャートで示すような手順でX線曝射とゲインの調整がなされる。まずフィルム21〜23(および増感紙)、FID、管電圧・管電流等のX線条件は変更せず、上記のままに固定してX線曝射し、同じ基準物質の被写体について撮影する。このとき、検出器41〜49の出力を使用した自動露出制御を作動させる。比較器91〜93に与える設定値として所定の基準値Vrefを用いる。積分器81〜83からの積分出力Vs1、Vs2、Vs3と上記の基準値Vrefとが比較器91、92、93において比較され、前者が後者の値に到達したとき、X線遮断信号が発生してX線曝射が遮断される。
【0019】
このとき、X線遮断信号が生じるまでの露出時間tを、比較器91、92、93の各々について求め(そのため切換器50を制御して1つの検出器の検出信号しか出力されないようにする)、このtと上記の基準露出時間Tとを比較する。tが基準露出時間Tよりも短ければ、アナログ演算器71(または72、73)のゲインを上げるよう盤面操作などによって数値を入力して、その数値に対応したゲイン調整信号を出す。tがTよりも長ければゲインを下げるような数値を入力し、その数値に対応したゲイン調整信号を出す。そして、ふたたびX線曝射して露出時間tを求め、これが基準露出時間Tに一致していなかったら、ゲインを上げ下げする数値を入力してゲインを制御するという操作を繰り返す。この操作の繰り返しにより、許容誤差を含む範囲で、tをTに一致させるように収束させることができる。このようにtをTに一致させることができたなら、そのときのゲイン調整信号を制御器13に記憶させる。
【0020】
このような作業を、切換器50を切り換えながら、まず受光部31の3つの検出器41、42、43について行ない、つぎに受光部32の3つの検出器44、45、46につき、さらにその後受光部33の3つの検出器47、48、49につき行なうというように、すべての受光部のすべての検出器について個々に行なって、すべての検出器についての個別のゲイン調整信号を制御器13に記憶・保持させる。
【0021】
したがって、制御器13の盤面での入力操作だけで何度かのX線曝射を行ない、多数の自動露出用X線検出器の個々のばらつきを補正する補正値を得て記憶・保持させることができる。実際の被写体10について撮影を行なう場合、切換器50で検出器が選択された場合に、その検出器の補正値(ゲイン調整信号)が読み出され、それに応じてアナログ演算器71、72、73が調整されるため、自動的に検出器のばらつきの補正ができる。
【0022】
なお、上記では受光部は3つとし、それぞれに3つの採光野を設けているが、これらの数は例示であり、受光部および採光野(検出器)ともさらに多くの数とすることもできる。また、逆に単採光野(採光野が1つで検出器も1つ)の場合でも、この発明を適用すれば、検出器の出力補正の手間と時間を省くことに効果がある。さらに、検出器出力ゲインを調整するためアナログ演算器を用いたが、外部からの制御信号によってゲインを調整できるものであれば他の回路を用いることも可能である。また、多数の自動露出用X線検出器の個々のばらつきを補正する補正値を得て記憶・保持させる操作を、上記のように自動で行なうのでなくて、手動で行なうようにしてもよい。
【0023】
【発明の効果】
以上説明したように、この発明のX線撮影装置によれば、自動露出用X線検出器の出力を補正するための作業をきわめて簡易に行なうことができ、その手間と時間とを節約することが可能となる。このように自動露出用X線検出器の出力が補正されるため、自動露出制御による撮影時間が適切なものとなって、フィルム濃度がつねに一定に保たれる。とくに、多数の自動露出用X線検出器の個々のばらつきを補正する補正値を得て記憶・保持させる操作は自動で行なわれるため、作業は容易であるとともに正確である。
【図面の簡単な説明】
【図1】この発明の実施の形態を示すブロック図。
【図2】動作を示すフローチャート。
【図3】従来例を示すブロック図。
【符号の説明】
10 被写体
11 X線管
12 高電圧発生器
13 制御器
21〜23 フィルム
31〜33 受光部
41〜49 自動露出制御用X線検出器
50 切換器
51〜53 保護抵抗
61〜63 電流/電圧変換器
71〜73 アナログ演算器
81〜83 積分器
91〜93 比較器
111〜113,121〜123,131〜133 可変抵抗
211〜213,221〜223,231〜233 切換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray imaging apparatus that performs X-ray imaging on a film, and more particularly to an X-ray imaging apparatus having an automatic exposure control function.
[0002]
[Prior art]
An X-ray imaging apparatus is usually provided with an automatic exposure control function (also called a phototimer). That is, when photographing is performed by exposing X-rays to a subject and making the X-rays transmitted through the subject incident on the film for exposure, the X-rays transmitted through the subject are detected by an X-ray detector, When the output is integrated and the integrated value reaches the set value, it is determined that the film exposure (X dose) has reached a desired value, and an X-ray cutoff signal is generated to end the X-ray exposure. Thereby, it is possible to perform photographing at a constant film density.
[0003]
A semiconductor detector or the like is used as the X-ray detector for automatic exposure, but the conversion efficiency does not completely match and the output value may vary, and the output gain of the detector is adjusted for the correction. There is a need. In the conventional apparatus, the adjustment work for this correction is performed manually.
[0004]
That is, a conventional X-ray imaging apparatus is usually configured as shown in FIG. In FIG. 3, when an X-ray exposure signal is supplied from the controller 13 to the high voltage generator 12, the high voltage generator 12 generates a high voltage and applies it to the X-ray tube 11. Thereby, X-rays are emitted from the X-ray tube 11 toward the subject 10. Here, films 21, 22, and 23 (and intensifying screens) are held by three light receiving portions 31, 32, and 33 such as a standing position and a horizontal position, and subject 10 is placed on one of them, for example, film 21. The transmitted X-ray is exposed. Each of the light receiving units 31, 32, and 33 is a multi-lighting field having three lighting fields, and semiconductor X-ray detectors 41 to 49 are provided in each of the lighting fields. These detectors 41 to 49 detect X-rays that have passed through the subject 10 and convert them into electricity (current). The outputs of these detectors 41 to 49 are switched by a switch 50.
[0005]
Here, assuming that the light receiving unit 31 is used, the outputs of the detectors 41, 42, 43 of the light receiving unit 31 are selected by the switch 50, and the respective output currents pass through the protective resistors 51, 52, 53. Input to each of the current / voltage converters 61, 62, 63. The output converted into voltage is input to the integrators 81, 82, and 83 and integrated. The integrated output voltages Vs1, Vs2, and Vs3 correspond to the film exposure amount (X dose) and are input to the comparators 91, 92, and 93, respectively, and compared with the reference value (set voltage) Vref from the controller 13. When the integrated voltage reaches the reference value, an X-ray cutoff signal is sent to the controller 13. As soon as the controller 13 receives this X-ray cut-off signal, it controls the high voltage generator 12 to cut off the high voltage supplied to the X-ray tube 11 and stop the X-ray exposure.
[0006]
Since the conversion efficiencies of the detectors 41 to 49 do not completely match, the integrated outputs Vs1, Vs2, and Vs3 are not always the same even with the same X-ray dose. Therefore, by providing variable resistors in the current / voltage converters 61, 62, and 63 and adjusting them, variations in the detectors 41 to 49 are corrected so that the same integrated output can be obtained with the same X-ray dose. In this case, each of the three current / voltage converters 61, 62, and 63 receives three outputs from the selected light receiving unit, but since there are three light receiving units, each of them is for adjustment. The variable resistor is provided and switched with a switch.
[0007]
That is, since it is necessary to provide three variable resistors for each of the light receiving units 31 to 33 in each of the three current / voltage converters 61, 62, and 63, a total of nine variable resistors 111, 121, 131, and 112 are provided. , 122, 132, 113, 123, 133 are used by switching between the changers 211, 221, 231, 212, 222, 232, 213, 223, and 233. In order to adjust the output of each of the detectors 41 to 49, each of these nine variable resistors is manually adjusted.
[0008]
[Problems to be solved by the invention]
However, there is a problem that it is very troublesome and troublesome to manually adjust the output gain of the automatic exposure X-ray detector as in the prior art. That is, normally, the variable resistor knob for adjusting the output is not provided in an easily accessible place such as a panel surface of the controller, and is housed inside a cabinet such as the controller and cannot be easily adjusted. In particular, when there are multiple light receivers in a multi-lighting field, the number of locations to be adjusted becomes very large, and the work becomes complicated accordingly, which requires a lot of labor and time. become. Moreover, since it is manual adjustment at difficult places, it is difficult to adjust accurately.
[0009]
In view of the above, an object of the present invention is to provide an improved X-ray imaging apparatus so that adjustment for correcting variations in the output of an automatic exposure X-ray detector can be easily performed.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the X-ray imaging apparatus according to the present invention,
X-ray generation means, a plurality of light receiving sections each holding a film, a plurality of automatic exposure X-ray detection means provided for each of the light receiving sections, and the X-ray detection means according to the light receiving section used. A switch for selecting an output; a gain adjusting means for adjusting the gain of the output of the X-ray detection means that has passed through the switch according to a gain adjustment signal from the outside; an integrating means for integrating the adjusted output; Comparing means for comparing the integrated value with the set value and generating an X-ray cutoff signal when the integrated value reaches the set value; and a control means for changing the gain by giving a gain adjustment signal to the gain adjusting means. Is provided,
The control means repeats the X-ray exposure from the X-ray generation means under a reference X-ray condition, the integrated value for each X-ray detection means output reaches a reference set value, and the X-ray cutoff signal is The gain adjustment signal is changed so that the generated time converges to the reference exposure time, the gain adjustment signal at the time of convergence is stored for each of all the X-ray detection means, and the above-described gain adjustment signal is used according to the light receiving unit used. When the X-ray detection means output is selected by the switch, the gain adjustment signal stored for the selected X-ray detection means output is read to determine the gain of the gain adjustment means. ing.
[0011]
By giving a gain adjustment signal from the control means to the gain adjustment means, each output gain of the automatic exposure X-ray detection means is adjusted. Each gain adjustment signal is obtained in advance and stored in the control means. When the output of the X-ray detection means is selected by the switch according to the light receiving unit to be used, the selected X-ray detection signal is detected. The gain adjustment signal stored for the means output is read, and the gain of the gain adjustment means is determined. A plurality of X-ray detecting means for automatic exposure are provided for each of the plurality of light receiving units, and the number of automatic X-ray detection units is very large as a whole, and it is not possible to manually adjust the gain for correcting variations in output. Although it takes a lot of time and effort, since the gain is determined by reading out the gain adjustment signal obtained and stored in advance as described above and applying it to the gain adjustment means, such time and effort can be saved.
[0012]
Furthermore, the work of obtaining and storing gain adjustment signals for a number of X-ray detection means for automatic exposure in advance is automated and easy. The control means repeats the X-ray exposure from the X-ray generation means under the reference X-ray condition, and the time during which the integrated value for each X-ray detection means reaches the reference set value and the X-ray cutoff signal is generated The gain adjustment signal is changed so as to converge at the reference exposure time, and the gain adjustment signal at the time of convergence is stored for each of all the X-ray detection means, and the operation is automatically performed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, when an X-ray exposure signal is supplied from the controller 13 to the high voltage generator 12, the high voltage generator 12 generates a high voltage and applies it to the X-ray tube 11. Thereby, X-rays are emitted from the X-ray tube 11 toward the subject 10. X-rays transmitted through the subject 10 are exposed to, for example, the film 21. An intensifying screen or the like may be used in combination with the film 21. Here, the films 21, 22, and 23 (and the intensifying screen) are held by the three light receiving portions 31, 32, and 33 such as the standing position and the horizontal position. Each of the light receiving units 31, 32, and 33 is a multi-lighting field having three lighting fields, and semiconductor X-ray detectors 41 to 49 are provided in each of the lighting fields. These detectors 41 to 49 detect X-rays that have passed through the subject 10 and convert them into electricity (current). The outputs of these detectors 41 to 49 are output via a switch 50.
[0014]
Here, assuming that the light receiving unit 31 is used, the outputs of the detectors 41, 42 and 43 of the light receiving unit 31 are selected by this switch, and the respective output currents are passed through the protective resistors 51, 52 and 53 as currents. / Input to each of voltage converters 61, 62, 63. The output converted into the voltage is gain-adjusted by each of the analog computing units 71, 72, 73, and then input to the integrators 81, 82, 83 for integration. The integrated output voltages Vs1, Vs2, and Vs3 correspond to the film exposure amount (X dose) and are input to the comparators 91, 92, and 93, respectively, and compared with the set values (set voltages) from the controller 13, When the integrated voltage reaches a set value, an X-ray cutoff signal is sent to the controller 13. As soon as the controller 13 receives this X-ray cut-off signal, it controls the high voltage generator 12 to cut off the high voltage supplied to the X-ray tube 11 and stop the X-ray exposure.
[0015]
The reason why the detector output gain is adjusted by the analog calculators 71, 72, and 73 is to correct variations in the outputs of the detectors 41 to 49. When the detector of another light receiving unit is selected by the switch 50, a gain adjustment signal corresponding to the detector is sent from the controller 13 to the analog calculators 71, 72, 73, and appropriate correction is performed.
[0016]
Since the gain adjustment signal corresponding to each of the detectors 41 to 49 for performing the appropriate correction is generated from the controller 13, it is manually set to an arbitrary optimum value by an appropriate operation from the panel surface of the controller 13. Can be determined.
[0017]
Alternatively, the controller 13 may be configured to automatically obtain and hold the controller 13. In that case, first, the film 21, 22, 23 (and the intensifying screen) and the FID (distance from the focal point of the X-ray tube 11 to the film) are predetermined for all of the plurality of light receiving units 31, 32, 33. Fix it. The tube voltage and tube current applied to the X-ray tube 11 from the high voltage generator 12 are also set to predetermined values and fixed. Thereby, X-rays are emitted from the X-ray tube 11. As the subject, a reference material such as an acrylic plate having a thickness of 200 mm is used. At this time, the X-ray cutoff signal obtained from the outputs of the detectors 41 to 49 is not used, and automatic exposure control is not performed. Then, the exposure time when the film density becomes constant (Density becomes 1.3, for example) is measured by a separate means. When this exposure time is measured as T, the T is registered as a reference exposure time from the panel surface of the controller 13 or the like.
[0018]
Next, X-ray exposure and gain adjustment are performed according to the procedure shown in the flowchart of FIG. First, X-ray conditions such as films 21 to 23 (and intensifying screen), FID, tube voltage / tube current, etc. are not changed. . At this time, the automatic exposure control using the outputs of the detectors 41 to 49 is activated. A predetermined reference value Vref is used as a set value given to the comparators 91 to 93. The integration outputs Vs1, Vs2, and Vs3 from the integrators 81 to 83 are compared with the reference value Vref in the comparators 91, 92, and 93. When the former reaches the latter value, an X-ray cutoff signal is generated. X-ray exposure is blocked.
[0019]
At this time, the exposure time t until the X-ray cutoff signal is generated is obtained for each of the comparators 91, 92, and 93 (for this reason, the switch 50 is controlled so that only the detection signal of one detector is output). The t is compared with the reference exposure time T described above. If t is shorter than the reference exposure time T, a numerical value is input by operating the panel so as to increase the gain of the analog computing unit 71 (or 72, 73), and a gain adjustment signal corresponding to the numerical value is output. If t is longer than T, a numerical value that decreases the gain is input, and a gain adjustment signal corresponding to the numerical value is output. Then, the exposure time t is obtained again by X-ray exposure, and if this does not coincide with the reference exposure time T, an operation of inputting a numerical value for increasing or decreasing the gain and controlling the gain is repeated. By repeating this operation, t can be converged to match T within a range including an allowable error. If t can be matched with T in this way, the gain adjustment signal at that time is stored in the controller 13.
[0020]
Such an operation is first performed for the three detectors 41, 42, and 43 of the light receiving unit 31 while switching the switch 50, and then for the three detectors 44, 45, and 46 of the light receiving unit 32, and then the light reception is performed. This is performed individually for all the detectors of all the light receiving sections, such as for the three detectors 47, 48, 49 of the section 33, and the individual gain adjustment signals for all the detectors are stored in the controller 13.・ Hold it.
[0021]
Accordingly, X-ray exposure is performed several times only by an input operation on the panel surface of the controller 13, and correction values for correcting individual variations of a large number of automatic exposure X-ray detectors are obtained, stored and held. Can do. When the actual subject 10 is photographed, when the detector is selected by the switch 50, the correction value (gain adjustment signal) of the detector is read out, and the analog calculators 71, 72, 73 are accordingly read. Is adjusted, so that variations in detectors can be automatically corrected.
[0022]
In the above description, the number of the light receiving units is three, and each of the three lighting fields is provided. However, these numbers are merely examples, and the number of the light receiving units and the lighting fields (detectors) can be increased. . On the contrary, even in the case of a single lighting field (one lighting field and one detector), applying the present invention is effective in saving labor and time for correcting the output of the detector. Furthermore, although an analog computing unit is used to adjust the detector output gain, other circuits can be used as long as the gain can be adjusted by an external control signal. Further, the operation of obtaining, storing and holding correction values for correcting individual variations of a large number of automatic exposure X-ray detectors may be performed manually instead of automatically as described above.
[0023]
【The invention's effect】
As described above, according to the X-ray imaging apparatus of the present invention, the operation for correcting the output of the automatic exposure X-ray detector can be performed very easily, and the labor and time can be saved. Is possible. Since the output of the automatic exposure X-ray detector is corrected in this way, the photographing time by the automatic exposure control becomes appropriate, and the film density is always kept constant. In particular, operations for obtaining, storing and holding correction values for correcting individual variations of a large number of X-ray detectors for automatic exposure are automatically performed, so that the operation is easy and accurate.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a flowchart showing an operation.
FIG. 3 is a block diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Subject 11 X-ray tube 12 High voltage generator 13 Controller 21-23 Film 31-33 Light-receiving part 41-49 X-ray detector 50 for automatic exposure control 50 Switch 53-53 Protection resistance 61-63 Current / voltage converter 71-73 Analog computing units 81-83 Integrators 91-93 Comparators
111 to 113, 121 to 123, 131 to 133 Variable resistance
211-213, 221-223, 231-233 selector

Claims (1)

X線発生手段と、各々フィルムを保持する複数の受光部と、該受光部の各々に複数ずつ設けられた自動露出用X線検出手段と、使用する受光部に応じて上記X線検出手段の出力を選択する切換器と、該切換器を経たX線検出手段の出力のゲインを、外部からのゲイン調整信号に応じて調整するゲイン調整手段と、調整後の出力を積分する積分手段と、該積分値と設定値とを比較し、積分値が設定値に達したときにX線遮断信号を生じる比較手段と、上記のゲイン調整手段にゲイン調整信号を与えてゲインを変化させる制御手段とを備え、
該制御手段は、基準のX線条件で上記のX線発生手段からのX線曝射を繰り返し、上記各X線検出手段出力についての積分値が基準の設定値に達してX線遮断信号が発生する時間が基準露出時間に収束するよう上記のゲイン調整信号を変化させ、その収束時のゲイン調整信号をすべてのX線検出手段の各々について記憶し、かつ、使用する受光部に応じて上記X線検出手段出力が上記切換器により選択されたときに、その選択されたX線検出手段出力について記憶したゲイン調整信号を読み出して上記ゲイン調整手段のゲインを定めるものであることを特徴とするX線撮影装置。
X-ray generation means, a plurality of light receiving sections each holding a film, a plurality of automatic exposure X-ray detection means provided for each of the light receiving sections, and the X-ray detection means according to the light receiving section used. A switch for selecting an output; a gain adjusting means for adjusting the gain of the output of the X-ray detection means that has passed through the switch according to a gain adjustment signal from the outside; an integrating means for integrating the adjusted output; Comparing means for comparing the integrated value with the set value and generating an X-ray cutoff signal when the integrated value reaches the set value; and a control means for changing the gain by giving a gain adjustment signal to the gain adjusting means. With
The control means repeats the X-ray exposure from the X-ray generation means under a reference X-ray condition, the integrated value for each X-ray detection means output reaches a reference set value, and the X-ray cutoff signal is The gain adjustment signal is changed so that the generated time converges to the reference exposure time, the gain adjustment signal at the time of convergence is stored for each of all the X-ray detection means, and the above-described gain adjustment signal is used according to the light receiving unit used. When an X-ray detection means output is selected by the switch, a gain adjustment signal stored for the selected X-ray detection means output is read to determine the gain of the gain adjustment means. X-ray imaging device.
JP08743296A 1996-03-15 1996-03-15 X-ray equipment Expired - Fee Related JP3635776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08743296A JP3635776B2 (en) 1996-03-15 1996-03-15 X-ray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08743296A JP3635776B2 (en) 1996-03-15 1996-03-15 X-ray equipment

Publications (2)

Publication Number Publication Date
JPH09260093A JPH09260093A (en) 1997-10-03
JP3635776B2 true JP3635776B2 (en) 2005-04-06

Family

ID=13914714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08743296A Expired - Fee Related JP3635776B2 (en) 1996-03-15 1996-03-15 X-ray equipment

Country Status (1)

Country Link
JP (1) JP3635776B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822571B2 (en) * 1999-08-03 2011-11-24 キヤノン株式会社 Digital X-ray imaging system and method
JP4522044B2 (en) * 2002-11-15 2010-08-11 キヤノン株式会社 Radiography equipment
JP4501383B2 (en) * 2003-09-12 2010-07-14 パナソニック株式会社 X-ray equipment
JP5358057B2 (en) * 2006-02-24 2013-12-04 富士フイルム株式会社 Radiation imaging apparatus and imaging method
KR100888888B1 (en) * 2006-08-02 2009-03-17 (주)이우테크놀로지 Method for cephalometric photographing
JP5309438B2 (en) * 2006-11-06 2013-10-09 株式会社島津製作所 X-ray equipment
KR100967346B1 (en) * 2008-07-11 2010-07-05 (주) 브이에스아이 Tube current cotrolling circuit of field emission X-ray tube
EP2693739A1 (en) * 2012-08-01 2014-02-05 Agilent Technologies, Inc. Electronic variable gain for x-ray detector

Also Published As

Publication number Publication date
JPH09260093A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
JP3635776B2 (en) X-ray equipment
JP5490454B2 (en) X-ray diagnostic imaging apparatus and X-ray detector
EP0432119A1 (en) Method relating to automatic exposure in x-ray diagnostics, in particular in mammography
US4980905A (en) X-ray imaging apparatus dose calibration method
US4333011A (en) X-Ray generator for fast dose rate control
US4455669A (en) X-Ray diagnostic installation comprising means for the formation of a transparency signal
JPS639358B2 (en)
EP0126434B1 (en) X-ray image pick-up device
EP0200272A2 (en) X-ray examination system and method of controlling an exposure
FI92451B (en) Automatic exposure device for panoramic X-ray imaging device
EP0027605B1 (en) Light source device for an endoscope
US5509044A (en) Medical diagnostics system having optimized signal acquisition for radiation exposure control
JPH06277204A (en) X-ray system
US3675020A (en) X-ray tube control circuitry
US5267295A (en) Methods and device related to automatic exposure in X-ray diagnostics in particular in mammography
JPS5849998B2 (en) X-ray device
JPH0676984A (en) Automatic x-ray exposure device for mammography
US4360731A (en) X-Ray diagnostic installation
JP3449721B2 (en) Method and instrument for measuring X-ray radiation
JPH07336597A (en) Fluoroscopic and radiographic device
JP3065625B2 (en) Radiation detector
JP4273858B2 (en) X-ray control device
SU1188916A1 (en) X-ray diagnostic unit
JPH02248889A (en) X-ray receiver
JPH04292145A (en) X-ray ct device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees